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ABSTRACT.  Spatial distribution of greenhouse gases (GHGs) concentration in the atmosphere is important in determining the 
atmosphere’s radioactive absorbtion and global warming. Reducing uncertainties in understanding the spatial distribution of GHGs 
concentration in the atmosphere have particular meaning in climate modeling and projection of future climate scenarios. In this study, 
the vertical distribution of GHGs concentration in the atmosphere is deduced and the relevant uncertainty is analyzed by a fuzzy set 
method. This method was applied in a case study to examine the vertical distribution of CO2 concentration in the atmosphere. Results 
indicate that uncertainties in projection of GHGs emissions and global surface temperature have played important roles on vertical 
distribution of CO2 concentration in the atmosphere. This has particular meaning for study of relation between CO2 distribution and 
global warming. 
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1. Introduction  

The IPCC Third Report suggested that human activities 
have been the dominant detectable influence on climate 
change in the past century through buildup of GHGs in the 
atmosphere, (Houghton et al., 2001). Research showed that 
distributions of GHGs concentration in atmosphere had great 
influences on global climate system (Murphy & Michell, 1995; 
Hu & Bengtsson, 2000; Makar’eva & Goshkov, 2001). In 
general circulation models (GCMs), spatial distribution of 
GHGs is the key input in modeling process, and they are al-
ways measured with monitored networks. For example, ato- 
mospheric CO2 monitoring network has been widely used to 
infer the latitudinal location and strength of CO2 sources and 
sinks (Keeling et al., 1989; Tans et al., 1990; Ciais et al., 
1995). Since future distribution of GHGs concentration in the 
atmosphere cannot be measured, research approaches to pro-
ject such distribution are regulated in climate change studies. 

Previous studies indicate that inherent uncertainties in 
climate system can reduce GCMs’ accuracy in future climate 
scenarios development (Shackley et al., 1998). One of the 
important uncertain factors affecting such distribution is pro-
jected anthropogenic GHGs emissions, which have major 
contributions to the GHGs concentration in the atmosphere. In 
addition, the increased global air temperature driven by hu-
man-induced GHGs emissions can also affect the spatial 
distribution of GHGs concentration in the atmosphere. Such 
dynamic interactions between GHGs concentration and tran-
sient global air temperature can further complicate the climate 
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modeling efforts. Moreover, the relations between spatial 
distribution of GHGs concentration, projected emissions, and 
global air temperature are always nonlinear instead of linear. 
In this respect, how to measure the degree of uncertainty 
generated from changes in global air temperature and GHGs 
emissions is critical in climate change modeling. 

The fuzzy set theory, firstly introduced by Zadeh (1965), 
is a powerful tool for uncertainty analysis, which has been 
successfully applied in risk assessment, environmental model-
ing, and engineering systems (Bogardi et al., 1987; Bardossy 
& Disse, 1993; Klir, 1997; Sasikumar & Mujumdar, 1998; 
Chen et al., 2003). The fuzzy set approach has advantage in 
describing the uncertainties with a non-probabilistic frame-
work. It also can handle the uncertainties in a direct way with-
out requiring a large number of realizations, as well as deal 
with the membership or non-membership of an object in a set 
with imprecise boundaries. By constructing different member-
ship functions, the fuzzy set theory can quantify linear and 
nonlinear relations between uncertain system inputs and out-
puts. 

This study attempts to deduce the spatial distribution of 
GHGs concentration in the atmosphere based on kinetics the-
ory, and to analyze the relevant uncertainty by fuzzy set the-
ory. The Boltzamann distribution, which is widely used in 
statistical physics to describe dynamics in ideal gas movement, 
is used in this study to deduce the vertical distribution of 
GHGs concentration in the atmosphere. The vertex and 
Weibull distribution are applied to construct membership 
functions in the fuzzy set approach. In this paper, the distribu-
tion of GHGs concentration in the atmosphere is discussed in 
Section 2. The uncertainty analysis is described in Section 3. 
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Section 4 presents a hypothetical case study to test the pro-
posed methodology in applying the distribution of CO2 con- 
centration in the atmosphere. Results are discussed in Section 
5, and then followed Sections 6 as conclusion. 

