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ABSTRACT.  Disastrous flooding and inundation events have drawn much attention in regional sustainable development due to 
extensive life loss and property damage they have caused. To support river basin management practice, it is necessary to simulate flood 
inundation such that associated risks can be integrated into decision-making processes. Flood inundation is generally simulated by the 
2-dimensional Saint Venant equations (2D SVEs), in which inertia terms are neglected in most cases, particularly in large floodplains. 
In this study, a diffusive wave model discretized by an implicit numerical scheme of the irregular triangle finite difference method 
(TFDM) was developed to examine the effect of arbitrary inner and outer boundaries within a floodplain. A case study has been con-
ducted in the Fuefuki River basin in central Japan. Comparisons with simulation using complete 2D SVEs are made in this study. Re-
sults indicate that both the diffusive wave model and its TFDM numerical scheme are effective and accurate in the simulation of flood 
inundation. 
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1. Introduction  

Disastrous flooding events have increased greatly due to 
aggressive consumption of natural resources and global 
warming effects. The number of large flood disasters in the 
nine years from 1990 to 1998 was higher than those in the 
three-and-half decades between 1950 and 1985. The global 
loss from floods has grown to billions of dollars annually. The 
flood inundation due to dike-breaks or overtopping is mostly 
attributable to the damages as many metropolitans are protect- 
ed by these dikes. Flood inundation in the context of this 
study is defined as the transportation of 2D flooding flows 
due to dike-break or overtopping. It is demanded that flood 
risk assessment must be integrated into decision analyses for 
environmental management and sustainable development of 
watersheds. Flood-inundation simulation is believed to be a 
necessary part of contemporary management practices. 

Flood inundation flows are commonly expressed by 2D 
SVEs. These equations describe flows in vertically well- 
mixed water bodies where horizontal length scales are much 
greater than water depths, which belong to long wavelength 
phenomena. They were obtained by assuming a hydrostatic 
pressure distribution and a uniform velocity profile in vertical 
direction. By integrating the Navier-Stokes equations along 
water depths, a three-dimensional free boundary problem is 
reduced to a 2D fixed boundary problem with primary vari-
ables including water depths and velocities averaged vertically. 
The 2D SVEs can be used to study many physical phenomena 
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of interest, such as storm surges, tidal fluctuations, tsunami 
waves, and can also be coupled with transport equations to 
simulate transports of sediments or other species because of 
its easiness in the coupling (Aizinger & Dawson, 2002). How-
ever, some large river basins such as the South Florida basin 
in the US and the lower Yellow River basin in China are 
characterized by large areal extents, low slopes, widespread 
ponds, tributaries, and slow regional flow dynamics. These 
properties allow an approximation of 2D SVEs based on the 
theoretical conditions proposed by Ponce et al. (1978). 
Among available approximation models, kinematic wave 
models are inadequate for these cases because they neglect 
backwater effects completely. Diffusion wave models have 
been found to be capable of simulating varieties of natural 
flow conditions successfully. For example, hydrologic 
conditions in Everglades, USA have been successfully 
simulated with both NSM (Natural System Model) and 
SFWMM (South Florida Water Management Model) in which 
the 2D diffusion wave models are utilized (Fennema et al., 
1994). Akan & Yen (1981) applied diffusion wave flood 
routing in channel networks to deal with the mutual backwater 
effects existing among the channel branches joining at a 
junction. Xanthopoulos and Koutitas (1976) have applied 
such a model to simulate 2D flood wave propagation due to 
dam failure. Hromadka & Lai (1985) also used a 2D diffusive 
wave model discretized by a finite difference method with 
uniform rectangular meshes to estimate the effects of the 
diverging flood flow due to dam-break. The results of their 
study showed that the 2D diffusion dam-break model could 
provide fast, economical, and practical estimates of flood 
depths, areas and time of propagation. The diffusive wave 
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model can be a good approximation of the dynamic wave 
model because of its ability to accommodate both backwater 
effects and unsteady flow. However, the both of them are 
neglected in the HEC-2 floodplain analysis (Hromadka II et 
al., 1989). 

Dike break and dam failure have similar mechanisms of 
breaking, but dynamic property of flooding flow due to 
dike-break is not significant compared with dam-break flows. 
The dam–break flows are usually confined within a narrow 
valley with the characteristics of shock properties existing at 
the waterfront and the dynamic component is significantly 
large. The flooding flows due to dike-break, on the other hand, 
propagate freely in a large floodplain which make the flows to 
be diffusive, and are dominated by forces of gravity, pressure, 
and friction. Because good results have been obtained from 
1D diffusive flow model for the problems of dam failure, such 
a model should be more reasonable to be applied to the 2D 
inundation simulation due to dike break. The main concerns 
are the inundated areas and water depths, especially for the 
purposes of flood risk assessment and management within a 
river basin. 

