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ABSTRACT.  The global optimization of complicated nonlinear systems is mathematically intractable and such an optimization 
extensively exists in science and engineering. Once an objective function has many local extreme points, the traditional optimization 
methods may not obtain the global optimization efficiently. A genetic algorithm (GA) based on the genetic evolution of a species pro-
vides a robust procedure to explore broad and promising regions of solutions and to avoid being trapped at the local optimization. 
However, the computational amount is very large. To reduce computations and to improve the computational accuracy, a method based 
on the two-point crossover and two-point mutation of the hybrid accelerating genetic algorithm with Hooke-Jeeves searching operator 
is developed for systems optimization. With the shrinking of searching range, the method gradually directs to optimal result by the 
excellent individuals obtained by Gray code genetic algorithm embedding with Hooke-Jeeves searching operator and Hooke-Jeeves 
algorithm. The efficiency of the new algorithm is verified by application of several test functions. The comparison of our GA with six 
existing other algorithms is presented. This algorithm overcomes the Hamming-cliff phenomena in other existing genetic methods, and 
is proved to be very efficient for the given environmental systems optimization. 
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1. Introduction  

The global optimization of complicated nonlinear sys-
tems, which extensively exists in scientific and engineering 
fields, is mathematically intractable. Finding the minimum of 
a nonlinear function with a single variable, even without any 
constraints, can still be challenging. A severe difficulty arises 
if the function in question has many pure local minima, as 
what one really wants is a global minimum point (David et al., 
2003). This is due to the fact that, once an objective function 
has many local extremes, the traditional optimization methods 
may not reach the global solution efficiently. The genetic 
algorithm (GA), which is based on the genetic evolution of a 
species, was proposed by Holland in 1975 (Holland, 1975). 
This method is globally oriented in searching and thus 
potentially useful in solving optimization problems where the 
objective function contains multiple optima and other 
irregularities. The detailed algorithms and implementation 
procedures were given by Goldberg (Goldberg, 1989). De 
Jong (1975) showed that the standard binary-encoded GA 
(SGA) could constitute an interesting alternative to perform 
the global optimization of a function depending on several 
continuous variables (Andre et al., 2001). This algorithm 
provides a robust procedure to explore broad and promising 
regions of solutions, and to avoid being trapped at the local 
optima (e.g., Yang et al., 2004; Leung et al., 2001). Experi- 
mental results indicated that through an appropriate selection 
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of representation patterns of elements of the search space and 
operators, GA is capable in solving a number of “difficult” 
problems (Bessaou et al., 2001). However, in SGA, the 
computational amount is significant and the phenomena of 
premature convergence are generally inevitable. To reduce 
computational efforts and improve the computing precision, 
the binary-encoded accelerating genetic algorithm, real- 
encoded genetic algorithm and integer-encoded genetic 
algorithm were developed in the past decades (Jin et al., 2000; 
Janikow et al., 1991; Renders et al., 1996). However, these 
genetic algorithms are normally weak in dealing with global 
optimizations for complicated nonlinear systems with con- 
tinuous variables. In fact, the Hamming distance between two 
closest integers in binary code may become considerably 
large. For instance, integers 63 and 64 are expressed by the 
00111111 and 01000000 in binary code, respectively. All of 
the codes must be changed if we turn 63 into 64 in binary 
code. This operation reduces the efficiency of the genetic 
algorithms. The phenomenon is termed the ‘Hamming cliff’. 
To solve the above ‘Hamming cliff’ problem, SGA could be 
improved with gray encodings of parameters (e.g., Andre et 
al., 2001; Yang et al., 2003). For example, the integers 63 and 
64 can be expressed by 01000000 and 01100000 in Gray code, 
respectively. The Gray-encoded genetic algorithm (GGA) can 
partly overcome the ‘Hamming cliff’ of binary code (Zhong et 
al., 2001). However, realization of this algorithm requires 
appropriate operators, and its mathematical theory has not 
been well developed yet. It was also found that this algorithm 
still needs a large amount of computational efforts (Yang, 
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2002). Thereofore, GGA is desired to be improved. 
Thus, in this paper, a Gray-encoded, Hooke-Jeeves, 

Hybrid Accelerating Genetic Algorithm (GHHAGA) will be 
presented to reduce computational amounts and to improve 
the solution precisions for nonlinear optimization problems 
(Hooke et al., 1961). Five nonlinear functions and two en- 
vironmental optimization problems will be used for verify- 
cation of the proposed algrothm. 

