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ABSTRACT.  While application of probabilistic inference modeling to large and complex datasets has been limited both as a result 
of computational difficulties, and implicit/explicit assumptions of normality and lognormality, an alternative is developed herein, based 
on advancements in graphical modeling using decomposable Markov networks (DMNs). Uncertainties in estimates for censored and/or 
missing data, are reduced by quantifying dependencies among quality attributes using DMNs. The dependence structure is modeled by 
a DMN, and established using training data. The improvement from learning DMNs employing the training data is demonstrated using 
water quality information from water distribution systems. The approach provides a general alternative to traditional techniques for 
estimating values for censored data. 
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1. Introduction 

As utilized herein, the term ‘censored’ data includes both 
‘less than’ or below detection data, and data for a particular 
constituent which are missing or considered suspect in magni-
tude. Below detection data arise as a result of the technologi-
cal limits of laboratory instrumentation. Missing, or poten-
tially incorrect data, arise as a result of the failure to collect 
and/or analyze for a particular constituent at a specific time or, 
possibly the assignment of an incorrect magnitude through an 
action such as transposition of digits; the result is a ‘gap’ in 
the data record. Regardless, the ability to infill or reliably 
estimate the value of censored data represents an important 
dimension assisting subsequent analyses of water quality data. 

Examples of the need to develop estimates for censored 
data are numerous. Examples include responses to concerns 
with low concentration levels to allow characterization of 
upper tolerance limits. Further, allowable maximum con- 
centration limits (MCLs) for some chemicals are similar in 
magnitude to laboratory detection levels (e.g., perchlorates). 
As well, current trends are for new regulations to be promul-
gated which require water treatment facilities to regularly 
monitor water quality for a substantial array of constituents. 
This may require the estimation of the magnitude of missing 
data and/or demonstrate that a particular reported data value 
has been incorrectly recorded. 

The above demonstrates some of the rationale for proce-
dures which can estimate magnitudes of uncertain data. In 
response, a number of alternative procedures have been de-
scribed in the technical literature for creating such estimates. 
These include Monte Carlo simulation experiments (e.g., 
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Gleit, 1985; Gilliom and Helsel, 1986; Haas and Scheff, 
1990), plotting position procedures (e.g., McBean and Rovers, 
1984, 1998), regression methods (Newman et al., 1989), the 
expectation maximization (EM) algorithm (Dempster et al., 
1977), and Cohen’s test (Cohen, 1961, 1991). Many of the 
estimation procedures are based on implicit/explicit assump-
tions that the underlying distributions for the data are either 
normal or lognormal. An alternative to the preceding exam-
ples which does not require assumptions of normality or 
lognormality, is based on probabilistic graphical models. 

Specifically, Markov network theory and data mining 
with the joint probability distribution (JPD) are used here to 
estimate values for the censored data. The entire set of vari-
ables, directly monitored and other relevant data if available, 
and the probabilistic correlations among them, can be incur- 
porated into the analyses allowing very comprehensive base 
information for the estimation of censored data. 

2. Background to Network Theory 

A probability network encodes, in a concise manner, a 
probability distribution over a set of domain variables using a 
graphical representation. The network structure can be repre-
sented by a directed graph, such as in a Bayesian network, or 
an undirected graph, such as in a decomposable Markov net-
work (DMN). Each node in the graph corresponds to a vari-
able, and each link signifies probabilistic dependence or 
correlation between the corresponding variables. Graphical 
separation between two groups of variables represents their 
conditional independence. 

First, graph-theoretic concepts are defined. A set of nodes 
is complete in a graph if they are pairwise connected. For G1 
in Figure 1, the set of nodes {c, e, f} is complete, and so is the 
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set {b, d}. However, the set {a, b, c} is not complete since b 
and c are not connected. A (maximum) set of nodes which are 
pairwise-linked (complete) is called a clique. G1 in Figure 1, 
contains five cliques {a, b}, {b, d}, {a, c}, {c, d}, and {c, e, f}. 
The set {c, e} is not a clique because {c, e, f} is complete. 