Complexities of floodplains and arbitrarily geometrical 
structures within floodplains, including their boundaries both 
inside and outside of study regions, for instance, roads, drain-
age networks, farmlands, forests, and buildings, may also 
significantly affect accuracies of simulation results. An ideal 
model for the simulation of 2D overland flow is expected to 
be capable of handling water bodies of arbitrary shapes and 
using flexible ranges in temporal and spatial scales to meet 
accuracy requirements at different locations and times. The 
uniformly structured mesh system in the Cartesian coordinate 
can easily generate computational meshes. The flooding 
conditions in both inundated areas and water depths can be 
simulated efficiently with digital elevation models (DEM) of 
different resolutions. But the effects of buildings and other 
artificial structures on the accuracy of the simulation cannot 
be considered accordingly. Much effort has been made to im-
prove this type of methods. For instance, Hromadka II et al 
(1989) introduced both flow-path reduction factor and effec-
tive grid area to consider influences of buildings within flood-
plain; Suetsugi and Kuriki (1998) integrated this effect in the 
manning coefficient through a relationship among ratios of 
buildings, water-depth, and roughness coefficient. Their meth-
ods can improve the accuracy undoubtedly, but the geometri-
cal influence of arbitrary structures cannot be integrated into 
the simulation. A possible approach to overcoming this diffi-
culty is the appli- cation of unstructured grid systems with the 
calculation elements such as irregular triangles and qua- 
drilaterals. 

The merits of unstructured grids are that the lack of grid 
structure makes it possible to mesh arbitrary geometries with 
relative easiness, and offers capability to locally adapt the grid 
by simply adding extra grid points where they are needed, to 
improve the accuracy of the computation without incurring 
the penalties associated with global refinement (Anderson & 
Bonhaus, 1994; Holmes & Connell, 1989). The control vol-
umes are formed by dividing the study region into a finite 

number of irregular elements such as triangles or quadri- 
laterals. Then, solutions are obtained based on these control 
volumes. 

As above noted, most numerical algorithms in flood 
inundation models are based on the uniform rectangular mesh 
system, and they can hardly integrate the influence of geome- 
trical and topographical complexities of floodplains into the 
simulation. For the purpose of surmounting the limitation, a 
simple and completely implicit scheme of TFDM based on 
irregular triangle meshes is developed in this work. The first 
objective of this study is to investigate the possibility of 
applying diffusive wave model to the simulation of overland 
inundation flow due to dike-break or overtopping in large 
river basins. Secondly it is to testify the effectiveness of the 
implicit TFDM scheme for the diffusive wave model. Also if 
the above two objectives prove to be feasible, the model and 
its numerical scheme would be applied to the simulation of 
flood inundation on complex land-covers of floodplains in 
large river basins. 

2. Governing Equations of Diffusive wave Model 

The governing equation of 2D SVEs can be written in the 
form of fluxes as follows: 

 
h M N RF IN ET 0
t x y sources

∂ ∂ ∂
+ + − + + =

∂ ∂ ∂ 1442443                       (1) 

 
( ) ( ) bxM uM vM H

gh
t x y x

τ

ρ

∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂
                            (2) 

 
( ) ( ) byN uN vN H

gh
t x y y

τ

ρ

∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂
                                 (3) 

 
where h is the inundated water depth; M (= uh) and N (= vh) 
are discharge flux per unit width in x- and y-orientation, 
respectively; RF = rainfall; IN = infiltration; and ET = eva- 
potranspiration. Here, RF, IN and ET are regarded as source 
terms which are expressed in unit of length/time; u and v are 
flow velocity in x and y directions; g is gravitational 
acceleration; H is surface water level which equals to Zb+h, 
here, Zb is the ground elevation. ρ is the mass density of water 
flow; τbx, τby are ground shear stresses in x and y directions, 
respectively. They can be estimated by the equations as fol-
lows: 
 

1
2 2 2 3/ /bx gn u u v hτ ρ = +                                        (4) 

 

1
2 2 2 3/ /by gn v u v hτ ρ = +                            (5) 

 
where n is the Manning’s roughness coefficient. 

Based on the results obtained by Xanthopoulos and 
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Koutitas (1976), Hromadka (1989, 1986), Lal (1998, 2000), 
and Ponce (1978), it is reasonable to ignore the inertia terms 
in the complete 2D SVEs for the simulation of overland flows. 
Equations (2) and (3) can be written as: 

 

1
3

2
b x

g n u VHg h
x h

τ
ρ

∂
− = =

∂

ur

                                        (6) 

 

1
3

2
b y g n v VHg h

y h

τ
ρ

∂
− = =

∂

ur

                                          (7) 

 
Considering Manning’s Equation for the magnitude of 

velocity vectors and assuming that the friction slope Sf is 
equal to the slope of water surface Ss , i.e. 

 
12

232 2 1
fV u v h S

n
= + =

uv                         (8) 

 
2 2( / ) ( / )f sS S H x H y= = ∂ ∂ + ∂ ∂                  (9) 

 
The velocity components u and v can be rearranged as 

the following form on the basis of Manning’s Equation: 
 

5
3

,

s

K H K Hu v
h x h y

hK
n S

∂ ∂ ⎫= − = − ⎪∂ ∂ ⎪
⎬
⎪= ⎪
⎭

                            (10) 

 
The fluxes per unit width in x- and y-directions will be 

simplified as: 
 

,
H H

M K N K
x y

∂ ∂
= − = −

∂ ∂
                              (11) 

 
By instituting the fluxes of Equation (1) with Equation 

(11), the diffusive wave model can be rewritten as: 
 

5
3

where,
s

H H HK K RF IN ET
t x X y y

hK
n S

Sources

⎫⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + + − − ⎪⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎪
⎬
⎪

= ⎪
⎭

1442443
                (12) 

 
The coefficient K is the constant of hydraulic conductiv-

ity in ground water equations. In the diffusive overland flow 
equations, K is an important parameter to be able to linearize 
and simplify the equations. As expressed in the equations, K 
must be kept in a reasonable limit for the wetting or drying 
situations. In this paper, K is treated in the same way as that of 
Lal (1998): 

5
3

minfor and

0     otherwise

s
s

hK S h h
n S

K

δ
⎧

= ≥ ≥⎪
⎨
⎪ =⎩

       (13) 

 
In this study, threshold of water depth hmin = 0.001 m is 

used to determine frontier of flooding flows. In other words, 
the drying and wetting conditions can be judged based on the 
value. A very small δ = 1.0×10-7 is also used to control K 
within a finite reasonable range when the slope of the water 
surface is an infinitesimal value. 

