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ABSTRACT.  A challenging problem for water quality management in northern Chinese rivers is their high loadings of organic 
pollutants and suspended solids, leading to complexities in producing effective water quality models. Also, uncertainties exist in many 
system parameters and their interrelationships. This study aims at developing a stochastic water-quality forecasting system and apply-
ing it to the Yiluo River, a tributary of the Yellow River with extremely high sediment and suspended-solid loadings. Extensive 
investigations of water quality in the river and the related pollution sources and watershed conditions were conducted. A 
one-dimensional BOD-DO model was developed to simulate water quality in the river, with interrelationships among water quality and 
the related source and sink conditions being explicated. A stochastic water-quality forecasting system was then developed to reflect 
random characteristics of many parameters, based on Kalman-filtering and self-adaptive techniques. The developed system was used 
for predicting DO and BOD levels in the Yiluo River. The results indicated that randomness in many system parameters and their 
interactions had been effectively handled; the accuracy of state estimation was generally satisfactory. 
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1. Introduction  

Water pollution in rivers and streams is acquiring more 
and more attention in China, along with its rapid economic 
development and population growth. Water pollution can lead 
to a variety of impacts on communities and ecosystems. 
Consequently, it is desired that effective water pollution con-
trol strategies with sound environmental and socio-economic 
efficiencies be identified. Water pollution could be related to a 
number of factors and processes, with multi-source, multi- 
stage, and multi-objective characteristics. Thus, when de- 
cisions regarding water quality management are to be made, 
an integrated consideration that incorporates these factors and 
processes within a general framework would be useful for 
effectively reflecting these complexities. 

Previously, a number of river-water quality models have 
been developed for supporting waste-loading allocation, 
pollution control, and land-use planning in river basins (Orlob, 
1992; McCutcheon, 1989). The first water quality model was 
developed by Streeter and Phelps (1925). The basic principles 
behind this model include (i) DO is supplied by reaeration and 
photosynthesis and demanded by respiration and BOD, and (ii) 
BOD is due to emissions from point and nonpoint sources and 
could be reduced by oxidation, sedimentation and absorption 
processes. After that, a number of further studies were under-
taken (Thomas, 1948; Thackston & Krenkel, 1966; Di Toro & 
O'Connor, 1968; Young & Beck, 1974; Shastry et al., 1975; 
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Fillos & Swanson, 1975; Rinaldi & Soncini-Sessa, 1978; 
Belanger, 1980; Peavy et al., 1985). Various computer 
software packages were developed, such as DOSAG-I, HSPF, 
DIURNAL, RECEIV-II, RWQM, RIBAM, STREAM 7B, 
WQRRS, WASP, QUAL2E, and Mike11 (Brown & Barnwell, 
1987; McCutcheon, 1989). 

Typically, many processes associated with water pollu-
tion are uncertain in nature (Thomann, 1982; Hobbie & Ti-
waris, 1978). These uncertainties could arise from a variety of 
causes, such as inherent variability and randomness in natural 
processes (e.g. hydrological conditions), errors from sampling 
and measurement processes (e.g. instrumental noise), model-
ing assumptions that are unrealistic, and lack of data for effec-
tive research works. For example, variations of flow velocity 
in a river due to random turbulence can cause dispersion of 
suspended particles and dissolved compounds to various 
directions. Although the majority of water quality models 
developed so far were deterministic, an increasing number of 
them considered uncertainties in recent years, such as meth-
ods of Monte Carlo simulation, Markov chain, Kalman filter, 
and Fokker-Planck equation (Loucks & Lynn, 1966; Shih, 
1975; Beck & Young, 1976; Tiwaris et al., 1978; Finney et al., 
1982; Dewey, 1984; Leduc et al., 1986; Ponnambalam & Curi, 
1991). Finney et al. (1982) and Zielinsky (1989) used the Ito 
rule for determining the first- and second-order moment 
equations for a set of stochastic differential equations 
associated with water-quality models. Tung and Hathorn 
(1988) and Song and Brown (1990) used Taylor series to 
determine moment equations for a set of random differential 
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equations in DO models. These stochastic methods improved 
upon deterministic ones through effective reflection of 
uncertainties that exist in many modeling components. 

As an extension of the previous efforts, this study focuses 
on the development of a stochastic water-quality forecasting 
system for the Yiluo River, a tributary of the Yellow River 
with extremely high sediment and suspended-solid loadings. 
A modified Dobbins BOD-DO model is developed to simulate 
water quality in the river. Interrelationships among water 
quality and the related pollution sources and watershed condi-
tions are analyzed. The developed model is calibrated through 
examination of historical data and implementation of specific 
field studies. A stochastic water-quality forecasting system is 
then developed based on Kalman-filtering and self-adaptive 
techniques (Kalman, 1960). Random characteristics of many 
system parameters and their interrelationships are taken into 
account through adding noise terms to modeling equations. 
The developed forecasting system is used for predicting DO 
and BOD levels in the Yiluo River. Historic data of river flow 
and water quality in dry-, wet- and level-seasons were used 
for parameter estimation and result verification. 

2. Overview of the Study System 

Investigation of the study river system was carried out 
through efforts of data collection, on-site environmental mo- 
nitoring, database development, and laboratory analysis. A 
number of crucial factors, including hydrological and geologi-
cal features, source distribution, pollutant emission and water 
quality, were examined. The results provided bases for further 
modeling studies. 
 