A path in a graph is a sequence of nodes such that there 
is a link in the graph between each pair of adjacent nodes in 
the sequence. A cycle is a path where the first node is identical 
to the last node. A path in an undirected graph has a chord if 
there is a link between two nonadjacent nodes on the path. For 
example, the path (a, b, d, c, a) of length 4 in G2 has a chord 
{b, c}. A graph is chordal if every cycle of length > 3 has a 
chord. Graph G1 is not chordal because the path (a, b, d, c, a) 
of length 4 has no chord. If we add the chord (b, c) to G1, it 
becomes G2 which is a chordal graph. 

Let G be a connected chordal graph. A junction tree (JT) 
can be derived from the chordal graph, G, where JT is a tree 
whose nodes are labeled by cliques of G. The tree is organized 
such that for each pair of cliques in the tree, their intersection 
is contained in every clique on the path between them. In a 
junction tree, each link is labeled by the intersection of the 
two cliques being connected, and is called a separator. A con-
nected graph G has a JT if and only if (iff) G is chordal. 
Graph G2 has 3 cliques. They are organized into a tree in 
Graph T, where each clique is shown as a large oval. Each 
separator is shown as a box. The tree is a JT because, for 
example, the intersection of clique {c, e, f} and clique {a, b, c} 
is {c} which is contained in the clique {b, c, d} between them. 

Consider three subsets U, V, and Z of nodes in a graph. 
We use <U|Z|V> to denote that every path between a node in 
U and a node in V contains a node in Z. That is, Z separates U 
from V. The key which indicates the value of the network 
approach, is that networks can be used to represent probabilis-
tic information very concisely because they encode probabi- 
listic conditional independence/dependence through graphical 
separation. 

If N is a set of discrete variables in a problem domain, 
and V  N, a configuration v of V is an assignment of values 
to every variable in V. A probabilistic domain model (PDM) 

over N is an encoding of probabilistic information that defines 
the probability of every configuration of V for every V  N. A 
PDM over N can be specified by a joint probability distribu-
tion (JPD) over N denoted by P(N). The marginal distribution 
over V  N is denoted by P(V). If U, V, Z  N are disjoint 
subsets, U and V are conditionally independent given Z, and 
denoted as Ind(U, Z, V) iff P(u | v, z) = P(u | z) whenever P(v, 
z) > 0. 

Graphs may be used to encode probabilistic conditional 
independence. A graph G is an independence map of PDM 
over N if there is a one-to-one correspondence between nodes 
of G, and variables in N, such that for all disjoint subsets U, V, 
and Z of N <U|Z|V> => Ind(U, Z, V). That is, in an independ-
ence map, variables that are graphically separated (i.e. no link) 
are conditionally independent. 

A DMN of a domain has a chordal graph structure that is 
an independence map. As reviewed above, cliques of a chor-
dal graph can be organized into a JT. The JPD of the domain 
is specified through the DMN as follows: Each clique is 
associated with a probability distribution over its member 
variables, and so is each separator. The JPD is the product of 
clique distributions divided by the product of separator 
distributions. 

In a problem domain, some variables are observable, 
while others are not. Using a DMN, posterior probability 
distributions of unobservable variables may be computed 
given observed values of other variables. Such reasoning al-
lows the values of hypothesis variables to be estimated from 
values of observable variables, based on their probabilistic 
dependence encoded in the DMN. 

Values of observable variables are entered into the DMN 
at the cliques that contain these variables. Distributions of the 
corresponding cliques are then updated. Distributions of 
separators connected to these cliques are updated subse-
quently. The updates are then propagated to the remaining 
cliques and separators of the DMN. When the propagation 
terminates, the posterior probability of each hypothesis vari-
able can be computed from the distribution at the clique that 
contains it. 

 

 

 

 

 

 

  

 

 

 

Figure 1. G1: a non-chordal graph; G2: a chordal graph; T: a junction tree. 
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To illustrate probability updating in DMN, consider the 
following simple example: DMN of two cliques Q = {c, h} 
and R = {t, c} with the separator S = {c}. Each variable has 
the binary space {0, 1}. The graphical structure of the DMN 
encodes that h and t are conditionally independent, given c. 
That is, P(h | c, t) = P(h | c), which implies that P(h, c, t) = P(c, 
h) × P(t, c) / P(c ). 