2. Distribution of GHGs Concentration           
in Atmosphere 

In perfect gases, it can be assumed that a distribution of 
molecules can be approached, which represents that an equi- 
librium state after complete random motion has set in and the 
velocities have reached their permanent regime. The mathe-
matical formula to represent this phenomenon was deduced 
by Boltzmann and Maxwell (Loed, 1971). Assuming that the 
air molecules are rigid elastic spheres, number of air mole- 
cules within volume dxdydz can be expressed as follow (Loed, 
1971). 

 
22 2
yx zpp p+ + + 1- (  +  +  + Φ)- α kT 2m 2m 2m

x y z
- - -

dN = e e dxdydzdp dp dp
∞ ∞ ∞

∞ ∞ ∞
∫ ∫ ∫       (1) 

 
where dN  is the total number of molecules within volume 
dxdydz; e α− is a probability constant on condition of the ini-
tial condition of air; k is the Boltzamann constant (k = 
1.3806503 ×10-23 m2 kg s-2 K-1); T is the absolute temperature 
of air; xp , yp  and zp  represent momentum of air mole-
cule in x-, y-, z- axis direction, respectively; m is average mass 
of air molecule within volume dxdydz; Φ is the potential of air 
molecule, which is a function of height z. Integrating formula 
(1), the total number of air molecules within volume V is: 
 

22 2
yx zpp p+ + + 1- (  +  +  + Φ)-α kT 2m 2m 2m

x y z
V - - -

N = e e dxdydzdp dp dp
∞ ∞ ∞

∞ ∞ ∞
∫∫∫ ∫ ∫ ∫       (2) 

 
Since changes in kinetic and potential of air molecules 

are continuous according to the change of elevation, it can be 
assumed that ( , , )n x y z dxdydz  represents the total number of 
air molecules with different velocities distributed in the 
coordinate space from x to x+dx, y to y+dy, and z to z+dz. 
Thus, the total number of air molecules in this volume can be 
expressed as follow: 

 

V

N = n (x, y, z)dxdydz∫∫∫                           (3) 

 
Compared formula (2) with (3), we can get: 
 

22 2
yx zpp p+ + + 1 Φ- (  +  +  + Φ) --α kT 2m 2m 2m kT
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- - -

n (x, y, z)=e e dp dp dp = n e
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where 3/ 2(2 )n e mkTα π−= ⋅o , which represents the number of 

air molecules in unit volume when potential is zero. Since the 
molecule number density of air can be expressed as nmρ = , 
the vertical distribution of air density can be expressed as: 
 

Φ-
kT

oρ = ρ e                                    (5) 

 
where ρo  represents air density where potential Φ is zero 
(ground level). 

As compounds of the atmosphere, percentages of GHGs 
are lower compared to percentages of two major air com-
pounds, oxygen and nitrogen. Since the molecule weights of 
GHGs are different from oxygen and nitrogen, the vertical 
distribution of one particular greenhouse gas’s concentration 
is actually different from the vertical distribution of air. How-
ever, it is reasonable to assume that their distributions are 
similar in some cases. Then, the vertical concentration distri- 
bution for that particular greenhouse gas in atmosphere can be 
expressed as: 

 
m(g)ghΦ- -

kT kT
h o oC = C e = C e                           (6) 

 
where C is the concentration of that particular greenhouse gas 
at height h; C0 represents its concentration when its potential 
is zero (ground level); m(g) is the molecule mass of that 
particular greenhouse gas; g is gravity constant; h is height 
above ground level. 