2.1. Geographical and Hydrological Conditions 

The Yiluo River is located in northern China. It is the 
largest tributary of the Yellow River in its lower reach, cover-
ing a watershed area of 18,881 km2. It consists of three sec-
tions, including two upper branches [the Yihe Branch (YB) 
and the Luohe Branch (LB)] and one lower main stream 
(LMS) (Figure 1). Among them, YB has a length of 410 km, 
and LB extends for approximately 265 km. These two bran- 
ches confluence at the Yanshi County. The LMS starts at the 
confluence of YB and LB and extends for approximately 37 
km to reach the Yellow River. The study river section has a 
length of 62 km starting from the Xinqiao Bridge at the Luohe 
Branch down to the Town of Shihuiwu beside the LMS. 

There are three hydrological monitoring stations in the 
study section, including the Baimasi Station for the Luohe 
Branch, the Longmen Station for the Yihe Branch, and the 
Heishiguan Station for the LMS (Figure 1). The yearly aver-
age flow rates for LB and LMS are 62 and 100 m3/s, respec-
tively; and their annual runoff loadings are 1.943 × 109 and 
3.154 × 109 m3, respectively. Runoff loadings within the study 
watershed have significant temporal variations, with their 
values in wet (July to October), dry (June and December to 
March) and level (April, May and November) seasons ac- 

counting for 60%, 15% and 25%, respectively, of the annual 
total. 

Since the Yiluo River is located at the North China Plain, 
it has characteristics of high solid loading, low slope (0.035%), 
and low velocity (0.3 to 0.6 m/s at the Baimashi Station, and 
0.2 to 0.4 m/s at the Heishiguan Station). The average sus-
pended-solid (SS) contents in water are 4.94, 3.21, and 1.93 
kg/m3 at the Baimasi, Heshiguan, and Longmen Stations, 
respectively, leading to high sedimentation rates onto the river 
bed. The yearly average water temperatures are 14.1 °C at the 
Baimasi Station and 15.4 °C at the Heishiguan Station, with 
significant seasonal variations. The highest temperature oc-
curs in July with a monthly average of 25.2 to 26.6 °C, while 
the lowest appears in January (monthly average = 2.1 to 2.5 
°C). 

 
2.2. Water Pollution Concerns 

The Yiluo River Watershed contains the Luoyang City, 
the Yanshi County, and the Gong County, where many indus-
tries exist; also, several smaller towns and villages are close to 
the river. Municipal and industrial wastewater from these 
population centers is mostly discharged to the river, without 
even primary treatment, through 8 outlets as shown in Figure 
1. Among these outlets, one is from a chemical fertilizer 
industry, two from pulp and paper plants, and the remaining 
from municipal and other industrial sources. The average 
BOD emission rate from all municipal and industrial sources 
was 20,500 kg/d, with the Luoyang City, the Gong County, 
and the Yanshi County contributing 47.1%, 38.7%, and 14.2%, 
respectively. Table 1 gives BOD concentrations and emission 
rates at the eight outlets. 

 
Table 1. Average BOD Loadings from Eight Wastewater 
Discharge Outlets 

Outlet D1 D2 D3 D4 D5 D6 D7 D8 

BOD 
(mg/L)

23.4 155.0 308.0 86.9 214.0 253.0 309.0 112.0

BOD 
(kg/d) 2822 3350 3437 1493 1411 2712 2279 2949

Note: D1 – Jianhe; D2 – Luoyang Pulp and Paper Plant; D3 – Chanhe; 
D4 – Yanshi Fertilizer Plant; D5 – Yuetan Pulp and Paper Plant; D6 – 
Huiguozheng; D7 – Ershilipu; D8 – Shihedao 
 

To gain insight into variations of water quality along the 
river, 10 monitoring intersections were monitored (Figure 1). 
Among them, two were at the Baimasi and Heishiguan 
Hydrological Stations, and the others were close to the eight 
wastewater discharge outlets. Two monitoring programs (MP1 
and MP2) were initiated for investigating hydraulic 
characteristics (e.g. flow, velocity, and depth), water quality 
(e.g. BOD, DO, COD, and temperature), and source strength 
(e.g. wastewater flow). 
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(1) Spatial variations of water quality 
Table 2 presents monitoring results of BOD and DO lev-

els in different intersection. It is indicated that the BOD levels 
vary significantly along the river. BOD concentration at Sta-
tion M1 is below 2.0 mg/L, indicating satisfactory water qual-
ity at the river's upstream. Three wastewater discharge outlets 
(i.e. D1, D2 and D3) were located in the Luoyang City (Fig-
ure 1); the total BOD loading from them is 9,645 kg/d, caus-
ing significant deterioration of water quality downstream. The 
highest BOD concentration was encountered at the Manshui 
Bridge (M4), with an average of 75.1 mg/L, where the DO 
dropped to zero. Since there was no additional wastewater 
discharge outlet between M4 and M5, water quality gradually 
improved due to natural attenuation. The average BOD con- 
centration at Station M5 was reduced to 3.32 mg/L. The 
section between M5 and M9 received small amounts of 
wastewater from the Yanshi Chemical Fertilizer Plant and the 
Yuetan Paper-Pulp Plant (D4 and D5), where BOD levels 
fluctuated within a small range. However, a rapid increase of 
BOD level occurred in section M9 to M10 due to the dis-
charge of over 5,000 kg/d of BOD from the Ershilipu and 
Shihedao. At M10, the maximum BOD concentration reached 
23.9/L. Figure 2 presents the variations of BOD concentra-
tions along the river. 

 
Table 2. BOD Concentrations (Mg/L) and DO Saturation 
Levels (%) at Nine Monitoring Stations 

Note: The data in this table are based on five-year monitoring results. 
 

