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ABSTRACT.  The City of Mississauga in Ontario has been experiencing a fast urban growth in the past two decades which has 
caused rapid loss of the valuable farm and open space land. Land-use and land-cover maps of the City were produced from Landsat 
TM images for 1985 and 1999, spanning a period of 14 years. Dramatic changes in land use and land cover have occurred, with loss of 
forest, cropland and water body to urban use. In particular, low-density urban use, which includes largely residential use, has increased 
by over 7.4% between 1985 and 1999. These land-use and land-cover changes have drastically altered the land surface characteristics. 
An analysis of Landsat TM images revealed an increase of 23.7 km2 of built-up area and a decrease of non-built (23.2 km2) and water 
area (0.5 km2). This paper illustrates the usefulness of a remote sensing approach for the urban change studies. According to the 
land-use and land-cover maps, four vegetation-impervious surface-soil (V-I-S) patterns of the city development were identified pertain 
to Mississauga’s features. 
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1. Introduction 

Today, about 47% of the world’s population are living in 
urban areas and the number is expected to rise to 60% by 
2030. Urban growth and sprawl have drastically altered the 
biophysical environment. Rapid urbanization has substantial 
influence on different aspects of the quality of life and 
brought an extensive attention of the researchers, urban plan-
ners, and landscape managers. In Canada, urbanization has 
been encouraged by the expansion or development of areas 
non-adjacent to the traditional downtown urban centres. These 
are areas of emerging residential, commercial, and industrial 
development, thus encroaching on the forested or agricultural 
hinterlands surrounding the city. Mississauga as a young city 
in Ontario, which was founded in 1974, had been experienc-
ing a rapid urban expansion between the mid-1980s and the 
end of 1990s due to acceleration of economic growth and 
arrival of massive immigrants. According to Mississauga 
statistics demography data, the population of Mississauga had 
grown by 224,300 between 1986 and 1999 (City of Missis-
sauga, 2003), equivalent to 60.9% of 1986 population of 
368,100. Mississauga is becoming the 6th largest city in Can-
ada with a rapid population growth of 16,000 new residents 
per year.  This urban growth has profound impacts on the 
available water resources, agricultural land, energy consum-
ing distribution, and limited remaining space. A spatiotempo-
ral analysis of growth patterns is essential in order to develop 
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sufficient infrastructure to support the growth (Gluch, 2002). 
The development prospects of Mississauga would more rely 
on fully understanding its past and present pattern. 

Current approaches to urban change monitoring generally 
involve ground surveys and interpretation of aerial photo- 
graphs, but these are expensive and time-consuming and are 
very difficult to implement on a regular mapping basis. Thus, 
fast and low-cost methods that are capable of automatically 
mapping urban areas are desired. To this end, satellite remote 
sensing can be used to provide an objective and consistent 
view of urban areas in terms of required coverage and revisit 
reliability for this application (Lillesand et al., 2004). Satellite 
remote sensing has been employed as a valid and dispensable 
approach to monitor land-use and land-cover change due to its 
lower costs, easy-to-get and temporal consistency in the past 
three decades (Green et al., 1994; Ridd & Liu, 1998; Ward et 
al., 2000; Yang & Lo, 2002; Yang et al., 2003). Many studies 
and research literatures about these applications have been 
published by using multisensor, multispectral, and 
multitemporal satellite images combined with advanced 
mathematical methods and image process techniques, e.g., 
fuzzy classification (Zhang & Foody, 2001), principal compo-
nent analysis (Li & Yeh, 1998), integration of remote sensing 
and geographic information systems (GIS) (Kam, 1995; Har-
ris & Ventura, 1995; Wang, 2001) and artificial neural net-
work classifier (Civco, 1993; Augusteijn et al., 1995; Foody, 
1996), texture analysis (Gluch, 2002), classification and 
regression trees (Ji & Jensen, 1999; Yang et al., 2003), and 
sampling-based monitoring programme (Griffith et al., 2003). 
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But until now, there is no consensus as to a single 
method/algorithm that is universally applicable (Yang et al., 
2003). 