3. Implicit TFDM Numerical Scheme of        
Diffusive Wave Model 

Generally, the finite difference method (FDM) with regu-
lar mesh has the advantages of theoretical clearness, easiness 
in mesh generation, and simplicity in computer programming. 
However, it will confront a complex situation if irregular 
boundaries exist in a study region. In order to overcome this 
problem, the irregular triangle finite difference method 
(TFDM) is proposed in this study. The generation of triangle 
meshes has to be done as follows: 1) the physical domain has 
to be completely covered by the meshes; 2) there must be no 
free space left between the meshes, and the meshes should not 
be overlapped; 3) any inner angle should not be greater than 
90°. 

Based on these basic requirements for mesh generation, 
the overland flooding flow can be simulated through the 
irregular triangle meshes as displayed in Figure 1. 

 

 

j 

i 

x

y

o

j 
m

i 

Figure 1.  Subdivisions of the study area into irregular 
triangle meshes. 

 
Because the governing equation of diffusive wave model 

is almost the same as that of the basic governing differential 
equations of groundwater movements, Darcy’s Law can also 
be applied to the discretization process of the governing equa-
tion (12). The discharge flux has a direct relationship with the 
hydraulic gradients based on Darcy’s Law. Therefore, this 
relationship can be used as a guideline to design the control 
volume. For this purpose, the control volumes designed in this 
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paper have three prominent kinds of characteristics over oth-
ers: 1) cell-vertex scheme with boun- dary sides of the control 
volume perpendicular to the sides/ edges of meshes surround-
ing a given node; 2) the direction of hydraulic gradients in the 
calculation parallels with the unit outward normal vectors at 
the boundary sides of control volumes, so the tedious projec-
tion calculation of fluxes into the direction of normal vectors 
can be avoided; and 3) a completely implicit scheme making 
it suitable for enlarging time-step in simulations for longer 
time span. 

 

 

m/ 

i 

o 

j/ 

m

j

Figure 2.  Effective control volume contributed to the 
water level change at node i shaded by dots. 

 
 
The control volume at each vertex is designed by draw-

ing a perpendicular line through the edge-mid-point of all 
cells sharing a given node. An exemplary control volume is 
displayed in Figure 2. By integrating Equation (12) over a 
control volume Ω and using the Gauss theorem, the basic 
equation of the TFDM can be expressed as: 

 

F( ) nH d H dL Sd
t

ω ω
ΩΩ Γ Ω

∂
= ⋅ +

∂∫∫ ∫ ∫∫                       (14) 

 
in which n = a unit outward vector normal to the boundary ГΩ; 
dω and dL are the differential area of the control volume and 
the differential length of the boundary sides of the control 
volume, respectively. The integrand F(H)•n is the normal flux 
vector which can be obtained by Darcy’s Law as mentioned 
before due to the properties of the control volume in this study. 
By discretizing Equation (14), the basic numerical equation of 
the TFDM is 
 

1

m
s si

i i i i i
s

HA q L A S
t

=

∂
= +

∂ ∑                                (15) 

 
where Ai = area of control volume Ω at node i; m = number of 

boundary sides of control volume; qi
s = discharge flux into 

control volume through boundary side s; Li
s = length of 

boundary side s; Si = sources flowing into or out of control 
volume. Physical meanings of Equation (15) can be explained 
as balance of water quantity within the control volume. The 
first term at the right side of the equation represents the total 
quantity of the lateral water inflow. The second term on right 
side of the equation represents supply quantity in vertical 
direction of the control volume due to recharging from rainfall 
and drainages from infiltration or pumping. The only term on 
left side of the equation (15) means total quantity variation 
within the control volume. To make the equation easier to 
understand, Equation (15) can be rewritten as: 
 

, , ,i storage i la tera l i vertica lQ Q Q∆ = ∆ + ∆                 (16) 

 
In order to get the complete implicit TFDM numerical 

schemes, three terms in Equation (16) will be discussed in 
further details in the following sections. 
 
3.1. Estimation of Lateral Quantity Flowing into Control 
Volume ∆Qi,Lateral 

In this TFDM scheme, the most important and difficult 
task is the estimation of lateral quantity flowing into the con-
trol volume. For the convenience of explanations, triangle 
∆ijm, as shown in Figure 3, is assumed as triangle β and all 
vertices of the triangles are numbered in a counter-clock wise 
order. 

 
 
 
 
 
 
 
 
 
 
 

i 

αm 

αj 

m 

αj 

m/ 

o 

j 

j/ 

αm

Figure 3. Contributions of triangle ∆ijm to the total 
effective control volume of node i. 