(2) Seasonal variations of water quality 
Table 3 gives average BOD and DO concentrations at the 

10 monitored intersections in different seasons. It is indicated 
that water quality of the river varied significantly with season. 
In dry season, the average BOD concentrations at most of the 
interactions were over 5.0 mg/L; in level and dry seasons, the 
BOD levels dropped down significantly. The results demon-
strate correlations between water quality and flow rate. Figure 
3 presents the relationship between BOD levels and flow rates 
at the Manshui Bridge (M4). It shows that the BOD levels 
decreased when the flow rates increased. 

3. Modeling Formulation 

3.1. Identification of Modeling Approach 
Many factors should be considered in identifying the 

modeling approach, such as data availability, methodology 
applicability, and desired level of detail for the modeling out-
puts. Several special features of the study river system are 
analyzed as follows: 

(i) Previous studies on sediment transport indicated that 
the Yiluo River is in fact a sedimentational section of the en-
tire river (Guan & Guo, 1985). During wet seasons, the river's 
flow rates could increase considerably, leading to sediment 
resuspension. Consequently, large amounts of biodegradable 
matters can be released from the sediment to the water, caus-
ing water-quality deterioration. It is desired that the developed 
model should be able to reflect these sedimenta-
tion-resuspension processes. 

(ii) In the study river section, DO concentrations are 
significantly affected by daily and seasonal temperature varia-
tions. With raised temperature, the rates of organism metabo-
lism and waste decomposition will rise accordingly, leading to 
increased oxygen demand; also, the raised temperature will 
result in reduced DO solubility in water. Thus, conditions of 
DO deficiency may occur frequently during summer months. 
At the same time, the warm season is also associated with 
high flows that provide more dilution capacity. The developed 
water quality model should be able to reflect this complexity. 

(iii) In the study section, organic SS content affects water 
quality significantly. It is indicated that 54% of total dis-
charged BOD at outlet D2 is from organic SS. Thereof, it is 
desired that the developed model be able to reflect the 
contribution from organic SS. 

Based on the above considerations, the one-dimensional 
BOD-DO model (Dobbins, 1964) was developed for the study 
river. The general modeling formulation is as follows: 

 

1 3( )dLV K K L
dx

= − +                              (1a) 

 

1 2 5 4( )dCV K L K C C K
dx

= − + − +                   (1b) 

 
where L is biochemical oxygen demand (BOD) (mg/L); C is 
dissolved oxygen level (DO)  (mg/L); Cs is saturated DO 
concentration (mg/L); K1 is oxygen consumption coefficient 
(day-1); K2 is oxygen recovery coefficient (day-1); K3 is a 
coefficient related to sedimentation, flocculation, scour, and 
resuspension of BOD (day-1); K4 is rate of oxygen production 
or consumption through photosynthesis or photorespiration 
(mg/L⋅day); V is flow velocity (km/day); and x is distance 
(km). 

Within a limited time interval, if variations of flow veloc-
ity are insignificant, V can be considered as a constant. Thus, 
letting t = x/V represents the time for a parcel of water flow-
ing over distance x, equation (1) can then be converted to:

Average Maximum Minimum Station 
BOD DO BOD DO BOD DO 

M1 1.59 91.6 2.55 130.0 0.39 72.8 

M2 3.03 82.4 7.89 99.0 0.90 61.0 

M3 6.15 76.7 15.60 103.0 1.64 43.0 

M4 18.99 53.4 75.10 95.9 1.35 0 

M5 3.32 81.6 11.20 178.0 0.79 17.6 

M6 3.65 94.0 17.40 253.0 0.67 54.1 

M8 2.75 85.5 6.11 127.0 1.38 62.8 

M9 3.59 88.5 9.35 157.0 0.54 62.0 

M10 5.99 83.1 23.90 188.0 0.56 15.5 
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Figure 2. Variations of BOD concentrations along the Yiluo River. 
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Figure 3. Relationship between BOD5 concentrations and flow rates. 
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1 3( )dL K K L
dt

= − +                     (2a) 

 

1 2 5 4( )dC K L K C C K
dt

= − + − +                  (2b) 

 
Given BOD and DO levels (i.e., L0 and C0) at the initial 

point (t = 0), solutions for L and C can then be obtained as 
follows: 

 
1 3( )

0
K K tL L e− +=                                   (3a) 

 
1 32 2

2

( )1 0
5 0 5

1 3 2

4

2

( ) [ ]

      (1 )

K K tK t K t

K t

K LC C C C e e e
K K K

Ke
K

− +− −

−

= + − + −
+ −

+ −
 (3b) 

 

Table 3. Average BOD Concentrations (mg/L) and DO 
Saturation Levels (%) in Different Seasons 

Dry Season Level Season Wet Season Station 
BOD DO BOD DO BOD DO 

M1 1.79 5.6 1.52 83.6 1.49 93.7 

M2 5.01 75.5 1.71 78.6 2.16 91.6 
M3 10.37 54.8 3.83 79.7 2.37 96.5 

M4 50.85 0 5.10 67.2 2.58 87.8 
M5 5.60 93.3 2.83 64.6 2.29 84.1 
M6 8.00 129.2 2.96 74.7 1.77 81.1 

M8 4.69 110.0 2.04 64.9 1.53 81.6 
M9 4.95 106.0 4.57 85.7 1.93 80.1 
M10 9.54 75.9 7.30 92.5 2.35 81.5 

Note: The data in this table are based on five-year monitoring results. 
 
