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ABSTRACT. Evolutionary simulation-optimization methods are combined with a Grey Hop, Skip, and Jump (GHSJ) ap-
proach in an application to municipal solid waste management planning. GHSJ techniques have been effectively applied to 
problems containing uncertain information. Simulation-optimization methods can be adapted to a wide variety of problem 
types in which some or all of the system components are stochastic. In this paper, the advantages from both of these tech-
niques are combined and used for efficiently generating improved decision alternatives. An illustrative application of the 
method is provided to demonstrate the usefulness of this approach in the planning design phase for the expansion of a waste 
management system. By using this approach, multiple different planning alternatives can be created that meet established sys-
tem criteria, while simultaneously remaining acceptable and implementable in practice. Solid waste decision makers faced 
with difficult and controversial choices would then interpret and analyze these alternatives to internalize the environ-
mental-economic tradeoffs prior to selecting their final policy. 
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1. Introduction  

Municipal solid waste (MSW) management systems 
possess many social, economic, technological, environ-
mental, and political dimensions. Due to the inherent 
incompatibility of these dimensions, the difficulties in 
policy planning for managing and expanding MSW sys-
tems generally become convoluted through multiple stake-
holders proffering conflicting agendas. Notwithstanding 
the lack of consensus regarding the best planning ap-
proach to pursue, Openshaw and Whitehead (1975) and 
Harris (1983) established the need for a formalized ap-
proach to planning, particularly for the effective design 
and evaluation of policies. Mathematical programming 
provided one such avenue for formalized planning. 
Optimization modeling has been extensively used for 
analyzing impacts of many disparate conflicting effects on 
MSW planning problems (Haynes, 1981; Wenger and 
Cruz, 1990; Marks and Liebman, 1971; Walker, 1976; 
Hasit and Warner, 1981; Lund, 1990; Lund et al., 1994) 
and for generating desirable solutions for particular prob-
lem instances. However, optimization approaches, alone, 
are unlikely to produce the single best policy solution that 
simultaneously satisfies all of the multiple conflicting 
dimensions identified above (Huang et al., 1996b; Ruben-
stein-Montano and Zandi, 1999). Yet planning models can 
still prove effective in facilitating the movement toward 

the realization of objectives set by policy makers (Keeney 
and Raiffa, 1976; Kleindorfer et al., 1993), when it is 
recognized that the modeling methods used for policy 
setting must also be capable of incorporating direct inputs 
and expertise from decision makers (Rubenstein-Montano 
et al. 2000). Hence, as in any policy formulation context, 
MSW planners must balance and integrate many factors 
prior to the establishment of their final policy selection. 

                                                        
  * Corresponding author: syeomans@schulich.yorku.ca 

Due to the presence of considerable system uncer-
tainty and the possibility that opposition from any major 
stakeholder could eliminate outright an �optimal� solution 
from further consideration, MSW planners faced with 
difficult and controversial system expansion choices 
would generally prefer a set of alternatives in order to 
incorporate their own implicit knowledge within the 
resolution of the problem under analysis (Huang et al., 
1996b). Preferably all such alternatives would be close to 
optimal when measured by their objective functions, but 
differ significantly from each other in terms of the system 
structure as characterized by their decision variables. Us-
ing both experience and intuition regarding the specific 
application, decision makers would then review these 
disparate alternatives to internalize the tradeoffs between 
the differences in the objective function values and the 
differing system structure characteristics suggested by 
each decision variable solution. 

In response to this solution option requirement, sev-
eral methods for modeling to generate alternatives (MGA) 
have been proposed (Baetz et al., 1990; Brill, 1979; Brill 
et al., 1981; Chang et al., 1980; Chang et al.1982; Church 
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and Huber, 1979; Falkenhausen, 1979; Gidley and Bari, 
1986; Rubenstein-Montano and Zandi, 1999; Ruben-
stein-Montano et al. 2000). MGA approaches provide an 
optimal solution and several near-optimal alternatives for 
planning problems (Gidley and Bari, 1986). Policy makers 
can then undertake a subsequent comprehensive evalua-
tion of these planning alternatives to determine which 
option most appropriately satisfies their specific policy 
situation.  

The major drawback to these MGA approaches arises 
from the fact that they have all been based upon 
deterministic mathematical programming methods and 
consequently cannot provide an effective means to inte-
grate the plethora of uncertain components prevalent 
within all MSW sub-systems directly into their solution 
construction. To counteract this deficiency in processing 
system uncertainty, Huang et al. (1996b) combined grey 
mathematical programming (GP) with the deterministic 
Hop, Skip, and Jump (HSJ) MGA technique of Brill 
(1979), thereby permitting inherent system uncertainty to 
be directly incorporated within the policy construction and 
decision-making phase of the planning process. This hy-
brid procedure was referred to as the Grey, Hop, Skip and 
Jump (GHSJ) method. Huang et al. (1996b) demonstrated 
the utility of GHSJ modeling in generating policy alterna-
tives by applying the method to a realistic case example of 
MSW expansion planning using representative cost and 
technical data taken from the solid waste management 
literature. 

2. Situation 

In HSJ modeling, after optimizing an initial problem 
formulation, supplementary problem instances are 
systematically solved with additional target constraints 
being placed upon both the objective function value and 
the decision variables which force the production of alter-
nate solutions (Brill, 1979; Brill et al., 1981). Practice 
normally dictates that good alternative solutions should 
never be more than 10% worse than the initial problem 
formulation�s optimal solution when additional unmod-
elled planning issues are included (Chang et al., 1982; 
Huang et al., 1996b). Hence, the supplementary options 
created in HSJ involve a �stepping� through several solu-
tion alternatives that are created by the inclusion of 
progressively incremented target constraints on the origi-
nal optimal objective function sequentially inflating it by 
up to 10%. HSJ had been designed and applied only to 
problems in which the model parameters were determinis-
tic (Brill, 1979; Brill et al., 1981). 

On the other hand, GP provides an approach which 
readily handles estimated uncertain input data expressed 
in the form of intervals. Interval estimation is particularly 
meaningful in practical situations, since it is generally far 
easier for practitioners to define fluctuation intervals than 
to specify appropriate distribution information. For MSW 
systems, examples of such interval uncertainty might have 
arisen from statements expressed in the form: �the capital 

cost for expanding the composting facility will be in the 
range of $1,000,000 to $1,200,000, �the waste generation 
rate is approximately 90 to 100 tonnes per week�, �the 
incinerator has a capacity to process 2,000 to 2,500 tonnes 
of waste per week�, and so forth (Huang et al., 1996b; 
Inuiguchi et al., 1990). In GP, a given problem with inter-
val parameters is transformed into two deterministic 
submodels which, when solved in tandem, will guarantee 
stable upper and lower limits for the desired objec-
tive-function values. Unlike �normal� interval and best 
case-worst case analysis, however, the transformation 
must be performed in a specifically prescribed order using 
an interactive algorithm that incorporates the output from 
the first submodel as input into the solution of the second 
submodel. The solution output from GP is a set of stable 
interval values for all of the decision variables and for the 
objective function. GP has been used extensively for solv-
ing a number of environmental management and planning 
problems operating under uncertain conditions (Bass et al., 
1997; Chang and Wang, 1995; Chang et al., 1996; Huang, 
1994, 1996; Huang et al., 1994ab, 1995, 1996ab, 1997, 
1998). In this paper, notation [a, b] will be used to indicate 
that the value of an uncertain, or grey parameter, is esti-
mated to lie within the numerical interval between the 
values of a and b. Furthermore, for mathematical conven-
ience, if variable A is used to represent the grey interval [a, 
b], then the uncertainty surrounding this variable will be 
expressed using notation A

t
. 