According to formula (6), it shows that the vertical 
concentration distribution of that greenhouse gas is also a 
function of air temperature T. Studies show that the variability 
of surface air temperature proves to be very important for 
detecting anthropogenic climate change (Santer et al., 1995). 
In the troposphere, it can be assumed that air condition is 
obeyed to adiabatic condition. We then have the Lapse rate 
formula as follow (Wark, 1990). 

 

o
p

gm(a)hT = T -
C

                                   (7) 

 
where T0 is the surface air temperature; m(a) is the molecule 
mass of air per mole (29 × 10-3 kg); Cp is the heat capacity of 
the air at constant pressure, which is equal to 3.5R (R = 8.31 
m2 kg s-2 K-1). Then, formula (6) can be transformed into the 
following expression: 
 

o p

m(g)gh-
k(T -gm(a)h/C )

h oC = C e                                (8) 

 
This is the vertical concentration distribution for a particular 
greenhouse gas in atmosphere. This distribution is related to 
not only its concentration at ground level, but also vertical 
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distribution of air temperature. 

3. Uncertainty Analysis 

Fuzzy set theory has been successfully applied in uncer-
tainty analysis during the past decades (Dou et al., 1997; 
Freissinet et al., 1999; Li et al., 2003; Chen et al., 2003). Con-
trary to the classical set theory that describes each element 
either belongs to or does not belong to a set, a fuzzy set is 
characterized by a membership function, which represents 
numerically the degree to which an element belongs. 

The construction of membership functions is still a debat-
able issue in the fuzzy set theory (Kandel, 1986). There are 
only a few methods published in the fuzzy literatures to deal 
with construction of membership functions (Kandel, 1986; 
Turksen, 1991; Harris, 2000). The two major methods for de- 
riving membership functions are the normative and the em- 
pirical approaches as reported by Turksen (1986). Two co- 
mm.only used membership function for characterizing fuzzy 
numbers are triangular functions (linear) and bounded bell- 
shape (nonlinear) function. Both of these methods will be us- 
ed in this study to analyze the uncertainty in distribution of 
GHGs concentration in atmosphere. 

According to formula (8), those two inputs, the projected 
GHGs concentration in ground level and surface air tempera-
ture, are uncertain in future. Though it is hard to project their 
deterministic values, their maximum, minimum, and mean 
values can be estimated. Thus, the upper and lower threshold 
values of surface concentration and temperature can be pro-
jected within a period of time in the future. Considering the 
relation between GHG emissions and its concentration at 
ground level is monotone, we can assume that the member-
ship function used to represent uncertainty in surface GHGs 
concentration is linear. Thus, the vertex method can be used 
here to construct the membership function. According to 
Dong et al. (1985), the membership function can be expressed 
as follow: 
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         (9) 

 
where ( )A Cµ  is the fuzzy set value of concentration for one 
particular greenhouse gas at ground level, which is from 0 to 
1; Co  is the mean value of the GHG’s concentration at 
ground level; C−

o  and C+
o  represents lower and upper val-

ues of concentration at ground level, respectively. 

Because of the dynamic linkage between air temperature 
and GHGs emissions, prediction of future air temperature is 
more challenge. Then, the membership function used to ex-
press fuzziness in air temperature is far from linear and should 
be represented as nonlinear. Recent studies show that the 
Weibull distribution is a good method to quantify nonlinearity 
in fuzzy set approach (Butkiewicz, 1996; Harris, 2001). This 
distribution will be used here to construct the membership 
function to identify the uncertainty in surface air temperature 
change. The membership function can be expressed as: 
 

2
o

2

o

-(T -j)2 2
o 2σ

A o o2

o

0, T < j - b

b - (T - j)µ (T )= e , j - b T j + b
b

0, T > j + b

⎧
⎪
⎪

⋅ ≤ ≤⎨
⎪
⎪
⎩

      (10) 

 
where ( )A Tµ o  is the fuzzy set value for future surface air 
temperature with values from 0 to 1; T0 is the value of future 
surface air temperature; ϕ is the mean value of surface air 
temperature; σ is the standard deviation of this distribution; b 
is the interval parameter in this distribution. 