 
 

 ( )
, ' 'j i m i

ij imi lateral
H H H HQ K oj K om

ij im
β − −

∆ = +                 (17) 

 
From the geometrical relationship as indicated in Figure 

3, the function can be explained as: cotαm = 2oj′/ij and 
cotαj=2om′/im because both oj′ and om′ are perpendicular 
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lines drawn from middle of lines ij and im, respectively. Thus 
Equation (17) can be rearranged as follows: 
 

 ( )
, 

1 1
2 2

( ) ( )ij j i m im m i ji lateralQ K H H cot K H H cotβ α α∆ = − + −          (18) 

 
 

C(xj,yi) 

D(xj,ym) 

Y 

X 

i(xi,yi)

A αm 

αj 

m(xm,ym) 

Figure 4.  Inner angles and coordinates of triangular 
element β. 

j(xj,yj) 

 
 

From Figure 4, values of triangular function in Equation 
(18) can be given as: 
 

2j
jA jA jm jA jmcot
iA iA jm Aβα ⋅ ⋅

= = =
⋅

                          (19) 

 
where jA and jm are the lengths of lines, while Aβ is the area 
of triangle β. If jA can be expressed by sides of triangle β, the 
triangular functions can be simplified as a function of coordi- 
nates of the vertices. In Figure 4, we can get a relationship as: 
 

2 2 2

2
ij im jmjA jm − +

⋅ =                            (20) 

 
Equation (19) thus can be expressed by the known sides of 
triangle β, i.e. 

 
2 2 2

4j
ij im jmcot

Aβα − +
=                                     (21) 

 

Considering the coordinates of each vertex of triangle β, 
the function can be further represented as: 

[ ]1
( )( ) ( )( )

2
j i j m j i j m jcot x x x x y y y y

Aβ
α = − − + − −       (22) 

For the same reason, 

[ ]1
( )( ) ( )( )

2
m j i m j m i mmcot x x x x y y y y

Aβ
α = − − + − −         (23) 

Supposing that 
 

i j m i m j

j m i j i m

m i j m j i

b y y c x x

b y y c x x

b y y c x x

⎧ ⎧= − = −
⎪ ⎪⎪ ⎪= − = −⎨ ⎨
⎪ ⎪= − = −⎪⎪ ⎩⎩

                    (24) 

 
are used to represent relationships among coordinates of the 
vertices, and Equations (22) and (23) can be rewritten as fol-
lows: 
 

1 ( )
2

1 ( )
2

j i m i m

m i j i j

cot b b c c
A

cot b b c c
A

β

β

α

α

⎧ = − +⎪⎪
⎨
⎪ = − +
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                             (25) 

 
Substituting Equation (25) into Equation (18), lateral dis-

charge flux flowing into the control volume by triangle β can 
be obtained as: 

 

 
1 [ ( )( )

4A
                  ( )( )]

ij j i i j i ji, lateral

im m i i m i m

Q K H H b b c c

K H H b b c c

β
β∆ = − − +

+ − +
         (26) 

 
Because the total number of unstructured triangular ele-

ments surrounding node i is m, lateral quantity flowing into 
the control volume can be finally obtained by the following 
equation (27). 

 

,  
1

1

1              [ ( )( )
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m
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m

ij j i i j i j

im m i i m i m

Q Q

K H H b b c c

K H H b b c c

β

β

β
β

=

=

∆ = ∆

= − − +

+ − +

∑

∑                       (27) 

 
3.2. Addition of Vertical Quantity to Control Volume 
∆Qi,Vertical 

The vertical quantity added to the control volume refers 
to the rainfall supplies, pump drainage, and other. If the den-
sity of these kinds of supplies or drainages is Wi and effective 
area of the control volume around node i is Ai, then vertical 
quantity added to the control volume can be described as: 

 

Q i, vertical i iA W∆ =                             (28) 
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So far, the effective area Ai of the control volume at node 
i has yet to be given. For this purpose, Figure 3 can be used to 
correlate again. Because the effective area of triangle β to the 
whole control volume is made up by the quadrilateral element 
ij′om′ which consists of ∆ij′o and ∆iom′, the effective area in 
this triangular element can be easily achieved. For example, 
the area of ∆ij′o can be written as: 

 

/

2 2 2 2 2

2
/

2 2

( ) ( )

1
4 2 8

1 ( )( )
16

i j i j m m

ij o
mi

m m i j i j
i

ij x x y y b c

ij ijA oj cot

b c b b c c
A β

α∆

⎧
= − + − = +⎪

⎪
⎪
∴ = =⎨

⎪
⎪ = − + +⎪
⎩

Q

              (29) 

 
For the same reason, the area of ∆iom′ can be represented 

by Equation (30) 
 

/ 2
/

2 2

1
4 2 8

1          ( )( )
16

iom
i j

j j i m i m
i

im imA om cot

b c b b c c
A β

α∆ = =

= − + +
                 (30) 

 
The effective area of unstructured triangular element β, 

which is the quadrilateral element ij′om′, will be the sum of 
these two triangles, namely: 

 
2 2

2 2

1 [( )( )
16

         ( )( )]

m m i j i ji

j j i m i m

A b c b b c c
A

b c b b c c

β
β= − + +

+ + +

                 (31) 

 
As described before, the total number of unstructured 

triangular elements is m, the total effective area of the control 
volume at node i can be summarized as: 