In GHSJ, a set of alternative system solutions is pro-
duced by solving a sequence of GP problems that are cre-
ated by progressively adding system target constraints in a 
format adopted from the HSJ modeling technique. With-
out the need for complicated intermediate modeling, the 
GP aspects of GHSJ produce significant computational 
advantages over other MGA approaches. The major 
contribution of GHSJ over all of the other MGA ap-
proaches derives from its facility for incorporating inher-
ent system uncertainties directly into the generation of the 
solution alternatives. The efficacy of GHSJ was demon-
strated in Huang et al. (1996b) via an application to a 
realistic, hypothetical case study of MSW management 
planning. 

3. Problem Statement 

However, one significant shortcoming of the GHSJ 
(and of the HSJ) method arises from the fact that only a 
finite number of alternatives can ever be realistically cre-
ated and examined by a planner, while the number of 
potentially feasible alternatives could prove to be ex-
tremely numerous. Hence, the restriction of the search for 
alternatives to only the very small subset of possibilities 
that might have occurred to the planner in the �stepping� 
phase of GHSJ, leads to the significant likelihood that 
many potentially better design alternatives could have 
been overlooked entirely. Therefore, to circumvent these 
myopic search tendencies, it would be advantageous to 
determine if a formalized process for efficiently creating 
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multiple good solution alternatives could be constructed 
that simultaneously maintained the desirable capability for 
integrating inherent planning uncertainty directly into the 
generation of these alternatives. 

4. Goals, Targets and Hypotheses 

Yeomans (2002) recently described an evolutionary 
simulation-optimization procedure which provided a for-
mal mechanism for �automatically� generating many 
desirable policy options that would not have been consid-
ered otherwise. However, since evolutionary procedures 
employ probabilistic search processes, both their solution 
times and solution quality are stochastic and can vary 
considerably from one implementation to the next (Lack-
sonen 2001). Consequently, although evolutionary simula-
tion-optimization procedures can often produce impres-
sive results, they cannot be considered an overarching 
panacea for addressing large complex problems due to the 
unpredictability introduced by these stochastic tendencies. 
In this paper, the computational efficiencies of the GHSJ 
procedure will be combined with the policy generation 
process of Yeomans (2002) in order to determine whether 
or not the solution time and performance quality of both 
of these methods can be improved upon by such integra-
tion. The effectiveness of this combined approach will be 
tested using the case study for MSW expansion planning 
presented in Huang et al. (1996b). 

5. Materials and Methods 

Simulation-optimization refers to a family of solution 
techniques that have been used for modeling complex 
problems possessing many stochastic and highly 
non-linear components in which precise analytical 
formulations of the investigated systems do not often exist 
(Fu, 1994). Many of these systems are characterized by 
the presence of multiple conflicting objectives (Teleb and 
Azadivar, 1994), while simultaneously possessing deci-
sion variables from the real, integer, qualitative and 
rule-based domains (Pierreval and Tautou, 1997; Azadivar 
and Tompkins, 1999). Generally, some or all of the objec-
tive functions and constraints are both stochastic and im-
plicit functions of decision variables that can only be 
evaluated efficiently through computer simulation. Find-
ing solutions to such problems tends to be difficult and 
generally necessitates the combination of simulation with 
an optimization-based search technique. The underlying 
rationale for the optimization component is to efficiently 
guide the exploration strategy through the solution space 
using only a limited number of simulation experiments 
(Lacksonen 2001). 

In simulation-optimization, analytical objective func-
tions and constraints are replaced by one or more discrete 
event simulation models in which the decision variables 
provide the conditions under which each simulation is run. 
The performance measures for a solution become one, or a 
function of several, of the responses generated during the 

simulation. The measured values determined in the 
simulation phase are then returned to the optimization 
procedure to direct the next decision variable settings and 
the subsequent step in the solution search process. Several 
researchers have employed evolutionary algorithms to 
guide the search optimization phase (Azadivar and Tomp-
kins, 1999; Fontanili et al. 2000; Pierreval and Tautou, 
1997; Huang et al. 2001). It should be noted that simula-
tion-optimization has been employed strictly for function 
optimization purposes in all of these applications. 

Yeomans (2002), however, recognized that evolution-
ary algorithms maintain a set of several candidate solu-
tions (their population) throughout their searching phase, 
with the search progressing from one population of solu-
tions to the next. Each candidate solution retained in a 
population corresponds to one possible solution option 
and, therefore, the entire population of these candidate 
solutions would represent a set of alternative solutions for 
a problem under study. All surviving solutions from the 
evolutionary actions of the optimization phase would have 
been retained on a �survival of the fittest� basis and the 
final population would necessarily be representative of a 
highly �fit� population. Hence, upon termination, an 
evolutionary process would not only have found the single 
best answer from its solution search, but also created a set 
of several �near-best� solutions residing in its terminal 
population. Thus, the procedure would have efficiently 
produced a family of several good solution alternatives for 
the problem studied. It is this final, �fit� population that 
would correspond to the set of good alternative options to 
be considered for implementation by policy planners. Be-
cause an evolutionary procedure has guided the solution 
search, these policy alternatives would have been gener-
ated �automatically�. Most of these alternatives would not 
have been considered by the planners during a �normal� 
policy design phase, and all of these policy solutions 
would have incorporated uncertain conditions directly 
within their construction phase. Therefore, the evolution-
ary simulation-optimization process would have automati-
cally created several good policy alternatives in the plan-
ning design phase, while concurrently incorporating 
stochastic system elements directly within the alternative 
generation process. As with all MGA methods, the plan-
ners would subsequently be required to prioritize the 
trade-offs between these different alternatives to deter-
mine exactly which policy would best satisfy their particu-
lar planning situation. 