4. Case Study 

4.1. Overview of the Study System 
The following hypothetical case about vertical distribu-

tion of CO2 concentration was conducted to test the above 
introduced methodology. Carbon dioxide is one of the primary 
greenhouse gases. According to different projected scenarios 
of future GHGs emissions, it is estimate that the average 
global surface CO2 concentration by year 2100 will be 
30-150% higher than today’s levels in the absence of emis-
sions control policies (Houghton et al., 2001). In such cir- 
cumstances, the average global surface concentration of CO2 
in year 2100 will be at levels ranging from 468ppm to 
900ppm. By 2100, further increases of greenhouse gases in 
the atmosphere are expected to increase the global average 
surface temperature by about 1.4-5.8°C, with significant re-
gional variation (Houghton et al., 2001). In this study, we as-
sume that the average surface temperature is around 30°C 
near equator currently and it will increase 2-6°C in year 2100. 
The problem under consideration is to analyze the uncertainty 
of vertical distribution of CO2 concentration in the atmosphere 
near equator. Table 1 lists current values of surface CO2 con- 
centration and average surface air temperature are listed. 
Without loss of generality, this study will only analyze CO2 
concentration at height of 0.5 km, 5 km, and 10 km. 

 
4.2. Results and Discussions 

According to formula (9) and (10), the µ-cut values for 
the CO2 concentration at ground level and surface air 
temperature are illustrated in Figure 1 and 2, respectively. By 
taking each end point from the interval values of parameter 
C±
o and T ±

o , the end points can be combined into a nary array 
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for each µ-cut value. Using formula (7) and (8), a nary array 
of finale interval values of CO2 concentration for each µ-cut 
value can be calculated, which is illustrated in Figure 3. Here, 
Figure 3 only illustrates such values when µ-cut value is equal 
to 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. The results show 
that nearly 98% of CO2 is concentrated in the space within 
10km above ground. It means that the increased CO2 is main- 
ly concentrated in the low troposphere. Solutions also indicate 
that the imprecision depicted in the output is directly related 
to the level of credibility, or degree of confidence, as deter- 
mined by the µ values, as well as estimation of input para- 
meters and the number of the parameters. If one wishes to 
interpret the results with a “higher degree of confidence”, then 
one may select a µ at values greater than zero. 

 
 

450 550 650 750 850
0 

0.1 

0.3 

0.5 

0.7 

0.2 

0.4 

0.6 

0.8 
0.9 

1 
1.1 

C (ppm) 

u 

Figure 1. µ-cut values for surface CO2 concentration near 
equator by year 2100. 
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Figure 2. µ-cut values for surface air temperature near 
equator by year 2100. 

 

Sensitivity analysis can also be done here to measure 
which input the vertical CO2 distribution is more sensitivity to. 
This can be approached by getting partial differential values 
of 0/C C∂ ∂  and 0/C T∂ ∂  in each position. Assuming that the 
surface air temperature and CO2 concentration are determi- 
nistic by given their mean values, CO2 concentration in each 

position can be worked out as listed in Table 2. Results show 
that the vertical distribution of CO2 concentration is more sen- 
sitive to surface temperature. 

 
Table 1. Future CO2 Concentration (ppm) and Air 
Temperature (K) at Ground Level 

Boundary 
value of CO2 
concentration 
C±
o

 

Average  
value of CO2 
concentration 
C  

Air temper- 
ature at ground 
level T ±

o
 ϕ σ b

[468, 900] 684 [305.2, 309.2] 307.2 1 2

 
Table 2. Sensitivity Analysis of CO2 Concentration and Air 
Temperature 

T0 = 307.2 (K) h = 0 h = 0.5 km h = 5 km h = 10 km 

Ch (ppm) 684 408.06 1.62 2.29E-04 

0/ CCh ∂∂  1 0.597 0.00237 3.35E-07 

0/ TCh ∂∂  1 0.697 0.03799 1.64E-05 

 