 
3.2. Formulation of Segmental Water-Quality Models 

Due to variations of hydrologic and hydraulic conditions 
along the river, pollutant-loading and self-purification capaci-
ties also vary in different segments of the river. Thus, one 
uniform modeling formulation may not be sufficient for the 
entire river. Instead, the river should be divided into several 
relatively homogeneous segments; within each of the seg-
ments, each related parameter is assumed to have a uniform 
property. 

The study river section (60 km long) was divided into 6 
segments (including D1-D2, D2-D3, D3-Baimasi, D4-D6, 
D6-D7, and D7-D8), according to distribution of sewage out-
lets and variations of the river's hydrological and environ-
mental conditions (Figure 4). A piecewise water quality model 

was then initiated to reflect not only detailed hydrological and 
environmental characteristics of each segment but also in- 
teractions among different segments. Contaminant concentra-
tions within each segment were assumed to be uniform. Thus, 
for two adjacent segments (as shown in Figure 5), a genera- 
lized mass balance expression for BOD and DO levels can be 
described as follows: 

 
1i i iQ Q q−= +            i = 1, 2, … , n        (4a) 

 
0

1 1( ) /i i i i i iL L Q l q Q− −= +            i = 1, 2, … , n          (4b) 
 

0
1 1( ) /i i i i i iC C Q c q Q− −= +           i = 1, 2, … , n          (4c) 

 
where Qi is water flow in segment i (m3/s); qi denotes 
wastewater loading to segment i (m3/s); li and ci are BOD and 
DO concentrations in wastewater discharged to segment i, 
respectively i (g/m3); Li

0 and Ci
0 denote BOD and DO con- 

centrations at the starting point of segment i, respectively 
(g/m3); Li-1 and Ci-1 are BOD and DO concentrations at the 
end of segment i-1, respectively (g/m3). Thus, for segment i, 
we have the following BOD-DO models: 
 

1 3( )0 i i iK K t
i iL L e− +=                                         (5a) 

 

2 1 3 2

2

0
( )0 1

1 3 2

4

2

( ) [ ]

(1 )

i i i i i i i

i i

K t K K t K ti i
i si i si

i i i

K t i

i

K LC C C C e e e
K K K

K      e
K

− − + −

−

= + − + −
+ −

+ −
        (5b) 

 
where Li and Ci denote BOD and DO concentrations in seg-
ment i (mg/L); Csi is saturated DO concentration in segment i 
(mg/L); K1i is oxygen-consumption coefficient in segment i 
(day-1); K2i is oxygen-recovery coefficient in segment i (day-1); 
K3i is deposition-resuspension coefficient in segment i (day-1); 
K4i is rate of oxygen production/consumption through 
photosynthesis and photorespiration in segment i (mg/L⋅day); 
t is time for a parcel of water flowing through segment i (day). 
 
3.3. Parameter Estimation 

Models (5a) and (5b) are calibrated based on data moni-
tored at each segment's starting and ending points. Totally, m 
sets of data regarding water quality, flow rate, and tempera-
ture in each segment were obtained through on-site monitor-
ing programs. The objective of model calibration is to identify 
appropriate values for system parameters. This objective can 
be expressed as follows: 

 
2 2

1 2 3 4
1

1( , , , ) ( ) (1 )( )
2

m

ij iji i i i ij ij
j

K K K K L L C Cα α
=

⎡ ⎤Φ = − + − −⎣ ⎦∑         (6) 

 
where α is a weighting parameter, 0 ≤ α ≤ 1; ijL  and ijC  
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Figure 4. The conceptualized Yiluo River system. 
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Figure 5. BOD-DO mass balance. 
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represent BOD and DO concentrations obtained from equa- 
tions (5a) and (5b); Lij and Cij are observed BOD and DO 
concentrations in segment i at time j. 

Let 1 2 3 4 1 2 3 4( , , , ) min ( , , , )i i i i i i i iK K K K K K K K∗ ∗ ∗ ∗Φ = Φ . The 
obtained K1i*, K2i*, K3i* and K4i* values are desired parame-
ters for segment i under steady-state conditions. 

Assume that flow velocities in different segments have 
insignificant variations in each given time interval, and can be 
approximated as a constant. Thus, the time required for a par-
cel of water passing a given segment is a constant. Therefore, 
equation (5) can be converted to: 

 
0

i i iL A L=                (7a) 
 

0 0( )i si i i i i si iC C B L E C C D− = + − +                            (7b) 
 

where: 
 

1 3( )i i iK K t
iA e− +=                                      (8a) 

 
1 3 2( )1

1 3 2

( )i i i i iK K t K ti
i

i i i

KB e e
K K K

− + −= −
+ −

                 (8b) 

 
2 4

2

(1 )i iK t i
i

i

KD e
K

−= −                                  (8c) 

 
2 i iK t

iE e−=                                              (8d) 

 
When parameters Ai, Bi, Di and Ei are constants, equa-

tions (7a) and (7b) become linear functions. Thus, Ai, Bi, Di 
and Ei can be estimated through linear regression, with the 
resulting K1i, K2i, K3i and K4i values being as follows: 

 

1
(ln ln )
( )

i i i
i

i i i

B A EK
A E t

−
= −

−             (9a) 

 

2
1 lni i
i

K E
t

= −                        (9b) 

 

3 1
1 lni i i
i

K A K
t

= − −              (9c) 

 
2

4 (1 )
i i

i
i

K DK
E

= −
−               (9d) 

 
Table 4 shows calibration results based on data of two 

monitoring programs. The resulting relative errors and resid-
ual standard deviations are relatively low. 