2. Descriptions of the GHHAGA 

The GHHAGA starts with an initial population of n 
“individuals”: each individual is composed of Gray code, 
individually associated with the variables of the objective 
function at hand. Then evolution starts and genetic operations 
are constituted. The reproduction operators are applied to this 
population; and the offspring are created from parents. The 
new population is constituted in selecting the best individuals. 
After two-point crossover and two-point mutation, the new 
individuals are created. And the output of the best point is 
further indentified through the Hooke-Jeeves algorithm 
around the above best individual (point) (Hooke et al., 1961). 
The new best point inside the offspring will be inserted to 
replace the worst one in the previous phase. Repeat the above 
genetic operations until the evolution times Q is met. The new 
intervals are obtained from the variable ranges of ns-excellent 
individuals by Q-times of the Hooke-Jeeves evolution, and 
then the whole process steps back to the Gray-encoding. 
Finally, the most excellent chromosome becomes the opti- 
mum solution of GHHAGA. 

 
2.1. Steps of GHHAGA 

Consider the following nonlinear optimization problem: 
 

1 2min ( ,  ,  ,  )
pnf x x x⋅ ⋅⋅       

                          
s.t. j j ja x b≤ ≤  , for 1 2 pj , , ...., n=                  (1) 
 
where { },  1,  2,  ...,  j px x j n= = , xj is a variable to be optimized, 
f is an objective function and f ≥ 0. Steps of GHHAGA are 
given as follows. 

Step 1. Gray encoding. 
An e-bit Gray variable is used to represent one variable xj. 

The integer of the decoded Gray variable ranges from 0 to 2e - 
1 and can be mapped linearly to the variable range [aj, bj]. The 
jth variable range is the interval [aj, bj], and then each interval 
is divided into 2e - 1 sub-intervals: 
 

j j j jx a I x= + ⋅ ∆                                   (2) 
 
where ( ) /(2 1)e

j j jx b a∆ = − − . The Gray code array of the jth 
variable is denoted by the grid points of { ( , ) |d j k k =  
1,2,  ...,  }e (Yang et al., 2003): 
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Step 2. Generating initial father population. 
Initially, the chromosomes are generated at random in 

Gray-encoded genetic algorithm, and n-chromosomes in fa-
ther population are: 
 

( ) int( ( , ) 2 )e
jI i u j  i= ⋅  for 1, 2, ..., ; 1, 2, ...,pj    n i    n= =        (4) 

 
where u(j, i) is uniformity random number, u(j, i) ∈ [0, 1], 
Ij(i) is searching location, int() is an integer function. From 
Equation (3), the n-corresponding chromosomes are d(j, k, i) 
for j = 1, 2, …, np; k = 1, 2, …, e; i = 1, 2, …, n. To cover 
homogeneously the whole solution space and to avoid the risk 
of having too much individuals in the same region, a large 
uniformity random population is selected in this algorithm. 

Step 3. fitness evaluation. 
The fitness function F(i) of ith chromosome for the 

optimization is defined: 
 

2

1( )
[ ( )] 0.1

F i
f i

=
+

                                     (5) 

 
Step 4. Selection. 
The chromosomes in the initial father population are se-

lected by a known probability ps(i) as: 
 

1
( ) ( ) / ( )

n

s
j

p i F i F j
=

= ∑                                 (6) 
 
Such two groups of n-chromosomes are selected by the above 
probabilities. 

Step 5. Two-point crossover. 
For two-point crossover, two crossing points are ran-

domly chosen, and two individuals d1(j, k, i), d2(j, k, i) are 
gotten by the crossing probability pc. In order to enhance the 
diversity of population, the crossing probability is set as pc = 
1. 

Step 6. Two-point mutation. 
For two-point mutation, two mutating points are ran-

domly chosen, and a new offspring d3(j, k, i) can be computed 
by a mutating probability pm (Yang et al., 2003). 

Step 7. Hooke-Jeeves evolution. 
The Hooke-Jeeves algorithm is a useful, local descent 

algorithm, which does not make use of the objective function 
derivatives (Hooke et al., 1961). The best point in the previ-
ous phase becomes a new initial solution in the Hooke-Jeeves 
algorithm, and then a new best point is obtained by this 
Hooke-Jeeves algorithm. The new best point inside the off-
spring will be inserted to replace the worst one in the previous 
phase. Repeat step 3 to step 7 until the evolution times Q or 
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termination criteria is met. 
Step 8. Accelerating cycle. 
The variable ranges of ns-excellent individuals obtained 

by Q-times of the Hooke-Jeeves evolution become the new 
ranges of the variables, and then the whole process back to the 
Gray-encoding. The computation process is over until the 
objective function value gets to an expected value, or algo-
rithm running times gets to the design T times. Herein, the 
most excellent chromosome currently is the optimum solution 
of GHHAGA. 