Unfortunately, evolutionary procedures follow a 
probabilistic search process when evolving from one 
population to a subsequent one. Hence, the actual solu-
tions found and the time to find them are stochastic, vary-
ing considerably from one implementation of the method 
to the next. Furthermore, in complex systems, solution 
quality can be highly variable. One aspect to evolutionary 
simulation-optimization methods, therefore, is the 
determination of an initial population from which the 
search procedure commences. Traditionally, initial 
populations of candidate solutions have been randomly 
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generated (Goldberg, 1989,, 1991; Holland, 1992). How-
ever, other research has indicated that a directed genera-
tion of the initial population may prove more efficient 
than this traditional random approach (Reeves, 1993). In 
this paper, the efficient solution procedure of Huang et al. 
(1996b) will be used to provide the starting point for the 
policy generation process of Yeomans (2002) in order to 
improve both solution time and performance quality of 
evolutionary simulation-optimization, while readily 
exploiting all of the benefits attributable to the GHSJ 
procedure. 

6. Mathematical Model for MSW 
Management Planning 

This section will provide a synopsis of the MSW case 
study of Huang et al. (1996b), while more extensive de-
tails concerning the source data can be found in the 
originating paper. The region studied includes three 
municipalities whose MSW disposal requirements are 
served through two waste-to-energy (WTE) facilities and 
a landfill. The physical layout of this region is shown in 
Figure 1. At the start of the planning period, WTE facili-
ties 1 and 2 have processing capacities of [100, 125] and 
[200, 250] tonnes/day, respectively, and the landfill pos-
sesses an existing capacity of [0.625, 0.775] × 10

6
 tonnes.  

 
 Municipality 2 
                Municipality 3 
 
                                                     WTE Facility 2
                                                         
                  
 
 
 
 
                                      WTE Facility 1 
           
 
 
 
  Landfill 
 
 
 
 
 
                       Municipality 1 
    municipal so lid waste 
 

    residue from waste -to-energy (W TE) facility 

 
Figure 1.  Location of municipalities and waste 
management facilities. 

 
The WTE facilities generate residues of approxi-

mately 30% of the incoming waste streams on a mass 
basis, and revenue from the resulting energy re-sale is 
approximately [15, 25] $/tonne of combusted material. 

Table 1.  Capacity Expansion Options and Their Costs for the Landfill and WTE Facilities 

Time Period  

k = 1 k = 2 k = 3 

Capacity expansion option for WTE facility i, i = 2, 3 (tonnes/day):    

kiTC 1∆
t

 (option 1) 100 100 100 

kiTC 2∆
t  (option 2) 150 150 150 

kiTC 3∆
t  (option 3) 200 200 200 

kiTC 4∆
t  (option 4) 250 250 250 

Capacity expansion option for the landfill (106 tonnes):    

                     kLC∆
t  [1.55, 1.70] [1.55, 1.70] [1.55, 1.70] 

Capital cost of WTE facility expansion, i = 2, 3 ($106 present value):    

kiTCF 1
t  (option 1) 10.5 8.3 6.5 

kiTCF 2
t

 (option 2) 15.2 11.9 9.3 

kiTCF 3
t

 (option 3) 19.8 15.5 12.2 

kiTCF 4

t
 (option 4) 24.4 19.1 15.0 

Capital cost of landfill expansion ($106 present value): 

                     
kTCF

t
 [13, 15] [13, 15] [13, 15] 
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transportation and treatment vary both temporally and 

etermination 
of th

Three time periods are considered with each period 
consisting of an interval of five years. Over the entire 15 
year planning horizon, the landfill capacity can be ex-
panded only once by an increment of [1.55, 1.70] × 106 
tonnes. Each of the WTE facilities can be expanded by 
any one of four options in each of the three time periods 
(see Table 1 for detailed information). The maximum 
possible expansion option that could occur in any single 
time period would increase the processing capacity in a 
WTE facility by 250 tonnes/day. Table 1 also provides the 
capital costs, expressed in present value dollars, for the 
potential capacity expansions of the three facilities. These 
expansion costs escalate over time in order to reflect 
anticipated future conditions and have been discounted to 
present value cost terms for use in the objective function. 
The MSW waste generation rates and the costs for waste 

spatially. Table 2 provides the waste generation rates for 
the three municipalities, the operating costs for the three 
processing facilities, and the transportation costs for waste 
flows between municipalities and processing facilities 
over each of the three time periods. 

Hence, the case problem requires the d
e preferred facility expansion alternatives during the 

different time periods and the effective allocation of the 
relevant waste flows in order to minimize the total system 
costs over the planning horizon. In the subsequent 
mathematical representation of the case, the type of waste 
management facility will be identified using subscript i, 
with i = 1 corresponding to the landfill, and i = 2 and i = 3 
representing WTE facilities 2 and 3, respectively. The 
three municipalities from which the waste originates will 
be identified using subscript j, j = 1, 2, 3. Subscript k, k = 

Table 2.  Waste Generation, Transportation Costs, and Facility Operating Costs 

Time Period  

k = 1 k = 2 k = 3 

Waste generation (tonnes/day):  

kGW 1

t  (Municipality 1) [200, 250] [225, 275] [250, 300] 

kGW 2

t  (Municipality 2) [375, 425] [425, 475] [475, 525] 

kGW 3

t  (Municipality 3) [300, 350] [325, 375] [375, 425] 

Cost of waste transportation to the landfill ($/tonne):  

kRT 11

t  (Municipality 1) [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

kRT 12

t  (Municipality 2) [10.5, 14.0] [11.6, 15.4] [12.8, 16.9] 

kRT 13

t  (Municipality 3) [12.7, 17.0] [14.0, 18.7] [15.4, 20.6] 

Cost of waste transportation to WTE facility 1 ($/tonne):  

kRT 21

t  (Municipality 1) [9.6, 12.8] [10.6, 14.1] [11.7, 15.5] 

kRT 22

t  (Municipality 2) [10.1, 13.4] [11.1, 14.7] [12.2, 16.2] 

kRT 23

t  (Municipality 3) [8.8, 11.7] [9.7, 12.8] [10.6, 14.0] 

Cost of waste transportation to WTE facility 2 ($/tonne):  

kRT 31

t  (Municipality 1) [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

kRT 32

t  (Municipality 2) [12.8, 17.1] [14.1, 18.8] [15.5, 20.7] 

kRT 33

t  (Municipality 3) [4.2, 5.6] [4.6, 6.2] [5.1, 6.8] 
Cost of residue transportation from the WTE 
Facilities to the landfill ($/tonne): 

 

kTF 2

t
 (WTE facility 1) [4.7, 6.3] [5.2, 6.9] [5.7, 7.6] 

kTF 3

t
 (WTE facility 2) [13.4, 17.9] [14.7, 19.7] [16.2, 21.7] 

Operational cost ($/tonne):  

kPO 1

t
 (Landfill) [30, 45] [40, 60] [50, 80] 

kPO 2

t
 (WTE facility 1) [55, 75] [60, 85] [65, 95] 

kPO 3

t
 (WTE facility 2) [50, 70] [60, 80] [65, 85] 
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e, for 
the 

ng facility

1, 2, 3, corresponds to the time period and m, m = 1, 2, 3, 
4, denotes the expansion option selected for the WTE 
facilities. The decision variables for the problem will be 
designated by xijk, yk and zimk, where xijk represents the 
proportion of solid waste sent from municipality j to waste 
processing facility i in period k; yk corresponds to a binary 
decision variable for landfill expansion at the start of time 
period k (yk = 1 if the landfill expands in period k, 0 other-
wise), and zimk represents a binary decision variable corre-
sponding to the particular expansion option, m, selected 
for WTE facility i, i = 2, 3, at the start of period k.  