The results indicate that the initial inexact inputs have 
great impacts on vertical distribution of CO2 concentration in 
atmosphere. This can eventually affect the precision of cli-
mate modeling. However, the surface CO2 concentration has 
huge variations in different locations on the earth. Such varia-
tions should be considered when applying the proposed 
method in climate modeling process. In addition, since the 
molecule weight of CO2 is larger than N2 and O2, the vertical 
distribution of CO2 concentration in atmosphere actually is 
different from the vertical distribution of air density. This 
implies that the assumption of same distribution between 
vertical CO2 concentration and vertical air density is not rea- 
listic. Thus, the vertical distribution of CO2 concentration in 
atmosphere should be revised in further studies. However, the 
proposed method for analyzing uncertainty in distribution of 
GHGs concentration is a promising one for quantifying un- 
certainties in climate modeling. By adding a degree of confi-
dence on the results (a certain µ values), it can provide more 
meaningful modeling results. 

5. Conclusions 

This paper presents a study in explaining the vertical dis- 
tribution of GHGs concentration in the atmosphere and the 
relevant uncertainty. The developed method was applied in a 
case study. Two parameters, the average surface CO2 concen- 
tration and surface air temperature near equator in year 2100, 
were used as inexact inputs in uncertainty analysis. The tri- 
angular function and Weibull distribution were applied to 
construct the membership functions for treating such inexact 
inputs. It indicates that the method based on fuzzy set theory 
is effective for uncertainty analysis. Results of the case study 
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indicate that projection of GHGs emissions has significant 
influence on spatial distribution of GHGs in the atmosphere 
and eventually affects the precision of climate modeling re-
sults. 
 
 

References 

Bardossy, A. and Disse, M. (1993). Fuzzy rule-based models for 
infiltration. Water Resour. Res., 29(2), 373-382. 

Bogardi, I., Duckstein, L. and Bardossy, A. (1987). Uncertainty in 
environmental risk analysis, in Y.Y. Haimes and E.Z. Stakhiv 
(Eds.), Risk Analysis and Management of Natural and Man- 
made Hazards, ASCE, New York, 154-170. 

Butkiewicz, B.S. (1996). Fuzzy Weibull distribution, its definition 
and application to reliability prediction. Circuit Theory Electron. 
Circuits, 1, 183-188. 

Chen, Z., Huang, G.H. and Chakma, A. (2003). FUSRA: A Hybrid 
Fuzzy-Stochastic Approach for Assessing Health Risks from 
Contaminated Groundwater Systems. J. Environ. Eng. (Ameri-
can Society of Civil Engineers), 129, 79-88. 

Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, 
J.A., Randall, D.R., Sellers, P.J., Collatz, J.G. and Schimel, D.S. 
(1995). Partitioning of ocean and land uptake of CO2 as infeered 
by δ13C measurements from the NOAA/CMDL global air sam-
pling networks. J. Geophys. Res., 100, 5051-5070. 

Dong, W.M., Shah, H.C. and Wong, F.S. (1985). Fuzzy computations 
in risk and decision analysis. Civil Eng. Syst., 2, 201-208. 

Dou, C., Woldt, W., Bogardi, I. and Dahab, M. (1997). Numerical 
solute transport simulation using fuzzy sets approach. J. Contam. 
Hydrol., 27, 107-126. 

Freissinet, C., Vauclin, M. and Erlich, M. (1999). Comparison of 
first-order analysis and fuzzy set approach for the evaluation of 
imprecision in a pesticide groundwater pollution screening 
model. J. Contam. Hydrol., 37, 21-43. 

Harris, J. (2000). An Introduction to Fuzzy Logic Application, Kluwer 
Academic Publishers, Dordrecht, Holland. 

Harris, J. (2001). Piecewise linear reliability data analysis with fuzzy 
sets, in Proc. of the I MECH E Part C J. Mech. Eng. Sci., 
1075-1082. 