 

1

2 2
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Substituting Equation (32) to Equation (28), the vertical 

quantity added to the control volume can be given by: 
 

2 2

1

2 2

1 [( )( )
16

  ( )( )]

i, vertical i i
m

i m m i j i j

j j i m i m

Q AW

W b c b b c c
A

b c b b c c

β
β =

∆ =

= − + +

+ + +

∑         (33) 

3.3. Storage Variation in Control Volume ∆Qi,storage 
Due to inflows added from both lateral and vertical direc-

tions of the control volume Ωi, it is supposed that the water 
level will be changed from Hi,k to Hi,k+1 within a time-step ∆t. 
This variation of storage within this control volume can be 
written as: 

, 1 , 
,  

i k i k
i storage i

H H
Q A

t
+ −

∆ =
∆

                       (34) 

 
3.4. Implicit Numerical Scheme of the TFDM 

Through the above discussion, the components of water 
added to the control volume by different ways have been 
made clear. For the conciseness and adaptabilities of the 
scheme for complex flood inundation conditions within a 
floodplain, the water quantity of vertical supply is treated as a 
source term Qi. Substituting Equation (16) by Equations (27), 
(33), and (34), the numerical scheme at a time-step can be 
given as follows: 

 

, 1 , 

1
[ ( )( )

4

                          ( )( )]

m
i k i k

i ij j i i j i j

im m i i m i m i

H H
A K H H b b c c

t A

K H H b b c c Q

β
β

+

=

−
= − − +

∆

+ − + +

∑ １

            (35) 

 

Because geometries of the control volume in Equation 
(35) account for great proportions, they are included into 
variables like: 

 

( )
4

( )
4

ij
i j i jij

im
i m i mim

K
Y b b c c

A
KY b b c c

A

β
β

β
β

⎧
= − +⎪⎪

⎨
⎪ = − +
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                   (36) 

 

Thus, Equation (35) can be simplified as: 

 

, 1 , 

1
( ) ( )

i k i k
i

m

ij i m iij im

H H
A

t

QY H H Y H Hβ β

β

+

=

−

∆

⎡ ⎤= +− + −⎣ ⎦∑
            (37) 

 

Therefore, the numerical scheme of the TFDM based on 
irregular triangular meshes at node i has been obtained. Equa-
tion (37) can be solved either by either explicit or implicit 
methods. The implicit scheme can be obtained if water levels 
Hi, Hj and Hm on the right side of Equation (37) take values at 
the end of a time-step. The implicit scheme of the TFDM can 
be written as: 
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, 1 ,  

,  1 ,  1
1

,  1 ,  1

[ ( )

  ( )]

i k i k
i

m

j k i kij

m k i k iim

H H
A

t

Y H H

Y H H Q

β

β

β

+

+ +
=

+ +

−
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= −

+ − +

∑                           (38) 

 
Based on the characteristics of Equation (38), iterative 

techniques, for example, Successive Over-Relaxation (SOR) 
or Gauss-Seidal, are effective for obtaining solutions. In this 
paper, the Gauss-Seidal iterative method, given by Equation 
(39), is adopted as below: 
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where p represents iterative times, ( 1)

,
p

i kH +  will be the water 
level at the end of a time-step for node i, namely, Hi,k+1 when 
accuracy requirements of iterations are fulfilled. ( 1)

,
p p
j kH + and 

( 1)
,

p p
m kH + mean that water levels at the iterative step p+1 will 

be used if they are known for vertices j and m of the triangle β. 
Otherwise, the values at the step p could be substituted if 
convergence condition has not yet been satisfied. 

4. Case Application 

4.1. Study Area 
A case study was conducted for the Fuefuki watershed 

with an area of 1,039.7 km2, which is bounded by Ara 
River and Fuefuki River with continuous levees. The study 
area and its elevation distribution are shown in Figure 5. 

In this study, x is west-east direction while y repre-
sents south-north. The study area is divided into 891 grids 
on a 250m DEM and has a total area of 58.31 km2. In order 
to make simulation results comparable with other methods, 
one mesh of the 250m DEM was divided into two triangles 
by drawing a diagonal line. For the same study area, the 
number of triangular meshes obtained is 1781 with 963 
nodes.  The elevation distribution of the study region is 
shown in Figure 5. Based on maintenance conditions of the 
dikes along Fuefuki River, three locations (F110, F145 and 
F166) are assumed to be broken when suffering from seri-
ous flood events occurring in the basin. The general condi-
tions at the assumed break sections are summarized in Ta-
ble 1. In this paper, the inundation due to dike-break at 
F110 is used as example to test the effectiveness of the 
proposed implicit TFDM numerical scheme. 

4.2. Treatment of waterfall or overflow 
Waterfall or overflow conditions may be present due to a 
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Figure 5.  The Fuefuki Watershed and its elevation distribution. 
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sudden change of ground elevation or, sometimes, of artificial 
structures in floodplains, as shown in Figure 6. During the 
simulation process, they have to be treated properly because 
of their discontinuity. In this study, the discontinuity is in-
cluded in the calculation of the coefficient K. In Figure 3, for 
example, the flux can be estimated by a complete weir flow if 
there is a waterfall or overflow between node i and j, as given 
below. 