The total cost of waste management, in $/tonn
waste flowing from municipality j to processing facil-

ity i in period k is represented by ijkC
t

. The per tonne cost 
for transporting waste from municipality j to facility i in 
period k is ijkRT

t
, and ikPO

t
 is the per tonne operating 

cost of proces  period k. The transportation 
cost per tonne of waste from WTE facility i to the landfill 
in period k is denoted by ikTF

t
, for i = 2, 3. If FE repre-

sents the residue flow rat rom a WTE facility to the 
landfill, expressed as a percentage of the incoming mass 
to the WTE facility, and kER

t
 denotes the per tonne reve-

nue from the WTE facilities in period k, then jkC1

si  i in

e f

t
 = 

jkRT 1
t

 + kPO 1

t
 and ijkC

t
 = ijkRT

t
 + ikPO

t
 + FE ( F ikT

t
 + 

- R
t

for i = , j , 3  k = 1, 2, 3. The 
acity of the landfill, in tonnes, is CL

ikPO
t

) 
existing 

kE
cap

, 2, 3 = 1, 2 , and t
and 

kLC∆
t

 represents the additional capacity resulting from 
ndfill expansion undertaken in period k, k = 1, 2, 3; 

where the cost of this landfill expansion is kLCF
the la t

. The 
existing capacity, in tonnes per day, for WTE fa  i, i = 
2, 3 is iCT

t
. The amount of incremental capacity expansion, 

in tonnes per day, under option m, m = 1, 2, 3, 4, for WTE 
facility i, i = 2, 3, at the start of period k, k = 1, 2, 3, is 
provided by imkTC∆

cility

t
; with imkTCF

t
 corresponding to the 

capital cost o  expansio nally, if the number of 
days in time period k is kL  and if the number of tonnes 
of waste generated daily b unicipality j during period k 
is jkGW

f this n

y m

. Fi

t
, then the complete mathematical model for MSW 

ma ment planning is to: 
Minimize 

nage

Cost =  + + 

   (1) 

Subject to: 

   

k� = 1, 2, 3                                  (2) 

∑
=1k

kk yLCF
t

∑
=

3

11 k
ijkk WCL

tt

∑∑∑
===

3

1

4

1

3

2 k
imkimk

mi

zTCF
t

ijkx                 ∑∑
==

33

1
jk

ji

G

3

 

∑ ∑∑
′

= ==

+
k

k i
ijkjkjkjkk

j

FExGWxGWL
1

3

2
1

3

1

][
tt  

≤ ∑
′

=

∆
k

k
kk yLC

1

t
+ CL
t

  

[landfill capacity constraints] 

∑
=

′′
1j

kijkj xGW ∑∑
==

∆
k

imkimk
m

zTC
11

iCT
t3 t

≤
′k4 t

+    

i = 2, 3,  k� = 1, 2, 3                      (3) 
[WTE facility capacity constraints] 
 

∑
=

3

1i
ijkjk xGW

t
≤ jkGW

t
   

k = 1, 2, 3,  j = 1, 2, 3                     (4) 
n[waste disposal demand co straints] 

 

∑
=

4

1m
imkz ≤ 1    

i = 2, 3,  k = 1, 2, 3                         (5) 
[only one WTE facility expansion may occur in any given 
time period] 
 

∑
=

3

1k
ky ≤ 1                  (6) 

[landfill expansion may only be considered once] 

=   

j = 1, 2, 3,  k = 1, 2, 3                   (7) 
a  m

        

i = 1, 2, 3,     (8) 

= 0 or 1   
k =                    (9) 

ll expans

= 0  or      
i = 2  4         (10) 

Objective function (1) is comprised of components 
lat

 

∑
=

3

1i
ijkx 1

[all municipal waste gener ted ust be disposed] 
 

0≥≥ ijkx

 j = 1, 2, 3,  k = 1, 2, 3           

1

[non-negativity and proportion constraints] 
 

k

1, 2, 3        
y

[binary landfi ion constraints] 
 

imk 1

, 3,  k = 1, 2, 3,  m = 1, 2, 3,

z

[binary WTE facility expansion option constraints] 
 

re ing to the capital costs required for expanding the 
processing facilities and the cost/benefit effects resulting 
from different waste management decisions. Constraints 
(2) and (3) ensure that the upper limits for waste treatment 
and disposal in any time period are determined by both the 
existing facility capacity and any incremental expansion 
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the majority of the MSW system data contains 
unce

7. Evolutionary Simulation-Optimization for 

Yeomans (2002) provided an evolutionary simulation 
optim

 there are n decision 
vari

   D 
jec sin riteria, deterministic 

func

activities for the landfill and WTE facilities. The dynamic 
aspects of these constraints result from future economic 
development, population increase, and environmental 
management activities. Constraint (4) establishes the 
waste disposal quantities generated by each of the three 
municipalities in each time period. Constraint (5) requires 
that only one option for each WTE facility expansion can 
be selected in any given time period, and constraint (6) 
stipulates that the landfill could be expanded only once 
over the entire planning time horizon. Constraint (7) en-
sures the disposal of all waste generated by each 
municipality in every time period. Finally, constraints (8) 
to (10) provide the technical relationships for the decision 
variables. 

Since 
rtainties than can be estimated only by intervals, 

Huang et al. (1996b) solved this problem using the GHSJ 
approach. The optimal solution to the model outlined 
above provided a grey objective function value, expressed 
as an interval of [385.8, 690.9] million dollars. As indi-
cated earlier, MSW planners faced with difficult and 
controversial expansion choices would generally prefer to 
be able to choose from a set of near-optimal alternatives 
that differ from each other in terms of the system structure 
characterized by their decision variables. In order to create 
these alternative planning options, Huang et al. (1996b) 
added extra constraints to the original model which forced 
the generation of solutions that were different from the 
initial optimal solution. Three alternative expansion op-
tions were created through the inclusion of a technical 
constraint on the objective function that increased the total 
system cost of the original model by 2%, 5%, and 8%, 
respectively. Therefore, three alternative MSW system 
expansion alternatives were created with total system 
costs for their respective grey objective function values of 
[393.5, 704.7], [405.1, 725.4], and [416.7, 746.2]. Hence, 
by adding specific constraints to the original model, the 
GHSJ method created specific alternative solutions for 
MSW expansion planning under uncertainty. However, as 
demonstrated, the MSW planner would create only a finite 
subset of policy options using GHSJ and many preferable 
system alternatives could be inadvertently bypassed alto-
gether. 