The primary goal of this study was to develop an alterna-
tive approach to spatially quantify urban land-use and 
land-cover changes using satellite remote sensing data. Such 
ab approach needs to be objective, repeatable, and ideally, 
automated. In this paper, the land-use and land-cover change 
in the City of Mississauga for the period between 1985 and 
1999 is reported. The purpose of this paper is to detect and 
reveal the urban growth from 1985 to 1999 in the city of 
Mississauga, an area of known high population growth in the 
past two decades using multi-dates Landsat TM images. An 

attempt was made to identify the “built” and “non-built” fea-
ture only, instead of attempting different types of urban use. 
V-I-S (Vegetation-Impervious Surface-Soil) model proposed 
by Ridd (1995) was also applied to identify the urban pattern 
of Mississauga. 

2. Study Area and Satellite Data 

The City of Mississauga, Ontario, is an ideal study area 
for this study because it has undergone rapid population 
growth in the past twenty years. The City covers almost 
336.81 km2 (Industry Canada, 2003), with a population of 
approximately 600,000 (in 2000). It situated in the Peel Re-
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Figure 1.  The location of the City of Mississauga in the Greater Toronto Area, Ontario.  
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gion of the Greater Toronto Area (GTA) and next to the City 
of Toronto, the largest city in Canada, face to Lake Ontario. 
Canada’s busiest airport, Lester B. Pearson International Air-
port, lies within its borders. The location of the study area is 
shown in Figure 1. 

    For this study, two cloud-free Landsat TM images cover-
ing the City of Mississauga acquired on September 20, 1985 
and September 3, 1999 were employed (see Figure 2). Earlier 
fall is the preferred season for the Landsat scenes when the 
land is well covered by vegetation. The two TM images were 
georectified to the Universal Transverse Mercator (UTM) 
coordinate system (Zone 17), NAD83 horizontal datum and 
GRS 80 ellipsoid with coordinates in meters. The two images 
both were acquired in the same season (September) and al-
ready calibrated and geocoded except the resolution of pixels. 
The spatial resolution of 1985 TM image is 25 m while 1999 
ETM+ image is 30 m. Therefore, additional geometric 
rectification was performed to resample the two images to the 
spatial resolution of 30 m. A first-order polynomial 
transformation and bilinear interpolation algorithm was ap-
plied to accurately match the images to the best available 
roads and landmarks. The resultant root-mean-square error 
(RMSE) of 3.29 m or less than 0.2 pixel values was obtained 
for both 1985 and 1999 images. 

Reference data used in this study mainly include the 1 m 
resolution colour digital orthophotos of 1995. The boundary 
vector data were used to subset the area of interesting (AOI), 

i.e., the City of Mississauga. 

3. Land-Use and Land-Cover Mapping Method 

In this study, the land-use and land-cover classification 
scheme, shown in Figure 3, was adopted with a main focus on 
differentiating between built-up and non-built areas.  

 

Resample TM Images 

Extract Training Samples 

Classification using Maximum 

Likelihood Classifier 

Detect Changes by Masking 

Identify Changes by V-I-S 

Accuracy Assessment 

Figure 3.  The land-use and land-cover classification 
scheme adopted in the study. 

 

     

                                  (a)                                               (b)      

                             

Figure 2.  Satellite images covering the City of Mississauga (a) in 1985 with Landsat 5 TM and (b) in 1999 with
Landsat 7 ETM+. 
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For the sake of clarity, the “built-up” areas in this paper 
implicate urban uses or the areas covered by impervious urban 
materials, such as concrete, asphalt, and buildings, while the 
“non-built” areas refer to non-urban uses or more traces of 
nature features, like open space, forest, cropland, parks, golf 
courses and alike. 

The classification-based (map-to-map) method of 
change-detection was performed in this study for its ability of 
detecting a full matrix of land-cover changes and identifying 
conversion from one land-cover to another (Yang et al., 2003). 
In the PC-based ERDAS Imagine V8.5 environment, the two 
TM images were classified by using a supervised approach 
known as Maximum Likelihood classifier (Lillesand et al., 
2004) to generated land-use and land-cover maps. The 
mask-out technique was then applied to detect the urban 
change. The V-I-S pattern recognition was achieved through 
using reference data (1 m resolution colour orthophotos and 
maps) and visual examination of the false-color composite of 
the classified Landsat TM images. 