 

 

t, c c c, h 

P(c, h) P(t, c) 

Q S R 

 
Figure 2. DMN with two cliques. 

 

The following distributions are associated with Q (Table 
1.1) and R (Table 1.2). Note that from Table 1.1, P(h = 0) = 
P(h = 0, c = 0) + P(h = 0, c = 1) = 0.62 and P(h = 1) = 0.38. In 
what follows, the DMN graph structure is learned from data. 
Once the graph structure is obtained, the distributions associ-
ated with the cliques can be estimated from the data. 

 

Table 1.1. Prior Distribution of Q 

Prior of Q 

h c P(h, c) 

0 0 0.06 

0 1 0.56 

1 0 0.24 

1 1 0.14 

 

Table1.2. Prior Distribution of R 

Prior of R  

t c P(t, c) 

0 0 0.255 

0 1 0.035 

1 0 0.045 

1 1 0.665 

 

Suppose t is observed as t = 1. Message passing can be 
used to compute P(h | t = 1). First, t = 1 is entered into R. For 
each probability whose configuration is inconsistent with t = 1, 
the probability value is set to 0. This updates the above P(t, c) 
into P(t = 1, c) in Table 2.1 below. 

After normalization, we obtain P(t, c | t = 1) as shown in 
Table 2.2: We can compute P(c | t = 1) as P(c = 0 | t = 1) = 
0.063 and P(c = 1 | t = 1) = 0.937. It will be sent as a message 
over the separator/link S to Q. When Q received P(c | t = 1), it 
updates P(h, c) as P(h, c | t = 1) = P(h, c) × P(c | t = 1) / P(c). 

Table2.1. Updating by t=1 

Updating 

t c P(t = 1, c) 

0 0 0 

0 1 0 

1 0 0.045 

1 1 0.665 

 

Table 2.2. Posterior Distribution of R 

Posterior of R 

t c P(t, c | t = 1) 

0 0 0 

0 1 0 

1 0 0.063 

1 1 0.937 

 

Table 2.3. Posterior Distribution of Q 

Posterior of Q 

h c P(h, c | t = 1) 

0 0 0.06*0.063/0.3 = 0.0126 

0 1 0.56*0.937/0.7 = 0.7496 

1 0 0.24*0.063/0.3 = 0.0504 

1 1 0.14*0.937/0.7 = 0.1874 

 

In the right-hand side, P(h, c) is associated with Q, from 
which P(c) can be computed as P(c = 0) = 0.3 and P(c = 1) = 
0.7, and P(c | t = 1) is the message that Q received from R. 
The result is as follows, from which P(h | t = 1) can be ob-
tained as P(h = 0 | t = 1) = 0.762 and P(h = 1 | t = 1) = 0.238. 

In summary, a DMN decomposes a JPD into a set of lo-
cal distributions. The independence semantics specify how to 
combine these distributions into JPD. The result is that given 
n discrete variables (where continuous variables have been 
discretized) each into k possible values, the JPD requires kn 
probability values, which is intractable to specify, and to up-
date. A DMN allows a much more concise representation of 
the JPD. 

Consider a simple example. Agricultural fertilizers as 
well as treated wastewater contamination may cause excess 
nitrate. Childrens' sickness (methaemoglobinaemia) may oc-
cur due to excess nitrate. Assume treated wastewater is moni-
tored by sampling once every 3 months and the result is re-
corded in a public report. 