Generating Solution Alternatives 

ization mechanism for automatically generating 
many desirable policy options that might be overlooked 
by an MGA procedure such as GHSJ. This method can 
create multiple solution options while simultaneously 
incorporating inherent system uncertainty directly within 
the alternative generation process. In this section, the 
evolutionary simulation-optimization approach for 
generating policy alternatives to problems containing 
considerable uncertainty will be described and it will be 
shown how GHSJ can be incorporated within it to en-

hance the resulting performance of both methods. More 
extensive details on efficient computational representa-
tions and implementations for these procedures can be 
found in the original research of Teleb and Azadivar 
(1994), Pierreval and Tautou (1997), Azadivar and Tomp-
kins (1999), and Yeomans (2001).  

Consider a problem in which
ables, Xi, expressed as a vector X = [X1, X2, �, Xn]. If 

D corresponds to the problem�s feasible region and F 
represents the objective function, then an optimization 
problem, P1, can be stated mathematically as: 
Minimize/Maximize  F(X)   [P1] 
Subject to:        X ∈  

If the ob tive, F, was a gle-c
tion and D consisted of a set of p deterministic con-

straints in the form gj(X) ≤  0, j = 1, �, p, then P1 could 
be solved using an optimi tion technique from one of the 
fields of linear, non-linear, and integer programming. 
Procedures such as simulated annealing, tabu search, 
lagrangian relaxation, neural networks and genetic algo-
rithms might be required for more mathematically 
intractable formulations of P1 (Reeves, 1993). Regardless 
of the optimization method selected, when comparing 
solutions X1 and X2 (i.e. two different settings for X), X1 
would be a better solution than X2 if it provided a superior 
value when measured by objective criterion F. 

However, in modeling complex systems, p

za

recise ana-
lytic

 re

s, the constraints and 
obje

al formulations might be unavailable or could be 
composed of many highly non-linear and stochastic 
components. Therefore, suppose that some or all of the 
deterministic parameters in P1 have been replaced by sto-
chastic functions. Such an instance might occur when 
uncertain parameters within the objective function or con-
straints have been represented by some form of probabil-
ity distribution. Another alternative might occur when r 
constraints of the form hj(X) ≤  0, j = 1,�, r, need not be 
satisfied all of the time. If ωj presents the proportion of 
the time, or probability, that constraint j may be violated, 
then such constraints could be expressed in the form 
P[hj(X) ≥ 0] ≤ ωj,  j = 1,�, r. Such stochastic constraints 
pose major solution difficulties for optimization problems, 
since the resulting systems possess fuzzy feasible region 
boundaries. P1 can be transformed into a more compli-
cated, multiobjective problem if F were expressed as a 
vector-valued function consisting of q functions Fk, k = 
1, �, q (Teleb and Azadivar, 1994), or if the feasible re-
gion D simultaneously contained decision options from 
the real, integer and qualitative domains (Pierreval and 
Tautou, 1997).  

Under stochastic condition
ctive can only be efficiently estimated by responses 

obtained through computer simulation. The comparison of 
any two solutions to P1 would necessitate the evaluation 
of some statistic of F when X1 is modelled to the same 
statistic when X2 is modelled (Pierreval and Tautou, 1997). 
Necessarily, these statistics would be generated by a 
simulation analysis performed on each solution considered. 
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Hence, computer simulation provides the only effective 
means for comparing results in complex systems. How-
ever, simulation in no way provides the means for 
determining the optimal solution, X*, that can be 
demonstrably proven to possess the best objective func-
tion value, F(X*). Therefore, simulation, by itself, cannot 
be used as the optimization method for stochastic in-
stances of problems such as P1. 

Hence, irrespective of the
ch adopted, the selected method would need to under-

take some form of search process through the feasible 
region, D. Since the measures of system performance 
would be stochastic, each potential solution, X, would 
necessarily be evaluated via simulation; with the candi-
date solution providing the settings for the decision vari-
ables under which each simulation would be run. For each 
candidate solution, the performance measure, F, would be 
estimated by a function of responses generated in the 
simulation. In practice, stochastic versions of P1 have 
commonly been �optimized� either by trial-and-error or 
by complete enumeration (Azadivar and Tompkins, 1999). 
Trial-and-error essentially corresponds to a haphazard 
random search process, while enumeration becomes com-
pletely impracticable for anything other than trivially 
small-sized problems. Other than complete enumeration, 
the most commonly prescribed optimization methods for 
directing the solution search have been simulated anneal-
ing (Reynolds and McKeown, 1999) and evolutionary 
algorithms (Azadivar and Tompkins, 1999; Fontanili et al., 
2000; Pierreval and Tautou, 1997; Huang et al., 2001). 

Typically a simulated annealing algorithm progres
 one candidate solution to another in an attempt to 

find an improved solution and, hence, this search process 
examines only a single portion of the feasible region at a 
time. In contrast, a stochastic search strategy directed by 
an evolutionary procedure maintains a set (or population) 
of current candidate solutions throughout its search proc-
ess, and advances from an entire current population to an 
entire subsequent population. Each candidate solution�s 
performance (or fitness) is measured by an evaluation of 
its criterion F. The entire population of solutions is 
considered during each step (or generation) of the 
evolutionary search and the fitness of each candidate solu-
tion is ranked in comparison to every other candidate 
solution in the current population. Evolutionary search 
algorithms are probabilistic in nature and, since they are 
based upon a population of solutions, permit a simultane-
ous exploration of several regions within D. The 
probabilistic nature of the search occurs in the construc-
tion process undertaken for new candidate solutions. Each 
new population is created from the current generation�s 
population using a selection rule based upon the fitness 
values obtained for each existing solution. One of the 
essential principles of evolutionary algorithms is that 
stronger solutions in the current candidate population 
should possess a greater likelihood for survival and 
progression into the next generation. This principle can be 
established by having the probability of an individual 

member from the current generation being selected for 
progression to the subsequent generation proportional to 
its current fitness measure. Such intrinsic principles render 
evolutionary search algorithms much less sensitive to lo-
cal extrema than other methods (Goldberg, 1989). 