4. Results and Discussion 

4.1. Extraction of Training Samples 

For easy feature extraction and training sample 
identification, a spectral enhancement method was used to 
sharpen the images to make them more interpretable for naked 
eye. Based on the interpretation of different dates of ground 
truth maps and enhanced TM images, three basic feature 
classes, water, built-up and non-built, were identified and 
corresponding training samples were extracted. The utilities 
of signature alarms and contingency matrix were applied to 
evaluate if the signatures generated from training samples 
have accurately represented the classes to be identified. The 
contingency matrix was exhibited in Table 1. Generated 
signature results were shown as rows in the matrix and the 
reference data (ground truth) were shown in the columns. It 
was obvious that all the classified water points were real wa-
ter pixels, but not all of the points classified as built and 
non-built were actually correct. This was because of inter-
crossing among built-up, non-built pixels and water pixels, 
such as low-density residential areas including many trees and 
green belts which belonged to non-urban uses; or some 
non-built areas may contain a single building and narrow 
roads; or bare soil may be characterized as the initial stage of 
new construction areas; or artificial ditches, out-door swim-
ming pools, lake decks which are combined with built-up and 
water features, and so forth. Nonetheless, the correct rate of 
each training class was over 94% for both 1985 and 1999 TM 
scenes if we defined it as the percent of correct numbers of 
pixels over total classified pixels in the same class. 

 
4.2. Supervised Classification 

After satisfied signatures were obtained, the Maximum 
Likelihood classifier was applied to generate the land-use and 
land-cover maps with built-up and non-built classes according 

to the statistically-based parametric signatures which were 
used to define the desired classes. The classified land-use and 
land-cover maps of the City Mississauga are shown in Figure 
4, in which the light-gray colour represents the built-up areas, 
the dark-gray colour for non-built areas and black colour for 
water areas (the Lake Ontario). The match was quite notable 
between the classified results and original images. Explicit 
increment of built-up areas could be easily recognized in the 
north, middle, and west part of the City of Mississauga. 

 
Table 1.  Contingency Matrix of Training Samples 

Mississauga 1985 Contingency Matrix 

Generated 
Signatures 

Reference Data 

Water Built-up Non-built Row Total 

Water 
Built-up 
Non-built 

2954 
46 
0 

0 
3144 
56 

0 
43 
2615 

2954 
3233 
2671 

Column 
Total 

3000 3200 2658 8758 

Mississauga 1999 Contingency Matrix 

Generated 
Signatures 

Reference Data 

Water Built-up Non-built Row Total 

Water 
Built-up 
Non-built 

9863 
137 
0 

0 
2127 
36 

0 
0 
2456 

9863 
2264 
2492 

Column 
Total 

10000 2162 2456 14619 

 

 
4.3. Accuracy Assessment of Classification 

Each of the land-use and land-cover map was compared 
to the reference data to assess the accuracy of the classifi- 
cation. The results of the accuracy assessment are presented in 
Table 2. In this study, 255 random sample points were gener-
ated, but only 96 and 104 sample points fell in the 1985 and 
1999 classified map, respectively. The maps at the scale of 
1:25,000 of the City of Mississauga in or close to the corre-
sponding years and the 1 m resolution colour aerial ortho-
photos were employed as ground truth data to verify the 
classification accuracy. The overall classification accuracy 
was over 91% and Kappa over 0.85 for either 1985 or 1999 
classified map. Both producer’s and user’s accuracy were 
over 86%. The user’s accuracy was higher than the producer’s 
accuracy in built-up areas, but the producer’s accuracy was 
higher in non-built areas. 