A pseudo code of GHHAGA is given in Figure 1. 
 
 

Begin  

For t=0 to T (acceleration cycle times t) 

Give variable interval ],[ t
j

t
j ba  

Gray encoding 

q=0 

Initialize population Pop(q,t) 

While (q ≤ Q) do (evolution times q) 

For i=1 to n do 

Evaluate fitness of Pop (q,t) 

Endfor 

For i=1 to n do 

Select operation to Pop(q,t) 

Endfor 

For i=1 to n do 

Two-point crossover operation to Pop(q,t) 

Endfor 

For i=1 to n do 

Two-point Mutation operation to Pop(q,t) 

Endfor 

Hooke-Jeeves evolution 

Endwhile 

Get new variable interval ],[ 11 ++ t
j

t
j ba  from the 

variable ranges of sn -excellent individuals in 

Pop (1,t), Pop (2,t),…, Pop (Q,t) 

Endfor 

 
 

Figure 1. Pseudo code for GHHAGA. 
 

2.2. GHHAGA Theory 
We now turn to the analysis of the behavior of our 

algorithm when it is applied to problem (1). The GHHAGA is 
convergent (Yang, 2002). The global optimization of the 
GHHAGA is not only accurate but also stable. Let the 

Hooke-Jeeves evolution times be Q, the number of excellent 
individuals be ns, the number of optimized variable be p and 
the times of accelerating evolution be T, the probability p0 of 
excellent individuals surround the optimum point is 0p =  
( )1 2 .s

pTQn−−  The GHHAGA is global convergence with pro- 
bability p0 = 1.000 000 when np = 20, t = 5, ns = 10, Q = 5; np 
= 30, t = 10, ns = 10, Q = 5, etc. 

3. Experimentation 

3.1. Criteria 
Three main criteria are very important when trying to 

determine the performances of an algorithm: convergence, 
speed and robustness (Andre et al., 2001). The parameters of 
the GHHAGA are selected as follows: The length e = 10, 
population size n = 300, the number of excellent individuals 
ns = 10, the times of Hooke-Jeeves evolution Q = 5, the cross-
over probability pc = 1.0, the mutation probability pm = 0.5, 
and the times of Hooke-Jeeves searching m ≤ 300. 

The global optimization of five test functions (Andre et 
al., 2001) is accomplished by using the following methods: 
Standard Binary-encoded GA (SGA) (Andre et al., 2001) and 
GHHAGA. To compare with the global optimization ability of 
the above algorithms objectively, the less than or equal 18,000 
computations of the objective functions are done, and one of 
the three termination criteria is used for ensuring the 
optimization precision and avoiding algorithm invalidation. 

Criteria one: The relative error Erel between the result falgo 
given by the algorithm and the optimum value fexact of each 
test function is used each time if it is possible: 
 

| |
| |

algo exact
rel

exact

f f
E

f
−

=                                (7) 

 
Criteria two: When the optimum is 0, it is no longer 

possible to use this expression. So we calculate the absolute 
error Eabs as follows: 
 

| |abs algo exactE  f f= −                               (8) 
 
where we let the absolute error or relative error in neighbor 
generations be less than or equal 10-2. 

Criteria three: The total computation number for the 
functions is less than or equal 18,000. 

 
3.2. Experimentation and Result 

To test our GHHAGA, the following five analytical test 
functions were used. 
Goldprice: 
 

2 2 2

2 2 2

( , ) [1 ( 1) (19 14 3 14 6 3 )]
[30 (2 3 ) (18 32 12 48 36 27 )]

f x y x y x x y xy y
           x y x x y xy y

= + + + − + − + +

× + − − + + − +
        (9) 
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where 2 2, 2 2x y− ≤ ≤ − ≤ ≤ . 
Hartman 2: 
 

4 6
2

1 1
( ) exp[ ( ) ]i ij j ij

i j
f x c a x p

= =

= − − −∑ ∑        (10) 
 
where 0 ≤ xi ≤ 1 for j = 1, …, 6 with x = (x1, …, x3), pi = 
(pi1, …, pi6), and ai = (ai1, …, ai6) as shown in Table 1. 
Hosc 45: 
 

10

1

( ) 2
!
i

i

xf x
n=

= − ∏            (11) 

 
where x = (x1, …, x10), and 0 ≤ xi ≤ i, n = 10. 
Brown 1: 
 