Evolutionary simulation-optimization pro
mence from a set of candidate solutions stored in an 

initial population. The process consists of two distinct 
phases: an evolutionary optimization search phase and a 
simulation phase. Each candidate solution from the cur-
rent population is evaluated in the simulation module. The 
quality of a solution (its fitness for survival) is determined 
by evaluating its performance criterion, F, using simula-
tion analysis. After simulating each candidate solution, the 
fitness values of each solution are returned to the 
evolutionary component to be utilized in the creation of 
the next generation of candidate solutions. These fitness 
measures become inputs for the evolutionary phase where 
the next population is generated through the designated 
evolutionary method for the creation of new candidate 
solutions. The evolutionary optimization algorithm 
automatically evolves the system toward improved solu-
tions in subsequent populations and ensures that the 
search process does not become fixated at some local op-
tima. Upon the creation of the new set of candidate solu-
tions, the new population is returned to the simulation 
phase for evaluation. This two-phase search process termi-
nates when some appropriately stable system state has 
been achieved and several methods for accelerating this 
convergence have been suggested in the literature (Azadi-
var and Tompkins, 1999; Pierreval and Tautou, 1997). The 
best solution found during the search will be the optimal 
solution produced by the procedure for P1. 

Since public policy problems of any
ld be characterized by large complex systems possess-

ing many uncertain elements, any realistic mathematical 
model of them would necessarily require a stochastic ver-
sion of P1 (perhaps with multiple objectives and multiple 
variable types). In such a representation, system uncer-
tainty would be directly incorporated through the inclu-
sion of stochastic parameter estimation and by permitting 
certain specific constraint violations for a reasonable 
proportion of the time. In previously published studies, 
evolutionary simulation-optimization had only been used 
for function optimizing purposes (Azadivar and Tompkins, 
1999; Fontanili et al., 2000; Pierreval and Tautou, 1997; 
Huang et al., 2001). Yeomans (2002) extended the method 
beyond its traditional optimization task into a new role as 
the generator of policy alternatives for problems contain-
ing considerable sources of uncertainty. This novel 
evolutionary approach provided a mechanism for 
automatically generating many desirable policy options 
that would not have been considered otherwise, while 
simultaneously integrating the inherent planning uncer-
tainty directly into the generation of these alternatives. A 
synopsis of this evolutionary MGA extension follows. 
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Due to its inherent characteristics, an evolution
rithm maintains a set of several solutions throughout 

its searching phase (its population), with the search 
progressing from one population of candidate solutions to 
the next. Each solution retained in the population would 
correspond to one particular policy alternative and, there-
fore, the population of these candidate solutions would 
represent a set of policy options for the problem under 
study. Regardless of the exact evolutionary search proce-
dure employed, during the progression from one genera-
tion to a subsequent one, relatively poorer candidate solu-
tions in the population (as measured by objective criterion,
F) would progressively become replaced by better ones in 
an evolutionary �survival-of-the-fittest� analogy (Holland, 
1992; Goldberg, 1989, 1991; Caudill and Butler, 1990). 
The comparative quality for ranking these solutions would 
be established by the statistic calculated for each of their 
respective objectives in the simulation phase of the 
simulation-optimization procedure. The surviving solu-
tions from the evolutionary actions of the optimization 
phase would be retained on a �survival of the fittest� basis 
using this statistical measure. Thus, when the optimization 
search procedure of P1 concludes, the final population 
would necessarily be representative of a highly �fit� 
population. Therefore, when the evolutionary simula-
tion-optimization algorithm terminates, it would not only 
have found the single best answer from its solution search, 
but also have created a set of �near-best� solutions resid-
ing in this terminal population (Dibble and Densham, 
1993). Therefore, in actuality, evolutionary simula-
tion-optimization has efficiently generated a family of 
several good solution alternatives for the problem studied. 
It is this final, �fit� population that corresponds to the set 
of desirable alternatives to be considered for implementa-
tion by policy planners. 

Hence, evolutionar
s can be used to automatically generate a set of desir-

able alternative policy options. By adopting this approach, 
multiple policy alternatives can be created that meet the 
established system criteria, while simultaneously remain-
ing acceptable and implementable in practice. These solu-
tions can be viewed as desirable from two perspectives. 
Primarily, based upon the evolving nature of the search 
process employed, all of the surviving solutions will be 
extremely �fit�, corresponding to policy solutions that 
have necessarily achieved close-to-optimal measures for 
their objective function value(s). Secondly, the solutions 
found will all satisfy the stated system requirements that 
each policy option must possess, as represented by the 
constraints applied within the problem. This characteristic 
would result from the evolutionary procedure discarding 
elements that do not satisfy the necessary �traits� required 
by members of its population. [Note that because of the 
stochastic aspects introduced in these problems, some 
constraints need not be strictly satisfied 100% of the 
time]. 

Du

e stochastic system problems expressed in the form of 
P1, the solution quality found for such problems can be 
highly variable unless a thorough search throughout the 
feasible region has been performed. Evolutionary tech-
niques provide such thorough searches because the dispa-
rate candidate solutions maintained in their population 
permit a concurrent search through multiple portions of 
the feasible domain. However, since an evolutionary 
search procedure is a probabilistic process, the actual 
solution time is stochastic. Therefore, in performing an 
extensive search for the optimal solution, search times can 
vary considerably from one run on a specific problem 
instance to the next (or equivalently, over a fixed period of 
search time, the solution quality could be highly variable). 
Hence, one major difficulty experienced by any evolution-
ary simulation-optimization procedure has been the length 
of time required for it to converge to an optimal solution 
(Lacksonen, 2001). Logically, this difficulty also extends 
to their effectiveness for generating solution alternatives. 
In the search process, evolutionary procedures evolve 
from one population to a subsequent one. Consequently, 
an important aspect to evolutionary simula-
tion-optimization methods is the determination of the ini-
tial population of candidate solutions from which the 
search procedure commences. In general, for a variety of 
reasons, initial populations for evolutionary searches have 
been randomly generated (Caudill and Butler, 1990; Gold-
berg, 1989, 1991; Holland, 1992). However, Reeves (1993)
suggested that a directed generation of the initial 
population using some other means may prove more effi-
cient in speeding up solution convergence. If some 
computationally efficient method can be used to provide 
the means for generating a good initial population, then 
this population may be used to quickly direct the search 
into preferred regions of a potentially large feasible do-
main. This initial population biasing can reduce the sole 
reliance on the evolutionary aspects of the search proce-
dure. Such a directed search may be used to significantly 
reduce the solution time while simultaneously increasing 
the solution quality. 

Since there is alr
solving complex problems containing significant 

uncertainty, finding this efficient �other means� is not a 
straightforward process. In practice, had the planner al-
ready possessed an efficient solution technique, then, 
rather than employing it as a stepping stone to some other 
procedure, this method would more than likely be directly 
employed for satisfactorily solving the problem. However, 
it has been described how Huang et al. (1996b) used 
GHSJ to generate alternatives for complex problems 
containing uncertainty. Thus, this efficient technique does 
exist for quickly generating good initial possible popula-
tions from which to start an evolutionary search. In the 
next section, the effectiveness of directing the start of an 
evolutionary simulation-optimization procedure based 
upon solutions created by GHSJ will be demonstrated for 
an MSW case study problem (Huang et al., 1996b). 