, 1 1 2 12 if  / 2 / 3i jq h gh h hµ= ≤            (40) 

 
or by a submerged weir flow 
 

'
, 2 1 2 2 12 ( ) if  / 2 / 3i jq h g h h h hµ= − >         (41) 

 
where h1 and h2 are the water depths in node i and j, respec-
tively. Please refer to Figure 6 for their definition. The weir 
flow coefficients µ and µ′ are treated as constant, and have a 
value of 0.35 and 0.91, respectively. 
 

qij  

 
 
 
 
 
 
 
 

h2 

h1 

Figure 6.  Waterfall or overflow situations. 
 

 
The discharge flowing into the control volume at the 

node i can be estimated by 'ij ojq L× . Based Figure 3 and 
Equations (17), (18) and cotαm= 2oj′ / ij, the coefficient Ki,j 

under this condition can be estimated by: 
 

/( )ij ij ij j iK q L H H= ⋅ −                          (42) 

where Lij is the distance between the nodes i and j. If this 
discontinuity occurs between the node i and node m, Ki,m can 
be obtained in the same way. Otherwise Equation (13) can be 
used to estimate Kij, or Kim. 
 
4.3. Boundary Condition 

In this study, the flood inundation due to dike break at the 
section F110 was chosen to be the example for illustrating the 
effectiveness of the diffusive wave model and its implicit 
numerical scheme of the TFDM. It is supposed that a flood 
event with a probability of 1%, generated on the basis of a 
historical flood occurring from August 14th to 16th of 1959, 
happened in the Fuefuki River basin and caused a dike break 
at the section F110. The hydrograph in the channel is shown 
in Figure 7(a), while Figure 7(b) is the inflow hydrograph 
from the break inlet. The flood inundation would begin when 
the water level in Fuefuki River reaches the H.W.L., which 
means that the discharge approaches 2,830m3/s and the water 
level is 256.00m at 7:45 a.m. as shown in Figure 7(a). The 
inflow hydrographs, as shown in Figure 7(b), are used as the 
input of boundary conditions. 

 

4.4. Initial condition 
For simplicity, the initial condition of simulation is as-

sumed that the floodplain is dry before the dike-break at 
the section F110. Inundation water depths at all of the 
meshes of the study area are zero and the water surface 
elevations are equal to the ground surface elevations. 
 
4.5. Application Results 

The water level in the Fuefuki River channel reached 
256.00m and the discharge approached 2,830m3/s at 7:45 a.m. 
on August 15, and the flood inundation lasted for 11 hours. 
The area change of inundation with time is plotted in Figure 8 
and depicted by the line with rhombus dots. As indicated the 
figure, the variation of the inundated area appears not to be 
smooth. This is mainly because the elevation data of the 250m 
DEM are in the form of integers. After the 11 hours of simula-
tion, the extent of inundation or inundated areas in this flood-
ing event finally stabilized at 12.21 km2, which accounts for 
20.9% of the total area of study. The spatial distribution of 
inundated water depths is plotted in Figure 9(b). From the 

Table 1. Basic Conditions at Each Dike Breakage in the Study Area 

Locations of assumed dike-break Beginning of dike-break Flood probabilities (%) and their peak discharges 
0.1% 0.2% 0.5% 1.0% 2.0% 3.33% No. Sections Crest Elev. 

(m) 
Ground    
Elev. (m) 

Discharge 
(m3/s) 

Water       
Level (m) 6,700 6,000 5,200 3,600 3,100 2,500 

1 F110 258.76 254.40 2,827 256.0 ○ ○ ○ ○ ○ × 

2 F145 263.26 259.60 2,881 261.4 ○ ○ ○ ○ ○ × 

3 F166 269.80 264.30 2,117 267.6 ○ ○ ○ ○ ○ ○ 

Note: ×= no dyke-break; ○= dike-break 
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contour map of inundated water depths, as shown in Figure 
9(b), majority of the inundation from the break inlet is located 
at the southwest lower region. In the small confluence region, 
where Ara River and Fuefuki River join together, the contour 
lines of water depths are densely distributed. 

For the purpose of illustrating the variation of the inunda-
tion water depth, the representative location is selected at the 
lowest mesh point in the study region, which is one 250m 
mesh north of the pump station with an elevation of 251.00m. 
The change of the water depth at this point is shown in Figure 
10. The line with rectangular dots in the figure represents this 
variation. When the flood inundation ended at 18:45, the wa-
ter depth reaches 5.02m. 

5. Comparisons and Discussions 

In order to testify the validity of the proposed 2D diffu-
sive wave model for 2D inundation flows due to dike break, 
comparisons with other simulation methods have to be made 
because no observation is available for this kind of study. 
Available models for the comparison include 2D SLES (Iwasa 
et al., 1980), 2D RMA2, and FESWMS. The 2D RMA and 
FESWMS models are used to compute water surface eleva-
tions and flow velocities at nodes in a finite element mesh 
representing a body of water such as river, harbor, or estuary. 
The two models with the numerical simulation algorithm of 
FEM can analyze both steady and unsteady problems accu-
rately. They can represent quite well arbitrary geometrical 
complexities of a study domain with different types of ele-
ments, consisting of quadrilateral, triangles and lines. How-
ever, the both models have disadvantages stemming from the 
discretization method of the FEM. The FEM conserves mass 
over an entire domain, but not within each element or at each 
node. The computational efforts needed by the FEM can be 
much greater than those for the FDM. In addition, spurious 
oscillations will be produced at flow discontinuities if special 
measures are not taken. Therefore, the simulation model of 
2D SLES was adopted in this study for the purpose of 

comparison because it has been proved accurate and stable 
from practical applications in Japan. The algorithm of the 2D 
SLES has been widely used in flood inundation simulation in 
Japan. Owing to its high accuracy and stability, flood hazard 
maps and flood warning systems in most river basins in Japan 
have been established based on this scheme. The governing 
equations consist of the continuity equation (1) and the 
momentum equations (2) and (3) in x- and y- directions, 
respectively, as described in section 2. 