Table 4. Average Relative Errors and Residual Standard 
Deviations for BOD and DO 

Average Relative    
Error (r) (%) 

Residual Standard 
Deviation (S) (mg/L) 

Monitoring 
Program 

BOD DO BOD DO 

MP1 47 7 0.96 0.44 

MP2 27 2. 0.79 0.30 

MP3 14 3 0.37 0.32 

 

3.4. Dynamic Consideration 
Most of water pollution problems are from the discharge 

of organic matters to water bodies as consequences of human 
activities. The capability of water bodies to purify themselves 
is an important factor that affects water quality simulation. 
This self-purification capacity is dependent on water tempera-
ture and flow rate. Flow rate determines pollutant transport 
time and dilution ratio, and temperature is related to DO 
solubility in water. 

The Yiluo River region has a seasonal climate. Flow rates 
in wet seasons are significantly different from those in dry 
seasons. Water temperature also varies significantly between 
summer and winter. In the study river section, the monthly 
average water temperatures are between 2.1°C and 25.8°C, 
and the monthly average flow rates vary between 1.88 and 
280 m3/s. To investigate relationships between water quality 
and flow rate as well as water temperature, a number of 
monitoring programs under different flow and temperature 
conditions were needed. In this study, over 40 field trips for 
monitoring water quality in the study river section in wet, dry 
and level seasons were undertaken. Data of water quality un-
der different flow and temperature conditions were obtained. 
Parameters K1i, K2i, K3i and K4i were then estimated, as pre-
sented in Table 5. Based on the estimated parameters as well 
as the flow, temperature and water-quality data, a dynamic 
water quality model can be formulated with flow rate Q and 
water temperature T being variables. Thus, for a given seg-
ment i, parameters K1i, K2i, K3i and K4i can be expressed as 
functions of Q and T as follows: 
 

( 20)
1 1 2( ) iT
i i i iK T a a −=                           (10a) 

 
4 ( 20)

2 3 5( , ) i ia T
i i i i i iK T Q a Q a −=                          (10b) 

 
0.5

3 6 7( )i i i i iK Q a a Q −= +                          (10c) 
 

4 8 9( , ) i
i i i i i

i

TK T Q a a
Q

= +                         (10d) 

 
where a1i, a2i, a3i, a4i, a5i, a6i, a7i, a8i and a9i are parameters to 
be estimated. Expressions for K1i and K2i [equations (10a) and 
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(10b)] were reported in Thackston and Krenkel (1966) and 
Thomann (1982). In equation (10c), a6i denotes variation rate 
of BOD concentrations due to sedimentation and resuspension. 
In equation (10d), T represents algae concentration which is a 
function of water temperature. Thus, based on the least square 
method, a1i, a2i, a3i, a4i, a5i, a6i, a7i, a8i and a9i values in each 
segment can be estimated, as shown in Table 6.  

4. Stochastic Forecasting System 

In a natural river system, system state estimation is 
complicated by the fact that many hydrological and environ-
mental parameters are uncertain and may be randomly dis-
turbed by each other or by external factors. A general way to 
take into account these disturbances is to add some noise 
terms to the simulation model. However, the characteristics of 

the noise are usually unknown, such that the system 
uncertainties are often simplified in the modeling efforts. This 
may lead to significant estimation errors. Thus, a more realis-
tic method is desired for effectively reflecting impacts of ran-
dom disturbances on BOD and DO concentrations. 

Kalman filtering technique, which is a linear recursive 
scheme, is well suited for real-time estimation as needed in 
this study. Since the Yiluo River is a naturally-evolved stream 
system, major interference and disturbances from most of 
natural and human-made processes (e.g. water pollution) 
could be regarded as independent stochastic events; this satis-
fies the basic requirement for using the Kalman filtering tech-
nique. Real-time forecasting can then be conducted through 
updating the previous estimates based on renewed input and 
output information (Kalman, 1960; Luenberger, 1969; 
Kwakernaak & Sivan, 1972). The details of applying Kalman 

Table 5. Calibration Results for K1, K2, K3 and K4 

Section 1 2 3 4 5 6 

Water Temp (°C) 24.5 24.5 24.5 24.6 24.6 24.6 

Flow (m3/s) 55.2 55.2 55.2 76.9 76.9 76.9 

K1 1.73 1.73 1.73 1.49 1.49 1.49 

K2 1.28 1.28 1.28 6.04 6.04 6.04 

K3 1.50 1.50 1.50 -0.23 -0.23 -0.23 

MP1 

K4 0.47 0.47 0.47 -8.10 -8.10 -8.10 

Water Temp (°C) 24.2 26.6 28.2 26.8 28.6 27.7 

Flow (m3/s) 7.08 7.50 7.63 3.31 3.31 3.39 

K1 3.85 2.14 2.01 4.26 5.14 6.40 

K2 2.68 2.63 4.41 15.68 8.48 5.44 

K3 6.24 0.75 3.61 -0.15 -1.74 -7.43 

MP2 
(Phase 1) 

K4 1.10 1.67 33.08 3.37 27.04 34.90 

Water Temp (°C) 10.1 15.0 17.2 15.1 16.1 15.9 

Flow (m3/s) 38.0 40.7 43.2 44.5 55.0 54.3 

K1 0.02 1.02 0.78 3.16 1.48 5.02 

K2 5.34 1.29 0.47 13.94 1.85 12.93 

K3 4.93 2.39 -0.28 -0.41 2.25 4.60 

MP2 
(Phase 2) 

K4 -0.08 5.21 -1.73 -16.14 1.06 -11.41 

Water Temp (°C) 15.1 16.3 21.9 14.6 19.8 19.4 

Flow (m3/s) 16.1 17.2 22.3 18.3 31.0 31.1 

K1 0.87 1.68 0.39 3.87 3.95 5.81 

K2 4.32 0.09 8.93 6.86 4.59 3.43 

K3 4.88 1.34 3.98 -3.59 -3.24 -7.50 

MP3 

K4 0.01 7.23 -28.70 -11.51 3.80 -0.01 
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filtering technique to establish a stochastic BOD-DO fore- 
casting system are described as follows. 