From the error matrix given in Table 3, all the points 
classified as water were actually water; the accuracy was 
100% for both 1985 and 1999 classified maps. Only about 9% 
of the points that belong to built-up were misclassified as 
non-built, or verse versa. These errors were accepted if 
considering the given 30 m spatial resolution of Landsat TM 
imagery. 
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(a) 1985                                 (b) 1999 

 

Figure 4.  Land-use and land-cover maps of the City of Mississauga as extracted from Landsat TM images. 
 

 

 

     Table 2.  Classification Accuracy Assessment Report 

1985 Classified Map 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number of 
Correct 

Producer’s Accuracy User’s Accuracy Kappa () 

Water 

Built-up 
Non-built  

9 

51 
36 

9 

49 
38 

9 

46 
33 

100% 

90.2% 
91.67% 

100% 

93.88% 
86.84% 

1.00 

0.79 
0.87 

Column 
Total 

96 96 88 Overall classification accuracy = 91.67% Overall = 0.85 

1999 Classified Map 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number of 
Correct 

Producer’s Accuracy User’s Accuracy Kappa () 

Water 

Built-up  
Non-built  

11 

62 
31 

11 

63 
30 

11 

59 
27 

100% 

87.1% 
95.16% 

100% 

90.0% 
93.65% 

1.00 

0.86 
0.84 

Column 
Total 

104 104 97 Overall classification accuracy = 93.27% Overall = 0.85 
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Table 3.  Classification Accuracy Detail Report 

1985 Classification Error Matrix 

Classified 
Data 

Reference Data 

Water Built-up Non-built  Row Total 

Water 

Built-up 
Non-built 

9 

0 
0 

0 

46 
5 

0 

3 
33 

9 

49 
38 

Column 
Total 

9 51 36 96 

1999 Classification Error Matrix 

Classified 
Data 

Reference data 

Water Built-up Non-built Row Total 

Water 
Built-up 
Non-built 

11 
0 
0 

0 
59 
3 

0 
4 
27 

11 
63 
30 

Column 
Total 

11 62 31 104 

 

4.4. Urban Change Analysis 

The urban change analysis presented in this paper was 
based on the statistics extracted from the two land-use and 
land-cover maps of the City of Mississauga produced for the 
two dates: 20 September 1985 and 3 September 1999. The 
mask-out technique was applied to detect urban growth. The 
built-up and water areas in the 1985 TM scene were masked 
out from the 1999 TM scene (see Figure 5). The white colour 
represents newly increased urban use or built-up areas from 
1985 to 1999, while the black colour represents the mask of 
old built-up areas and water areas and the gray colour for 
non-built areas in 1999. 

 

 

 

 

 

 

 

 

Figure 5.  The land-use and land-cover change map 
of the City of Mississauga as extracted from Landsat 
TM data between1985 and 1999.  

It is clearly revealed that the greatest change occurred in 
the west and upper-middle part of the City of Mississauga. 
Low-density urban use, which is mostly residential in nature, 
has increased its area spatially in 1999 compared to the 1995 
scene. A lot of in-filling occurred within the low-density ur-
ban use areas. The increase in urban use is clearly at the ex-
pense of forest and cropland. 

Same errors would be deducted from each other while 
overlaid two classified images, for example, old low-density 
residential areas classified as non-built areas, bare soil classi-
fied as construction areas (at the initial stage) and alike. This 
is true because same intercrossing errors in classification ap-
peared in both 1985 and 1999 images. For big changes it may 
not be applicable in old built-up areas except that trees were 
getting higher density, more roads were built, more houses or 
buildings were reconstructed, and parks and grassland were 
well maintained. As in the non-built zones, same undeveloped 
status occurred as before. Only the new built-up areas could 
totally change the situation and was highlighted out. 

Table 4 manifested the amount of actual changes in 
different land-use and land-cover features over the 14-year 
period. From 1985 to 1999, a total area of 23.7 km2 areas had 
been built up as new residential zones, industrial areas, transi-
tion facilities, commercial centres, schools and such, equiva-
lent to 7.4% of the total Mississauga area, and resulted in the 
identical area decrease of non-built and water space. Eco-
nomic prosperity, population expansion, industrial develop-
ment and urban growth are without any exception at the 
expensive of reduction of surplus utilizable space, such as of 
agricultural fields, forest, bare soil, wetland, etc. It was almost 
the rule of urbanization that surplus useful space had been 
diminished gradually instead of new construction. And 
according to this developing speed , Mississauga would ex-
haust its remainder space in another 14 years if we assumed 
that at least  20% vegetation area over total Mississauga area 
had to be kept for environmental needs. 