 
5.1. Comparisons with the Simulated Results of the Com-
plete 2D SVEs Model 

5.1.1. Variations of Inundated Area 
Because the elevation of Ara River is higher than the 

ground elevation at its vicinity, and the Fuefuki River is con-
fined by dikes within the confluence region, the drainage can 
only be carried out by a pump station as indicated in Figure 5. 
For simplicity, and the comparability of the proposed implicit 
TFDM with the 2D SLES, pumping and other drainage meas-
ures are temporarily not addressed in this paper because the 
primary objective of this paper is to verify the possibility of 
ignoring the inertia terms in the 2D SVEs, and the effective-
ness of the proposed TFDM numerical scheme. Both the 
numerical methods of the TFDM and the 2D SLES use the 
same initial and boundary conditions as stated before. An 
identical time-step of iteration, which is 2 seconds, is used for 
the simulation. The total time of simulation is 11 hours for 1% 
flood event in the basin. The variations of inundated areas 
simulated by these two different methods are shown in Figure 
8. Figure 9 shows the contour maps of inundated water depths 
at the end of the simulations. 

Based on Figure 8, it is obvious that the change processes 
of inundated areas simulated by these two methods are almost 
the same, although the dynamic property mainly appears at 
the rising limb of the hydrograph. Since one mesh of the 
250m DEM in this region has an area of 0.065 km2, the maxi-
mum discrepancy of simulated flooding area is 0.28 km2, and 
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covers approximately 4.5 meshes of the DEM. Only 3 percent 
of discrepancy has been found in the inundated areas. This 
indicates that the implicit TFDM numerical scheme of 2D 
diffusive wave model is reliable for estimation of inundation 
areas in floodplains. 

5.1.2. Inundated Water Depth Variation 
The effectiveness of the implicit TFDM cannot be tested 

sufficiently for inundation simulation only by analyzing inun-
dated area variation. Inundated water depth and its spatial 
distribution are also important indexes for damage assessment. 
It is impossible to give inundated water depths of all sub- 
merged meshes. However, the efficiency can be judged based 
on the spatial distribution of inundated water depths as shown 
by the contour maps in Figure 9. In order to demonstrate the 
effectiveness of the proposed method from this perspective, 
the representative location is selected at the same lowest mesh, 
which is one 250 m mesh north of the pump station, where the 
elevation is 251.00 m. The changes of inundated water depth 
with the time change are displayed in Figure 10. As indicated 
in this figure, the simulated result by the implicit TFDM is 
approximately equal to that of the complete 2D SVE with 2D 
SLES numerical scheme. The discrepancy in inundated water 
depths appears mostly before the peak time of inflow hydro-
graph from the broken inlet. The maximum discrepancy is 
0.32m, which accounts for 6.4 % of the maximum water depth 
of 5.02 m in the simulation. The averaged discrepancy is -0.02 
m, which is not significant. Based on the water depth varia-
tion as shown in Figure 10, the spatial distributions of water 
depths, and the contour map as shown in Figure 9, the result 

shows that the proposed method is also reliable in the estima-
tion of inundated water depth. 

5.2. Discussions 

5.2.1. Difficulties in the Verification of Inundation Models 
Because flood inundation due to dike-break is a flooding 

event occurring at an extreme condition of emergency, there 
are no observed data available. Among the traditional approa- 
ches including field measurements, laboratory experiments, 
and depth-averaged computer models, only the application of 
computer models is the feasible for this study. However, the 
efficiency of the numerical models can hardly be verified 
based on conventional methods of comparing simulations 
with observations. Comparisons among different models 
should be a dependable tactic for the purpose of testifying the 
effectiveness of the proposed models. 

Hromadka and Yen (1986) used diffusion hydrodynamic 
model to deal with dam-break and other problems. Based on 
their study, the diffusive wave model can accurately approxi-
mate complete 1D SVEs for one-dimensional dam-break 
problem. The difference in predicted water depths are within 
3% when compared with the U.S.G.S fully dynamic K-634 
dam-break model. But for the 2D diffusive wave model, 
Xanthopoulos and Koutitas (1976) conceptually verified it by 
considering evolution of inundated area, which propagates 
radially from dam-break site. Hromadka and Yen (1986) con-
cluded that the 2D DHM might be justifiable based on small 
differences in predicted flooding depths of 1D dam-break 
simulation. 
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De Roo et al. (2000) used an explicit finite difference 
scheme based on 2D Kinematic wave model to simulate flood 
inundations occurred in January 1995 on the floodplain of the 
Rive Meuse between the gauging stations at Borgharen in the 
Netherlands and Maaseik in Belgium. The air photo and 
Synthetic Aperture Rada (SAR) data are available for the 
flood inundation in 1995. Compared with these observed 
photo data, their results of simulation shown an 85.5% agree-
ment. 