 
Table 6. Calibration Results for a1, a2, a3, a4, a5, a6, a7, a8  
and a9 

Segment (i) i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 

a1 0.71 1.59 0.73 3.80 2.73 5.60 

a2 1.37 1.04 1.11 1.01 1.09 1.01 

a3 2.06 0.21 18.46 2.22 3.10 6.42 

a4 0.20 0.37 -0.72 0.69 0.03 0.01 

a5 1.01 1.19 1.07 1.17 1.12 1.09 

a6 -0.56 3.41 -1.15 3.42 1.72 4.81 

a7 18.84 -7.49 12.95 -29.58 -6.18 -22.42

a8 0.66 0.37 10.28 2.00 3.01 5.38 

a9 -0.23 0.34 -4.95 -12.88 1.01 -8.78 

 
 

4.1. State Estimation Equations 

Let 
iLδ  and 

iCδ  be random variables, standing for er-
rors of BOD and DO concentrations in segment i due to ran-
dom disturbance, respectively. Both of them are assumed to 
have normal distributions [i.e. (0, )

iLN σ  for 
iLδ  and 

(0, )
iCN σ  for 

iCδ ]. Thus, the relevant covariance matrix 
(Qi) can be defined as: 
 

0
0

i

i

L
i

C
Q

σ
σ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
           (11) 

 
Based on mass balance Equations (4a) to (4c) and (7a) to 

(7b), water quality model (7) can be converted to: 
 

1

1
1 1 1 1

1 1
i
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i i i i i L

i i
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+
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Q

δ
+
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                                                   (12b) 
 
where Li+1 denotes BOD concentration in segment i+1; Ci+1 – 
Cs, i+1 represents oxygen deficiency. 

Let Ci+1 represent Ci+1 – Cs, i+1, we can then convert equa-
tions (12a) and (12b) into the following matrix format: 

 

1 1

1 1

1
1,

1

i i

i i

L Li i
i i

C Ci i

FL L
FC C

δ
δ

+ +

+ +

+
+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= Φ + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
            (13) 

 
where 
 

1
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1 11
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+
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        (14b)   

 
Let 

iLV  and 
iCV  represent measurement errors for BOD and 

DO concentrations in segment i, respectively. They are as-
sumed to have normal distributions with (0, )

iLN r  for 
iLV  and (0, )

iCN r  for 
iCV . Their mean values equal zero, 

and the relevant covariance matrix is: 
 

0
0

i

i

L
i

C

r
R

r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ,   i = 1, 2, … , n            (15) 

 
Thus, a state estimation equation that considers the meas-

urement errors can be expressed as follows: 
 

i i

i i

L Li

C Ci

Z VL
Z VC

⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 ,    i = 1, 2, … , n         (16) 

 
where i

i

L

C

Z
Z

⎡ ⎤
⎢ ⎥
⎣ ⎦

 are observed BOD and DO concentrations in 
segment i; i

i

L
C

⎡ ⎤
⎢ ⎥
⎣ ⎦

 are real values of BOD and DO concentra-
tions. Since equations (13) and (16) represent linear systems, 
the Kalman filtering technique can be employed to carry out 
system state estimation. 

Firstly, let ,
ˆ

i iL  and ,
ˆ

i iC  represent estimated BOD and 
DO concentrations in segment i, based on the observed BOD 
and DO concentrations from segment 1 to i; let ,

ˆ
i l iL +  and 

,
ˆ

i l iC +  represent forecasted BOD and DO concentrations in 
segment i+l, based on the observed BOD and DO levels from 
the former i segments. Assume that the observed BOD and 
DO concentrations 0

0

L
C

⎡ ⎤
⎢ ⎥
⎣ ⎦

 at the reference segment exactly 
equal 0,0

0,0

ˆ

ˆ
L

C

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

. Then, the recursive scheme based on the Kalman 
filtering technique can be described as follows: 

(a) State estimation equation: 
 

1

1
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(b) Covariance matrix of estimation errors: 
 

1, 1, , 1, 1,
T

i i i i i i i i iP P Q+ + + += Φ Φ +            (18) 
 
(c) Gain matrix of the filter: 
 

1
1 1, 1, 1[ ]i i i i i iK P P R −

+ + + += +                    (19) 
 
(d) State filtering equation: 
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        (20) 

 
(e) Covariance matrix of filtering errors: 
 

1, 1 1 1,( )i i i i iP I K P+ + + += −   (where I is a unit matrix)         (21) 
 
(f) Forecasting equation: 
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where 
 1

, 1, ,
l

i l i k i j i j
j K

−

+ + + + +
=

Φ = Φ∏ i = 0, 1, … , n-1 
 

Equations (17) to (22) form the stochastic water-quality 

forecasting system. Given 0,0

0,0

ˆ

ˆ
L

C

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, P0,0, Qi and Ri, optimal state 

estimates of BOD and DO concentrations for the study river 
section can then be obtained. 

 
4.3. Self-Adaptive Technique for Automatic System 
Rectification 

Since covariances 
iLσ  and 

iCσ  of random variables 
( )L iδ  and ( )C iδ  can not be estimated precisely in advance, 

the Kalman filtering scheme cannot be constantly maintained 
at the optimal state. Therefore, an optimality test is required 
for automatic rectification of the forecasting system. In this 
study, a self-adaptive technique is used for approaching the 
desired optima. 