This simple domain problem has five variables, agricul-
tural fertilizers (A), treated wastewater contamination (C), 
excess nitrate (E), monitoring report (R), and sick children (S), 
each with a space of {true, false}. The JPD for this simple 
problem needs 25 = 32 probabilities. Figure 3 shows the chor-
dal graph of the DMN and the JT. We need only to specify 
P(A, C, E), P(C, R), and P(S, E) with 2 3 22 2 2 16    
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probabilities to obtain the JPD as P(A, C, E, S, R) = P(A, C, E) 
× P(C, R) × P(S, E) / [P(S) × P(C)]. Note that the number of 
probabilities of a DMN grows linearly as the number of 
cliques, and exponentially as the size of the largest clique. 
Therefore, as long as the largest clique in DMN is reasonably 
small, DMN modeling is practical. For instance, a clique of 20 
binary variables requires about 1 million probabilities to 
specify its distribution. It occupies 1 MByte memory during 
its manipulation. 

With a CPU that can perform 1 million floating point 
multiplication operations, it takes about one second to update. 
A DMN with about a dozen of such cliques is still practical. 
For most applications, the clique sizes are much smaller than 
20 variables. Furthermore, the resolution of discretization 
determines the base of each exponential (e.g., base 2 in the 
above term, 23). As the resolution is refined, the base in-
creases and the number of required probabilities increases. 
Hence, a tradeoff between the discretization resolution and 
efficiency in representation must be made in practice. For 
instance, if we use 1 million probability values per clique as a 
limit, then we can have a clique of 12 ternary variables plus 
one binary variable. If each variable has 4 possible values, 
then the clique must be no larger than 10 variables in order for 
the computation to be practical. 

 

 

A, C, E 

S, E C, R 

E 
C 

A C 

S 
R 

E 

 
Figure 3. Markov Network. 

3. Learning Markov Network From Data 

When a DMN model is developed, the qualitative struc-
ture of the domain (the graph which encodes the dependence 

and independence relations among variables) is specified, as 
well as the influences (the probability parameters) are quanti-
fied. Typically, the most difficult and time-consuming part of 
the task in building a DMN model is deriving the structure. 
Learning probabilistic networks from data provide an auto-
matic way to obtain such models. 

The common approach to developing the learning struc-
ture from data is to introduce a scoring metric and a search 
procedure. The search procedure generates alternative graphi-
cal structures that encode alternative sets of dependence and 
independence relations. The scoring metric evaluates each 
structure with respect to the training data and selects the best 
structure. Several learning algorithms have been proposed 
such as those by Cooper and Herskovits (1992), Heckman et 
al. (1995), and Lam and Bacchus (1994). 

Here we 'learn' a DMN from a database using a 
multi-link lookahead learning algorithm (after Xiang et al., 
1997). The algorithm selects alternative structures that mini-
mize the entropy of the corresponding DMN. The entropy of a 
set of variables X, given the probability distribution P(X), is 

 

( ) ( )log ( )
x

H X P x P x                            (1) 

 

where x is a configuration of X. The JPD of a DMN is 

 

( ) ( ) / ( )
C S

P N P C P S                           (2) 

 

where each C is a clique of the DMN and each S is a separator. 
The distributions P(C) and P(S) are directly estimated from 
the database. Given this JPD, the entropy of the DMN is 

 

( ) ( ) ( )
C S

H N H C H S                           (3) 

 

where H(C) is the entropy derived from P(C). H(N) is used as 
the scoring metric. The algorithm starts with an empty graph 
with all the nodes, but without links. The first level of search 
is a single-link lookahead. During this level, a single link is 
added to the empty graph and the score is computed. The 
DMN of a single link with the best score will be selected to be 
the current DMN, which terminates one pass in this level. In 
each subsequent pass, one additional link is added to the cur-
rent DMN which best improves the score. When no single 
link can improve the current score by a predefined threshold 
h, the current level of search terminates. The next level is the 
double-link lookahead, which adds two links to the current 
DMN at each pass. The entire search halts when a predeter-
mined number of levels are completed. With higher numbers 
of levels used, the computation becomes more expensive; the 
most effective number of levels to use depends on a tradeoff 
between the accuracy of learned model and the available 
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computational resource. 