 

Table 4.  Substantial Growth of Built-up Areas in Missis-
sauga from 1985 to 1999 (km2) 

 
Year 

Land-use and Land-cover 

Built-up Non-built Water Total 
Area 

1985 Area 176.35 116.11 27.68 320.14 

1999 Area 200.05 92.93 27.14 320.12 

Difference 
Between 1999 
and 1985 

23.7 -23.18 -0.54 0.02 

% of the 
Changes / 
Total Area 

7.4% -7.24% -0.17% 0.01% 

 

A pixel size of 30 m is sufficient for land-use and 
land-cover classification at the macro or regional scale, but 
fails to provide detailed classification at the micro scale with 
satisfactory accuracy. It is expected that the use of images 
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acquired by recently launched high spatial resolution earth 
observation satellites, such as IKONOS, Quickbird, and 
OrbView-3, could improve the accuracy of detailed image 
classification and improve the change detection performance 
at the micro or local level. Between the 1985 and 1999, there 
was about 0.01% error of total area which stemmed from sub-
set and resampling procedures. 

 
4.5. V-I-S Model Application 

In this study, for the purpose of the V-I-S model applica-
tion as shown in Figure 6, the whole Mississauga area was 
further divided into four sections according to the world map 
and classification maps. Along the Dundas Road, Highway 
403 and its prolongation, and Mavis Road, the four sections 
were segregated as South, Middle, Airport, and Northwest. 

Table 5 enumerated the outline of each area. The descrip-
tion of characteristics of the four areas was basically upon the 
comparison between 1985 and 1999 situation. 

In each section, randomly selected points using the same 
method as in accuracy assessment procedure, checked their 
spatial composition of vegetation-impervious surface-soil 
with referenced data, the V-I-S pattern could be drawn out 
based on the theory of Ridd (1995). The outcome was summa-

rized in Table 6, and corresponding meanings of each section 
was briefly described as well. 

Section 1 was actually the old mature city district which 
featured with highest vegetation cover (34.5%), lowest soil 
exposure (1.4%) and least impervious surface (62.2%) which 
meant the low-density of man-made trace and comparative 
stability from commercial expansion. By contrast, Section 2 
marked with its reputation that high-density of man-made 
features (78%) squeezed in crowded space at a sacrifice of 
sufficient green shelter (20%); 1.8% soil surface indicated that 
limit surplus space was ongoing conversion and became a 
focus of attention. As to the rest two sections, Section 4 had a 
close feature as section 1 excluded its considerable soil expo-
sure (2.9%), it was an expanding residential area equipped 
with more meaning of forward-looking city style and environ-
mental protection, such as preserve appropriate vegetation,  
matched with corresponding commercial centre, schools, 
parks, recreation centres, communities, and such. In Section 3, 
a fast pace of stretch was headlined with its highest soil expo-
sure portion (4.1%). Relatively higher impervious surface 
(72%) and lower green cover (24%) emphasized its modern 
industrial dominance. Fully developed transit facili- ties and 
system pledged its further growth and attracted more invest-
ment.

 

 
Figure 6.  Four sections in the City of Mississauga. 



J. Li and H. M. Zhao / Journal of Environmental Informatics 2 (1) 38-47 (2003)  

 

 45

    Table 5.  The Features of Four Sections in Mississauga, 1999 

Section Location Features 

South South of Dundas Road, include south part of Erin Mill and 
Cooksville, Port Credit district 

Mature city region, low-density residential area, concen-
trated parks and golf course, high-density trees and partial 
existed industrial zone, face Lake Ontario, little utilizable 
space 

Middle South of Highway 403 and its prolongation, north of Dundas 
Road, include north part of Erin Mill and Cooksville district 

City centre, high-density residential area, commercial centre, 
schools, parks, little industrial area, limit surplus applicable 
space  