Houghton, J.T. et al. (2001). Climate Change 2001: The Scientific 
Basis (Cambridge Univ. Press, Cambridge, 2001). http:// www. 
ipcc.ch/ (accessed May, 2004). 

Hu, Z.Z. and Bengtsson, L. (2004). Stratospheric response to global 
warming in the Northern Hemisphere winter. Tellus A, 56(2). 

Kandel, Abraham (1986). Fuzzy Mathematical Techniques with App- 
lications / Abraham Kandel, Mass., Addison-Wesley.  

Keeling, C.D., Piper, S.C. and Heimann, M. (1989). A three dimen-
sional transport model for atmospheric CO2 (4): Mean annual 
gradients and inter-annual variations, AGU Monograph 55, Wa- 
shington, American Geographical Union, 305-362. 

Klir, G.J. (1997). The role of constrained fuzzy arithmetic in engi- 
neering, in B.M. Ayyub and M.M. Gupta (Editors), Uncertainty 
Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, 
and Neural Network Approach, Kluwer Academic Publishers, 
Norwell, MA, 1-19. 

Li, J.B., Chakma, A., Zeng, G.M. and Liu, L. (2003). Integrated 
fuzzy-stochastic modeling of petroleum contamination in sub- 
surface. Energy Sour., 25(6), 547-563. 

Loed, L.B. (1971). The Kinetic Theory of Gases, Dover publications, 
INC, New York. 

Makar’eva, A.M. and Goshkov, V.G. (2001). The greenhouse effect 
and the stability of the global mean surface temperature. Dok-
lady Earth Sci., 377(2), 210-214, translated from Doklady 
Akademii Nauk, 376(6), 810-814. 

Murphy, J.M. and Mitchell, J.F.B. (1995). Transient response of Had-
ley Centre coupled ocean-atmosphere model to increasing car-
bon dioxide, Par II: spatial and temporal structure of response. J. 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 

0 0.5 5 10
Height (km)

C
 (p

pm
)

Lower value when fuzzy cut value is 0
Upper value when fuzzy cut value is 0
Lower value when fuzzy cut value is 0.2
Upper value when fuzzy cut value is 0.2
Lower value when fuzzy cut value is 0.4
Upper value when fuzzy cut value is 0.4
Lower value when fuzzy cut value is 0.6
Upper value when fuzzy cut value is o.6
Lower value when fuzzy cut value is 0.8
Upper value when fuzzy cut value is 0.8
Values when fuzzy cut value is 1

Figure 3. Final interval values of CO2 concentration in different height. 



B. Luo et al. / Journal of Environmental Informatics 3 (2) 89-94 (2004)  

 

 94

Clim., 8, 57-80. 
Santer, B.D., Taylor, K.E., Penner, J.E., Wigley, T.M.L., Cubasch, U. 

and Jones, P.D. (1995). Towards the detection and attribution of 
an anthropogenic effect on climate. Clim. Dyn., 12, 77-100. 

Sasikumar, K. and Mujumdar, P.P. (1998). Fuzzy optimization model 
for water quality management of a river system. J. Water Resour. 
Plann. Manage., 124(2), 79-88. 

Shackley, S., Young, P., Parkison, S. and Wynne, B. (1998). Uncer-
tainty, complexity and concepts of good science in climate 
change modeling: are GCMs the best tools?, Clim. Change, 38, 

159-205. 
Tans, P.P., Fung, I.Y. and Takahashi, T. (1990). Observational con-

straints on the global atmospheric CO2 budget. Sci., 247, 
1431-1438. 

Turksen, I.B. (1991). Measurement of membership functions and 
their acquisition. Fuzzy Sets Syst., 40(1), 5-34. 

Wark, Kenneth and Warner, C.F. (1990). Air Pollution–Its Origin and 
Control, second edition, New York, NY, Harper Collins publish-
ers. 

Zadeh, L.A. (1965). Fuzzy sets, Inf. Control, 8, 338-353.
 