J. S. Yeomans and G. H. Huang / Journal of Environmental Informatics 1 (1) 37-51 (2003)  

 

 46 

8. Application to the MSW Expansion  
Planning Case 

Any decision-making procedure employed to support 
planners in setting public policy must be robust enough to 
balance the impact of many contradictory and competing 
factors, while retaining sufficient flexibility to process 
multiple uncertain sources inherent within the system. 
Since MSW systems exhibit conflicting characteristics 
often associated with public policy planning issues, they 
provide an appropriately representative vehicle for testing 
any MGA method that can incorporate uncertainty. In this 
section, the usefulness in combining GHSJ with the evolu-
tionary approach will be illustrated through its application 
to the case for planning MSW system expansion intro-
duced earlier. 

It had been noted that in the GHSJ study, all uncer-
tain inputs and outputs had been expressed as fluctuation 
intervals. Thus, GHSJ does not require any probability 
distribution assumptions. This provides an advantage for 
any �real life� implementation of GHSJ, since it is gener-
ally quite difficult for practitioners to specify appropriate 
distributions that capture their intrinsic system uncertainty. 
However, the stochastic versions of P1 necessary for 
evolutionary simulation-optimization require that each 
uncertain parameter be estimated by some distribution. 
This distribution requirement does not prove unduly 
restrictive, since a straightforward transformation process 
can be applied to all grey parameters in the case. If any 
data parameter A is estimated to lie within the interval [a, 
b], then a standard Bayesian argument can be used that 
converts this unknown parameter into a randomly gener-
ated value from a uniform probability distribution with 
minimum value a and maximum value b (Grey, 1995; 
Vaughan Jones, 1991). Therefore, in any mathematical 
instance of the case, the values for all grey parameters, A

t
, 

will be randomly generated from uniform distributions 
using the range endpoints previously established in the 
GHSJ study. Should the �true�, but unknown, distribution 
for an uncertain element prove to possess a more central 
tendency within its expressed interval, then the resulting 
statistical measures calculated will actually overestimate 
the true variance of the measure. Thus, this Bayes-
ian-uniform distribution transformation can be considered 
as a conservative assumption. Additionally, this stochastic 
aspect permits the simultaneous relaxation of several 
�hard� constraints. Recognizing the practical implications 
of this relaxation (Foulds and Thachenkary, 2001), several 
constraints shown in the model can be formulated as 
percentiles that allow for their conditions to be violated a 
certain proportion of the time. Hence, by implementing 
these changes, the GHSJ case model can easily be 
reformulated for solution by evolutionary simula-
tion-optimization. 

A limitation of earlier MGA methodologies had been 
their inability to include system uncertainty directly into 
their generated policy options. The reformulated MSW 
model directly incorporates these numerous uncertain 

elements, thereby capturing the innate stochastic dynam-
ics existing within the system. Solving the problem would 
constitute running the simulation-optimization procedure 
on a stochastic version of the problem P1 to determine the 
minimum system cost. Any feasible solution to the model 
would correspond to one particular policy option for 
MSW expansion planning. Therefore, determining a spe-
cific policy for the system necessitates a formulated solu-
tion satisfying constraints (2) to (10), with its cost being 
evaluated by objective (1). Since a simulation is per-
formed upon each decision variable setting, the stochastic 
aspects of the cost objective could be measured in several 
different ways. For experimental purposes, two different 
system objectives will be optimized: one evaluating the 
mean cost and the other measuring the maximum possible 
cost. 

Each of these objectives possesses distinct practical 
benefits and provides meaningful insights for a municipal-
ity. Minimizing the mean would produce solutions that 
maintain low system costs on the average and, therefore, 
would be quite practical when considered over the long 
term. However, since municipal budgets provide fixed 
annual dollar amounts to cover their various programs, 
municipalities also tend to be extremely risk averse and 
aim to avoid situations that lead to overspending the budg-
eted allocations. Recognizing that the total system cost 
follows some stochastic distribution, a strategy that mini-
mizes the maximum possible cost could, in fact, be far 
different from one that minimizes the mean cost. Hence, 
determining solutions which minimize maximum possible 
costs would satisfy the risk aversion characteristics of 
municipalities. These solutions might contain relatively 
high costs on average, but would guarantee that spending 
would never exceed the maximum objective amount 
found. Therefore, solving a maximum objective problem 
could hold distinct advantages in establishing budgets for 
municipalities that must fund their programs solely 
through taxation. 

Eight separate policy generation experiments for the 
MSW expansion case were performed using the evolution-
ary simulation-optimization procedure. The initial popula-
tion for each evolutionary search was established by the 
four GHSJ solution alternatives previously found by 
Huang et al. (1996b). These four starting points represent 
the overall optimal solution for the model, together with 
the 2%, 5%, and 8% solution alternatives created when 
constraints were added during the alternative generation 
phase of GHSJ. Each experimental problem corresponded 
to a specific combination of the two objective functions 
and the four different starting populations. In the 
experimentation, the evolutionary procedure was run with 
a fixed population size of 50 for a period of 90 minutes. 
As noted, for policy design using evolutionary simula-
tion-optimization, the planning focus becomes the final 
population found after running the procedure. Upon 
termination, this entire surviving population represents a 
set of policy options generated for MSW expansion in the 
municipality. The planners would subsequently need to 
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closely evaluate trade-offs among options remaining in the 
final population and perform a comparative analysis on 
these options in order to select a desired policy decision 
for MSW expansion.  

Figures 2 to 9 reveal the results generated from the 
eight computational experiments using the evolutionary 
procedure. Each figure illustrates the calculated objective 
values for the 50 policy options residing in the terminal 
populations. Figures 2 to 5 show the final populations 
created for the mean cost objective when commencing the 
solution search from each of the GHSJ alternatives. Fig-
ures 6 to 9 provide comparable output for the maximum 
objective. An analysis of the figures highlights certain 
interesting characteristics regarding the starting points of 
the evolutionary searches. Since each specific initial 
population produces analogous solution patterns under 
both objective functions, the figures will be discussed on a 
pair wise basis. 

Figures 2 and 6 show very similar system costs for all 
of the options generated in a search starting from the opti-
mal GHSJ solution. This similarity is exemplified by the 
very �flat� appearance of the histograms. A detailed 
examination of the decision variables indicated that these 
options all tend to suggest quite similar MSW system 
expansion structures. In fact, the differences between the 
alternatives occur mainly in the proportion allocation vari-
ables, xijk, used to direct waste flow from each municipal-
ity to the processing facilities. Hence, although all of these 
options are very good from a cost perspective, the actual 
expansion alternatives are all very similar in terms of the 
system structure suggested by their decision variables. 