In practice, the learning must be established using a finite 
database. Such a database may contain false correlations that 
do not exist in the underlying problem domain. They cause 
the generation of a third type of superfluous link, which are 
referred to as false links. The probability values associated 
with false links tend to encode noise contained in the database. 
The threshold h used in the algorithm control false links as 
well as redundant links. As the threshold increases, the algo-
rithm becomes less tolerant to false links and each link 
'learned' must correspond to a strong correlation in the data. 

4. Development and Application of         
Markov Network Theory to Water Quality 

Application of DMNs to water quality is divided into two 
stages in the following: a learning stage and an inference 
stage. In the learning stage, we discover a DMN model over a 
set of variables of interest from the training data. The ‘training 
data’, namely the data where every field (variable) has a 
definite value, is collected. The data for each variable are 
discretized with the resultant set of discrete variables known 
as the domain. The uncertain correlations between the vari- 
ables are 'learned' from the learning data and encoded by a 
DMN. As mentioned above, the DMN concisely specifies the 
JPD over the domain through its chordal graph and the local 
probability distribution associated with each clique. 

In the inference stage, the learned DMN is used to esti-
mate the value of unknown variables given the observed val-
ues of other variables. For a given case, the values of some 
variables are observed, while values of other variables may be 
unknown or censored, or uncertain. 

The task of the inference stage is to infer the uncertain 
values from the observed values of other variables, and the 
learned DMN. This is accomplished by entering the observed 
values into the corresponding cliques of the DMN. After prob-
abilistic reasoning in the DMN, the posterior probability 
distribution of each unknown variable can be retrieved from 
the DMN. Due to the concise representation of the JPD using 
DMN, the computation time grows linearly with the number 
of cliques, and exponentially with the size of the largest clique. 
Without using the learned DMN, such computations are 
exponential in relation to the total number of variables, and 

become intractable for a domain with a large number of vari-
ables. 

 

5. Experimental Findings 

5.1. Application Scenarios 

Consider the situation where, for purposes of model 
training, the uncertain data are ignored and the models are 
built using the known data. The resulting model is then used 
to extrapolate the model to develop estimates for the uncertain 
values. 

The case study dataset was derived from data collected 
by the Ontario Ministry of the Environment (MOE). Total 
haloacetic acids were selected as the target variable. Haloace-
tic acids (HAAs) are of concern for public health in drinking 
water. Haloacetic acids include many different compounds, 
such as monochloroacetic, dichloroacetic, trichloroacetic and 
trifluoroacetic acids. At high enough concentrations, they are 
poisonous to plants, and some are suspected carcinogens. 

Some sampling times, and sampling data for total halo- 
acetic acid were missing. There are also ‘less than’ values. 

 

5.2. Learning from Data 

Step (1). The following set of variables for DMN model 
training was selected: Chlorine (CHLO), Alkalinity (ALKA), 
pH (PH), Temperature (TEMP), Conductivity (CONDU), 
Trichloroacetic Acid (TCA), and Haloacetic Acids (HAAs). 
To establish the training data, any sampling rounds with cen-
sored data were removed, with those remaining then being the 
training dataset. The remaining data set of about 755 cases 
comprise the training data. The training data was discretized 
into the following intervals, as summarized in Table 3. 

The selection of variables to be included in the training 
data affects only the computation time but not the training 
result. For instance, a variable on whether a data record was 
collected on Monday or Wednesday may be contained in the 
raw data (before variable selection). The learning algorithm 
will be able to identify that it is independent of the other vari-
ables. However, by including such variables, extra computa-
tional time is involved. 

The second step of the application then involves applica-

Table 3. Discretized Intervals for Individual Variables 

CHLO ALKA PH TEMP TURB CONDU HAAS TCA 

0.28-0.87 10.00-42.00 6.00-7.06 0.00-3.00 0.01-0.04 64.10-147.00 1.00-10.50 0.10-2.65 

0.87-1.01 42.00-59.80 7.06-7.15 3.00-6.10 0.04-0.06 147.00-214.00 10.50-16.30 2.65-4.85 

1.01-1.20 59.80-76.00 7.15-7.35 6.10-10.00 0.06-0.09 214.00-286.00 16.30-28.60 4.85-11.90 