Firstly, let array 
L

C

ν
ν

⎡ ⎤
⎢ ⎥
⎣ ⎦

 represent the differences between 

observed and estimated BOD and DO levels: 
 

1 1

1 1
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,     i = 0, 1, ⋅⋅⋅ , n - 1   (23) 

The operation status of a filtering scheme can then be exam-
ined based on this array and the covariance matrix of estima-
tion errors (Qi). The following are the details: 
(1) Test and rectification of array expectation 

According to Kalman (1960), when the filtering scheme 
is operated at the optimal state, we should have: 
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 defines the expectation of array L
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. 
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C
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ν
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, it can be judged that the filtering 
scheme does not work optimally, and rectification to optimal 
status is required. A covariance matrix of i

i

L

C

ν

ν
⎡ ⎤
⎢ ⎥
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 should then be 
established as follows: 
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A statistic can be calculated: 
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Since the study river section is divided into 3 segments in 

the upstream of Baimasi and another three in the downstream 
of Tazhuang, n should be equal to 3. If the significance level 
(α) is set as 0.05, 2

αχ  would be 12.592. Thus, if 
2 2
2 12.592n αχ χ< = , the original assumption 0 : 0L
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H E
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 can 
be accepted, and the filtering scheme is considered working at 
its optimal state. Otherwise, the initial values in 

,
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 should 
be re-examined and rectified as follows. 

Let: 
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notes rectified initial values. 
Thus, a new array can be obtained as follows: 
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When the new array's expectation is zero, the filtering scheme 
is considered working properly. 
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(2) Test and rectification of covariance matrix Q(i) 
Define residual term in the l-th forecasting step as a 

l-dimensional vector: 
 

1

1

,

,

ˆ

ˆ
i

i

i l iL
i l

C i l i

LZ
d

Z C
+

+

+
+

+

⎡ ⎤⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
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Let: 
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  i = 0, 1, ⋅⋅⋅ , n-1; i+1 ≤ n          (30) 

 
Define a 2N × 2N matrix as follows: 
 

(1) (2)
0 0 0i i iW W W= +   i = 0, 1, ⋅⋅⋅ , n-1           (31) 

 
where: 
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1

r

i r i i j i
j

+ +
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Φ = Φ∏  i = 0, 1, ⋅⋅⋅ , n-1; ∀ r; r ≤ n-i          (37) 

 

In (36), 0, jQ  represents initial covariance matrix for 
recursive estimation. Thus, a statistic for each i can be calcu-
lated as follows: 

 

1
, ,0,

T
i N i Ni iY d W d−=    ∀ i          (38) 

 
The above statistic has a χ2 distribution with its degree of 

freedom being 2N. If the significance level (α) is set as 0.10, 
pair 2

1, / 2aχ  and 2
2, / 2aχ  can be obtained. Table 7 shows 

acceptable ranges of the Yi statistic. When 2
1, / 2aχ  ≤ Yi ≤ 

2
2, / 2aχ , the obtained 0( 1)jQ +  is acceptable, such that further 

test and rectification are not required. Otherwise, further test 

and rectification should be carried out as follows. 
 

, ,0

T
i N i NiW d d= ⋅               (39) 

 
Based on equation (31), we have: 
 

(2) (1)
, ,0 0

T
i N i Ni iW d d W= ⋅ −  i = 0, 1, 2, ⋅⋅⋅, n-1          (40) 

 
The right-hand sides of equation (40) are independent of Qi, 
while its left-hand sides are functions of Qi. Thus, a linear 
equation group for Qi can be obtained through comparing 
corresponding terms in the right- and left-hand sides of equa-
tion (40). Then, using the least square method, the linear 
equation group can be solved for obtaining estimations of Qi, 
which represent the rectified covariance matrix of estimation 
errors. 

 
Table 7. Acceptable Intervals of Yi 

N Acceptable range of Yi  

3 1.635 ≤ Yi ≤ 12.592 

2 0.711 ≤ Yi ≤ 9.488 

1 0.103 ≤ Yi ≤ 5.991 

 
 

4.4. Result and Discussion 
The developed forecasting system was used for estimat-

ing BOD and DO levels at the segments of Anlewo, Shifan-
gyuan, and Baimasi. Two on-site monitoring programs (MP1 
and MP2) were undertaken to observe BOD and DO 
concentrations, with the results being used for error analyses. 
A covariance matrix of measurement errors was established 
based on the sampling and laboratory-analysis techniques: 
 

0.05 0
0 0.01

R ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  

 
The initial estimation of Q was set as: 
 

0.1 0
0 0.1

Q ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
With the self-adaptive technique as described in section 

4.3, optimality of the filtering scheme is continuously tested 
and rectified for maintaining desired states. Analyses of rela-
tive errors between observed and forecasted (model-based and 
filter-based) BOD and DO concentrations were carried out for 
the segments of Anlewo (M2), Shifangyuan (M3), and Bai-
masi (M5). Data from two monitoring programs were used to 
verify the forecasting results; each monitoring program gener
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Table 8. Relative Errors between Observed and Forecasted BOD Concentrations 

Anlewo Shifangyuan Baimasi 

State  Filter State  Filter State  Filter 

 

No. 