Figures 3 and 7 show the options produced when 
starting the search procedure from the 2% GHSJ alterna-
tive. These options exhibit more cost variability than those 
in Figures 2 and 6, and the lower-bound-cost options pro-
duced in those found in the corresponding previous 
scenarios. In comparison to the previous situation, more 
variety in system structure also results from this starting 
scenario. Therefore, if the goal of an MGA approach is to 
produce solution alternatives that vary significantly from 
one another, this scenario has indicated that evolutionary 
MGA procedures produce more desirable results when 
starting from an initial GHSJ population that is suboptimal. 
Hence, from system cost and solution variety standpoints, 
starting the search from the 2% GHSJ alternative produces 
more desirable results than those produced by the optimal 
GHSJ option. 

Figures 4 and 8 provide the alternatives created when 
starting from the 5% GHSJ solution. As with the 2% sce-
nario, these figures portray considerably more variability 
than those illustrated in Figures 2 and 6. However, the 
lower-bound-cost solutions found are not quite as good as 
those produced by either of the previous starting scenarios, 
and the upper-bound-cost solutions are considerably 
higher. Hence, this indicates that the evolutionary search 
has demonstrated considerable cost improvement in pro-
gressing from its initial population and may have been 
able to produce a lower-bound-cost solution comparable 

to the earlier scenarios had longer search periods been 
permitted. However, the lower-bound-cost solutions indi-
cate very good system cost objectives, and the populations 
provide a significantly more varied set of policy options 
for the planners than those found from the previous start-
ing points. 
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Figure 2.  Mean system costs for 50 generated solution 
alternatives: starting from GHSJ overall optimal solution 
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Figure 3.  Mean system costs for 50 generated solution 
alternatives: starting from GHSJ 2% solution 

 
Finally, Figures 5 and 9 illustrate the policy options 

generated when starting from the 8% GHSJ alternative. As 
with the results from the 5% starting point, significant 
solution variability has been produced and the 
lower-bound-cost solutions are also not quite as good as 
those found in the first two scenarios. The conclusions 
applicable to the 5% starting solution hold equally true for 
this 8% solution. 

In Figures 2 to 9, all solution option costs cluster at 
the lower end of the cost ranges that had been produced in 
the GHSJ study. This result demonstrates that evolution-
ary simulation-optimization can be used to not only gener-
ate considerably more decision options than GHSJ, but 
also create policy options that guarantee lower costs than 
those alternatives produced solely by GHSJ. 
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Figure 4.  Mean system costs for 50 generated solution 
alternatives: starting from GHSJ 5% solution 

Figure 5.  Mean system costs for 50 generated solution 
alternatives: starting from GHSJ 8% solution 

Figure 6.  Maximum system costs for 50 generated solution 
alternatives: starting from GHSJ overall optimal solution 

Figure 7.  Maximum system costs for 50 generated 
solution alternatives: starting from GHSJ 2% solution 

Figure 8.  Maximum system costs for 50 generated 
solution alternatives: starting from GHSJ 5% solution 

Figure 9.  Maximum system costs for 50 generated 
solution alternatives: starting from GHSJ 8% solution 
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Furthermore, the computational experimentation has 
demonstrated the apparent utility of starting an 
evolutionary solution search from one of the suboptimal 
GHSJ alternatives. Such a less restrictive starting point 
seems to permit more leeway for the search to evolve 
toward more desirable solutions, while simultaneously 
producing structurally diverse policy alternatives. This 
finding was evident even when starting from the 
marginally suboptimal, 2% GHSJ alternative. The final 
population sets generated from the 5% and 8% GHSJ 
alternatives produced even more variety in the policy 
options created, and would have quite conceivably 
produced objective values of comparable quality to the 
other starting points had additional search time been 
permitted. Thus, it appears that good practice would dic-
tate that an evolutionary search should start from one of 
the suboptimal GHSJ alternatives to ensure the production 
of more solution variety in the policies generated. 

To summarize the results in this section, the highly 
efficient GHSJ procedure has been used to quickly pro-
vide several initial starting points for improving both the 
solution time and performance quality of evolutionary 
simulation-optimization. The set of multiple policy 
alternatives generated by the hybrid GHSJ-evolutionary 
procedure provides an extremely efficient means for 
incorporating inherent system uncertainty directly into 
difficult policy construction processes. The case study 
presented in this section has demonstrated that this pro-
posed hybrid procedure can be successfully exploited to 
simultaneously expand and improve the policy alternative 
generation roles of both MGA methods. This procedure 
has been demonstrated in the design formulation stage for 
policy option generation and has been shown extremely 
capable of finding multiple, desirable solid-waste expan-
sion alternatives for the MSW case. 

9. Conclusions 

Major public policy problems are composed of large 
complex systems complicated by a multitude of uncertain 
economic, technological, environmental, social, and 
political dimensions. These conflicting dimensions force 
planners to consider and integrate many issues prior to the 
establishment of an acceptable final policy. Hence, it is 
most unlikely that one best solution can ever be found that 
simultaneously satisfies the requirements emanating from 
these dimensions without a significant balancing of the 
tradeoffs involved. Because inherent system uncertainties 
and conflicting requirements make it unlikely for a single 
solution method to capture the entire essence of a situation, 
MGA approaches have been adopted to create multiple 
planning alternatives for such policy problems. Since 
MGA approaches have generally been based upon 
deterministic procedures, they have not provided an effec-
tive means to integrate uncertain information into their 
resulting solution options. To counteract this deficiency, 
Huang et al. (1996b) created the GHSJ technique. How-
ever, GHSJ can examine only a small subset of possible 

policy options and, in so doing, could inadvertently by-
pass a number of preferable system alternatives. Yeomans 
(2002) provided an evolutionary method that could be 
used for generating many more solution options than 
would be created by a GHSJ procedure alone. 

In this paper, it was recognized that GHSJ could be 
used to quickly generate several good starting populations 
that could then be used to direct the initial stages of an 
evolutionary search. By combining GHSJ with evolution-
ary simulation-optimization, the search time and solution 
quality of both techniques can be improved significantly. 
Unlike deterministic MGA methods, this combined algo-
rithm permits the automatic construction of multiple solu-
tion options that incorporate system uncertainty directly 
into each generated alternative. The efficacy of the 
method was demonstrated on an earlier case study 
application concerning expansion planning in an MSW 
system. The procedure efficiently produced many solu-
tions possessing the characteristics requisite of the MSW 
system, with each alternative providing a somewhat 
different planning perspective. Planners would subse-
quently review these alternatives and analyze the various 
solution trade-offs before determining which option to 
implement as their final policy decision. 

In conclusion, this study has demonstrated the 
practicality of combining an evolutionary simulation 
optimization procedure with GHSJ for efficiently design-
ing many desirable alternatives for planning problems 
containing considerable degrees of uncertainty. Although 
the procedure was demonstrated only upon an MSW case 
study, it could easily be generalized to many other policy 
setting situations. An MSW system was selected since 
these systems exhibit all of the characteristics typically 
associated with public policy planning. This hybrid tech-
nique can clearly be applied to both strategic and opera-
tional planning analyses. Future research will extend the 
application of this approach to other policy planning prob-
lems. 
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