Airport North of Highway 403 and its prolongation, east of Mavis 
Road, include Pearson international airport and its vicinity, 
Malton district 

Except parts of residential area in north east corner and 
south west corner, dominant industrial area and fully devel-
oped transportation facilities, considerable utilizable space 

Northwest  North of Highway 403 and west of Mavis Road, include 
Meadowvale and Streetsville district, north Credit River 
linger in middle  

Expanding residential area and corresponding commercial 
centre, schools, parks, recreation centre, partial new built 
industrial area, remarkable utilizable space 

 

    Table 6.  V-I-S Composition of Four Divided Sections 

Section V% I% S% Description Total Sample Points 

South 34.5 62.2 1.4 Pertain to mature residential area, little conversion 148 

Middle 20.2 78.0 1.8 City centre: some conversion 109 

Airport  24.0 72.0 4.1 Developed and developing industrial area, significant conversion 246 

Northwest 32.9 64.2 2.9 Undergoing residential area, considerable conversion  173 

Mean 27.9 69.1 2.6   
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Figure 7.  V-I-S diagram: 1-mature residential area, 2-city centre, 3-industrial dominance, and 
4-growing residential area. 
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Figure 7 shows the V-I-S patterns of the four sections. 
The four positions in V-I-S diagram were not perfect to match 
with the general urban features location presented by Ridd 
(1995), this was because the selected sections in this paper 
comprised relative large area and enclosed more features in-
side, but the patterns could declaim the city change format. 

In addition, comparing the analysis results of both 
classification and V-I-S pattern obtained for this study with 
the Mississauga plan district land use world map (City of 
Mississauga, 2003), they match quite well. This positive out- 
come indicates that the employed methods and data were 
feasible and applicable in mapping land-use and land-cover 
changes of the City of Mississauga. 

5. Summary and Future Research 

The drastic land-use and land-cover changes in Missis-
sauga over the past twenty years have resulted in the depletion 
of the vegetative cover and its replacement by such urban 
features as residential and commercial buildings, shopping 
malls, roads and parking lots. Two Landsat TM images ac-
quired in 1985 and 1999 have been used to map and extract 
land-use and land-cover change of Mississauga using a super-
vised image classification approach with the support by refer-
ence data including 1 m spatial resolution colour aerial 
orthophotos and 1:25,000 scale maps to meet the standard of 
at least 85% in overall, producer’s and user’s accuracies. By 
using the V-I-S model, the urban patterns of the City of 
Mississauga have been established. The land-use and land- 
cover maps revealed a great increase in low-density urban use 
at the expense cropland and open space over a 14-year period 
between 1985 and 1999. The urban change analysis results 
have demonstrated that 7.4% (23.7 km2) of the Mississauga 
area had been built up during the 14-year interval; this is 
equivalent to the total decrease of non-built and water area. 
This urbanization has been further defined as four urban pat-
terns based to their V-I-S composition. These outcomes will 
benefit for city planners and environmental managers to im-
prove current deficiency and design their future blueprint. 

    Since the dramatic changes in land-use and land-cover 
have resulted in loss of vegetation covered land, thus they 
drastically alters the land surface characteristics. A time series 
of Landsat MSS and TM images will be further used to map 
and extract land-use and land-cover of the Greater Toronto 
Area for 1970s, 1980s, 1990s and 2000s in order to monitor 
the urban growth and sprawl which has altered the biophysical 
environment. The most noteworthy is the replacement of soil 
and vegetation with impervious urban materials (e.g. concrete, 
asphalt, and buildings), which affect the albedo and runoff 
characteristics of the land surface, thus significantly impact-
ing the local and regional land-atmosphere energy exchange 
processes. Future research will focus on the study of urban 
heat-island through the use Landsat TM thermal band (Band 6) 
to extract surface temperatures for the past four decades. The 
surface tem- peratures and the spatial patterns of the normal-
ized difference vegetation indices (NDVI) that can be ex-
tracted from Landsat MSS and TM images will be investi-

gated for urban heat-island-effect studies. 
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