 

MP 

OBS MBF RE (%) FBF RE (%) OBS MBF RE (%) FBF RE (%) OBS MBF RE (%) FBF RE (%)

1 MP11 2.38 1.292 45.7 2.329 2.1 4.00 4.192 4.8 4.009 0.2 2.96 3.114 5.2 2.971 0.4 

2 MP12 2.20 1.985 9.6 2.189 0.5 3.26 4.090 25.4 3.302 1.3 3.28 2.807 14.4 3.247 1.0 

3 MP13 1.86 1.650 30.6 1.849 0.6 3.76 3.844 2.2 3.746 0.1 3.26 3.008 7.7 3.243 0.5 

4 MP21 1.02 1.749 71.5 1.051 3.0 3.98 2.953 10.3 3.927 1.3 2.70 2.700 0 2.700 0 

5 MP22 1.56 1.657 6.2 1.563 0.2 4.00 3.325 16.9 3.965 0.9 2.60 2.717 4.5 2.608 0.3 

6 MP23 1.22 1.749 43.4 1.242 1.8 3.98 3.092 22.3 3.934 1.2 2.50 2.704 8.2 2.514 0.6 

Note: MP = monitoring program; OBS = observed values; MBF = model-based forecasted values; FBF = filter-based forecasted values;      
RE = relative error; MP11, MP12, and MP13 = samples 1, 2, and 3 in MP1, respectively; MP21, MP22, and MP23 = samples 1, 2, and 3 in MP2, 
respectively. 

 
 
 
 

Table 9. Relative Errors between Observed and Forecasted DO Concentrations 

Anlewo Shifangyuan Baimasi 

State  Filter State  Filter State  Filter 

No. MP 

OBS MBF RE (%) FBF RE (%) OBS MBF RE (%) FBF RE (%) OBS MBF RE (%) FBF RE (%)

1 MP11 7.63 8.365 9.6 7.648 0.2 7.54 6.960 7.7 7.509 0.4 5.69 5.489 3.5 5.689 0 

2 MP12 7.79 8.310 6.7 7.800 0.1 7.94 7.219 9.1 7.902 0.5 5.51 5.576 1.2 5.510 0 

3 MP13 7.93 8.406 6.0 7.939 0.1 7.81 7.465 4.4 7.792 0.2 5.46 5.616 2.9 5.461 0 

4 MP21 7.27 7.837 7.8 7.281 0.1 7.06 7.372 4.4 7.076 0.2 5.61 5.130 8.6 5.609 0 

5 MP22 7.41 7.792 5.2 7.417 0.1 7.07 7.431 5.1 7.089 0.3 5.59 5.132 8.2 5.589 0 

6 MP23 7.47 7.913 5.9 7.472 0 7.20 7.611 5.7 7.222 0.3 5.68 5.157 9.2 5.679 0 

Note: MP = monitoring program; OBS = observed values; MBF = model-based forecasted values; FBF = filter-based forecasted values;      
RE = relative error; MP11, MP12, and MP13 = samples 1, 2, and 3 in MP1, respectively; MP21, MP22, and MP23 = samples 1, 2, and 3 in MP2, 
respectively. 
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ates three samples for each segment. Three sets of data for 
observed and forecasted BOD and DO concentrations were 
examined, with the resulting relative errors being shown in 
Tables 8 and 9. The relative errors between observed (in MP1) 
and predicted (model-based) BOD concentrations for three 
samples in the Anlewo Segment are 45.7%, 9.6%, and 30.6%, 
with an average of 28.6%; in comparison, the errors between 
observed (in MP1) and predicted (filter-based) BOD 
concentrations are only 2.1%, 0.5%, and 0.6%, with an aver-
age of 1.1%. For samples obtained in MP2, the average error 
between observed and predicted (model-based) values is 
40.4%, while that between observed and predicted (fil-
ter-based) values is 1.7%. Table 9 presents the result of error 
analysis for the predicted DO concentrations. The average 
errors between observed and predicted (model-based) DO 
concentrations in the Anlewo Segment are 7.4% and 6.3% for 
results of MP1 and MP2, respectively; and those between 
observed and predicted (filter-based) DO levels are 0.13% and 
0.07% for results of MP1 and MP2, respectively. The results 
indicate that the filter-based approach can lead to much im-
proved prediction accuracy. Similar phenomena can also be 
found for results of the other segments as shown in Tables 8 
and 9. The results indicate that the Kalman filtering technique 
can effectively reflect the randomness of the study system, 
such that improved accuracy of water quality prediction can 
be achieved. 

5. Conclusions 

In this study, a stochastic water-quality forecasting sys-
tem was developed for the Yiluo River, a tributary of the Yel-
low River with extremely high sediment and suspended-solid 
loadings. Extensive investigations of water quality in the river 
and the related pollution sources and watershed conditions 
were conducted. A modified Dobbins BOD-DO model was 
developed to simulate water quality in the river, with 
interrelationships among water quality and the related source 
and sink conditions being explicated. The developed model 
was calibrated through examination of data from historical 
records and specific field studies. A stochastic water-quality 
forecasting system was then developed to reflect random 
characteristics of many parameters, based on Kalman-filtering 
and self-adaptive techniques. 

The developed system was used for predicting DO and 
BOD levels in the Yiluo River. The results indicated that 
randomness in many system parameters and their interactions 
had been effectively handled; the accuracy of state estimation 
was generally satisfactory. The modeling system is useful for 
regional water quality management. The resulting water qual-
ity predictions would provide decision support for the plan-
ning of related pollution abatement activities. 

This study is a new attempt to develop a water quality 
forecasting system for northern China rivers where loadings 
of organic pollutants and suspended solids are extremely high 
and uncertainties exist in many system parameters. Further 
studies that incorporate techniques of fuzzy simulation and 
real-time process modeling would be helpful for more effec-

tively reflecting the system’s uncertain and dynamic features 
and thus improving the forecasting accuracy. 
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