1.20-1.40 76.00-87.50 7.35-7.50 10.00-17.00 0.09-0.14 286.00-323.00 28.60-43.10 11.90-20.80 

1.40-1.69 87.50-116.00 7.50-7.73 17.00-22.00 0.14-0.32 323.00-358.00 43.10-59.10 20.80-30.50 

1.69-2.67 116.0-230.98 7.73-9.40 22.00-27.50 0.32-2.78 358.00-1120.00 59.10-198.00 30.50-109 
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tion of the learning tool in Webweaver III (after Xiang et al., 
1997) to extract the decomposable Markov networks from 
training data as summarized in Figure 4 (ignore the histo-
grams for the present). From the training model results, if two 
variables are correlated, there is a link between the nodes. For 
example, HAAs is correlated with the TCA. 

 

5.3. Value Inference 

Step (1). Run the Webweaver III inference software to 
compute the prior probability distribution for each variable 
using the learned DMN. The software accepts a DMN as the 
input. It then uses the probability distribution over each clique 
in the DMN to compute the prior probability for each variable 
contained in the clique. 

Step (2). There are censored data for HAAs. To estimate 
values for these censored data, all reported values for other 
parameters are entered, and the posterior distribution for 
HAAs given the values of other variables is obtained. The 
histograms in Figure 4 summarize the results. 

Step (3). Compute the probability distributions of target 
variables for each uncertain data record. HAAs are selected as 
a demonstrative example. From the histogram in Figure 4, we 
obtain the probabilities of each interval, P(x1) = 0.00; P(x2) = 
0.0956; P(x3) = 0.0498; P(x4) = 0.463; P(x5) = 0.273; P(x6) = 
0.118. The expected value of the estimate is obtained from 
(4): 

 

1

( )* '
n

i i
i

Expvalue P x x


                             (4) 

 
where 'ix  is the middle of the interval ix , and i is the index 
of the individual intervals. For example, the expected value 
for HAAs is 5.75 × 0.00 + 13.4 × 0.0956 + 22.45 × 0.0498 + 
35.85 × 0.463 + 51.1 × 0.273 + 128.55 × 0.118 = 48.14 μg/L. 

Step (4). To determine the effectiveness of the DMN 
estimation procedure, test experiments were undertaken. Forty 
individual monitoring rounds were randomly selected (“hid-
den”), and not included in the learning dataset. The learned 
model was then used to predict the “hidden” values of the 
target HAAs variable, given the other variables (e.g., chlorine, 
alkalinity, pH, temperature, etc.) The values of the other vari-
ables are entered into the DMN model and the posterior 
probability of the target variables is calculated. The value with 
the highest posterior probability is chosen as the estimated 
value. Note that due to the discretization, each value repre-
sents a real interval. The hidden value of the record is then 
compared with the estimated interval. Out of the 40 estima-
tions, in 34 of them (85%) the hidden value fell in the correct 
interval. In the remaining 6 estimations (15%), the hidden 
value fell in the interval next to the estimated interval and thus 
has the lowest possible error given the discretization. 

As illustrated in Figure 5, the hidden (real) values of 
HAAs are highly related to the predicted or learned values. 
This demonstrates that the DMN is very effective at estimat-
ing uncertain/censored values. 

6. Conclusions 

A novel approach has been developed for estimating 
magnitudes of uncertain data. The probabilistic dependencies 
between attributes of interest, measured or censored, are 
represented as a DMN. The DMN is extracted from data by 
automated learning. Using the learned DMN, for each data 
record with uncertain data, the values of unknown attributes 
are predicted. The predictions were accomplished using 
probabilistic reasoning, and based on the measured values of 
the record. The DMN graphical model is general, and can be 
used with any parent distribution of data and is therefore, very 
powerful in terms of their applicability to the estimation of 
uncertain/censored data. Experiments that estimate the hidden 
value of a target variable in 40 records showed 85% perfect 
match and 15% minimum error given the discretization. 
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Figure 4. From observable variables to infer the 'less than' value. 
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Figure 5. Experimental results.
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