As noted above, the proposed 2D diffusive wave model 
discretized by the implicit TFDM scheme in this study can 
approximate the complete 2D SVEs with reliable accuracy, 
which demonstrates that the discrepancies of extents, and 
water depths simulated by these two different models are 3% 
and 6.4%, respectively. 2D diffusive wave model can upgrade 
the accuracy of simulation by approximately 10% from the 
2D kinematic wave model, used by De Roo et al. (2000). 
 
5.2.2. Ratios of Three Inertia Terms in the Whole Momentum 
Equations 

The simulated results have illustrated the effectiveness of 
the proposed 2D diffusive wave model and its numerical 
scheme for the inundation simulation. How much the quantity 
of the three inertia terms on the left-hand sides of the equa-
tions (2) and (3) accounts for in the total five terms of 
momentum equations are not yet clear. Few papers have ever 
investigated into this subject. For this purpose, we tried in this 

study to ascertain it by assuming that the results obtained by 
the 2D SLES scheme for 2D SVEs are correct. Because 
inundation flow direction from the break-inlet, either in x- or 
y-directions, must be assigned in advance for this numerical 
scheme, minus x-direction is determined as the needed direc-
tion based on the direction of water flow in the Fuefuki River 
channel. Therefore, the inertia terms in x- and y-directions can 
be computed separately. The statistical ratios of the three 
terms in the total five terms of the momentum equations can 
be obtained in the simulation processes. The ratio changes of 
the three inertia terms with the time change are depicted in 
Figure 11. 

As shown in Figure 11, the ratios of the three inertia 
terms in x-direction, which is the inflow direction of 
inundation flow from the F110 break inlet, are relatively 
large and mainly exist before and around the flood peak of 
the inflow. For example, more than 15% of inertia ratios 
appear before 4.5 hours of inundation, during which the 
discharges of incoming flood flow are over 1,000 m3/s. The 
maximum ratio 24.08% appeared at 2 hours of inundation, 
where change of discharge is substantial as shown in Fig-
ure 7(b). This situation is analogous to 1D dam-break 
problems, in which Hromadka and Yen (1986) concluded 
that 1D diffusive wave model could approximate the 1D SVE 
with 97% accuracy in the predication of water depths. How-
ever, in the other direction, the y-direction, it is generally 
smaller than 1.0% and completely negligible. The maxi-
mum inertia ratio is only 1.5%. Their statistical values in 
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both directions are summarized in Table 2. The averaged 
magnitudes of these ratios in x- and y-directions are 12.5% 
and 0.85 %, respectively. This indicates that the inertia 
terms in the 2D SVEs are not significant and can be ne-
glected. 

 
Table 2. Ratios of Inertia Terms in the Momentum Equations 

Ratios in X-direction Ratios in Y-direction Dike-break 
direction Max. Min. Ave. Max. Min. Ave. 

X 0.2408 0.0106 0.1247 0.0147 0.0028 0.0085

 

6. Concluding Remarks 

In this study, a diffusive wave model was proposed for 
flood inundation simulation due to dike-break. Considering 
disadvantages of the uniform rectangular grid system used 
in the finite difference schemes, a TFDM numerical algo-
rithm based on irregular triangle meshes is developed in 
this study, integrating complex land uses, topography, and 
irregular geometries of inner and outer boundary condi-
tions into the simulation of flood inundation. A case study 
was carried out in the Fuefuki River basin in central Japan. 
In order to testify the effectiveness of the proposed diffu-
sive model and its numerical scheme, the complete 2D 
SVEs with an accurate numerical algorithm of 2D SLES 
developed by IWSA (1980), was used for comparison in 
the case study. Results indicate that the discrepancies of 
simulated inundation areas and water depths between the 
two methods are 3.0% and 6.4%, respectively. In addition, 
an analysis on the inertia terms in the momentum equations 
was also performed in this study. In x-direction of the as-
sumed dike-break direction, the inertia terms account for 
an average of 12.5% of the total five terms of the momen-
tum equations, while in the y-direction, the inertia terms 
are insignificant with only 0.85%. Although the inertia 
terms account for relatively bigger proportions in the 
whole momentum equations, their effects finally contribute 
to spatial distribution of inundated water depths and ex-
tents of inundation. The actual effects should be evaluated 
based on simulation results of inundated areas and 
distribution of water depths. Furthermore, the 2D diffusive 
wave model can improve the accuracy of 2D kinematic wave 
model by approximately 10%, based on the result of De Roo 
et al. (2000). 

The implicit TFDM numerical scheme of the 2D diffu-
sive wave model is a simple and relatively accurate scheme 
with its unique features. Irregular triangle meshes allow 
geometrical influences of boundaries and artificial struc-
tures within a floodplain to be integrated into simula- tion 
process. The implicit numerical scheme permits time-step 
to be reasonably enlarged without experiencing the puz-
zling situation of instability if there is a need for longer 
time simulation. As well, this model solves the integral 

form of the governing 2D diffusive wave equation in each 
computational cell. Thus, mass and momentum can be con-
served much well than in those models based on the FEM. 
It is suggested that the diffusive wave model and its implicit 
TFDM numerical scheme developed in this study are an 
effective and reliable approach to assessing flood inunda-
tion due to dike break. 
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