120( )2 3 2
1( ) [ ( 3)] [10 ( 3) ( ) ]i ix x

i i i i
i J i J

f x x x x x e +−−
+

∈ ∈

= − + − − − +∑ ∑         (12) 

 
where J = {1, 2, …, 19}, -1 ≤ xi ≤ 4, for 1 ≤ i ≤ 20, and x = 
[x1, …, x20]T. 
F15n: 
 

19
2 2 2

1 1
1

2 2
20 20

sin (3 ) [( 1) (1 sin (3 ))]
( ) 0.1

0.1( 1) [1 sin (2 )]

i i
i

x x x
f x

x x

π π

π

+
=

⎧ ⎫
+ − +⎪ ⎪= ⎨ ⎬

⎪ ⎪+ − +⎩ ⎭

∑            (13) 

 
 
where -10 ≤ xi ≤ 10, for 1 ≤ i ≤ 20 and x = [x1, …, x20]T.  

This set of classical test functions, very often used in the 
literature (Andre et al., 2001; Bessaou et al., 2001), includes 
some functions having the following features: 

 Continuous/discontinuous; 
 Convex/non-convex; 
 Unimodal/multimodal; 
 Quadratic/non-quadratic; 
 Low dimension/high dimension. 
 The efficiency of the algorithm is quantified by: 
 The rate of success; 
 The number of evaluations of the objective function; 

 The error between the obtained solution and the exact 
value of the global optimum of the function. 

Because of the stochastic nature of GAs, the discussion 
of results derived from one single execution of the algorithm 
is meaningless (Bessaou et al., 2001). So all results reported 
in this section are obtained by averaging the results from 100 
executions per function. The computation results of the five 
nonlinear test functions are given in Table 2 with the SGA 
(Andre et al., 2001) and GHHAGA. It is obviously observed 
that the GHHAGA is the best one both in efficiency (see suc-
cess rate and number of evaluation of the functions in Table 2) 
and in accuracy (see minimum found in Table 2) compared 
with existing algorithms. The results given in Table 2 show 
that the global optimum generally is reached since the ratio of 
success is equal to 100% for the ten tested functions. So the 
‘Hamming cliff’ phenomena are avoided in GHHAGA. 

We have performed a comparison of our GA with six 
other methods of iterative improvement listed in Table 3: pure 
random search (PRS) (Anderssen et al., 1972), multistart (MS) 
(Rinnoy et al., 1987), simulated diffusion (SD) (Aluffi et al., 
1985), simulated annealing (SA) (Andre et al., 2001), tabu 
search (TS) (Cvijovic et al., 1995) and binary-encoded genetic 
algorithm (GA) (Andre et al., 2001). The efficiency was quali-
fied by use of the number of function evaluations to find the 
global optimum. Each program was stopped as soon as the 
relative error between the best point found and the known 
global optimum was less than 1%. The number of function 
evaluations used by the various algorithms to optimize test 
functions is listed in Table 3. The results of our GA are satis-
fied (see the numbers of function evaluations in Table 3). In 
addition our results were the average outcome of 100 
independent runs; for some published methods, the times of 
runs was equal to 4 or unspecified (Andre et al., 2001). 

4. Application 

Example 1. Consider the wastewater treatment cost time 
series as a dynamical system optimization to satisfy: 
 

( ) /(1 )aty t A K be−= − +                            (14) 
 
where ( )y t  is the computed value of wastewater treatment 
cost in the tth year, unit: 104 US $; A, K, b and a are 
optimization parameters. The observation data can be found in 
the literature (Jin, 2000). This objective function is as follows: 

Table 1. Parameters of ija  and ijp  

i    ija    ic    ijp    

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.00 3.50 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.01 14.0 32 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Table 2. Results with the SGA (Andre et al., 2001) and the GHHAGA 

  Minimum found Number of evaluation of the functions Success rate % 
Name of the functions Theoretical minimum SGA GHHAGA SGA GHHAGA SGA GHHAGA
Goldprice  3 3.00000 3.00085 8185 303 59 100 
Hartman2 -3.32237 -3.30652 -3.31953 19452 708 23 100 
Hosc45  1 1.99506 1.00000 11140 300 0 100 
Brown1 2 43.62810 1.99877 6844 312 0 100 
F15n 0 0.52117 0.00000 9541 786 0 100 

 
Table 3. Number of Function Evaluations on Global Optimization of Two Functions with the Seven Different Methods 

  The number of function evaluation 
Method Name  Goldprice Hartman2 
PRS Pure random search 5125 18090 
MS Multistart 4400 6000 
SD Simulated diffusion 5439 3975 
SA Simulated annealing 563 4648 
TS Tabu search 486 2845 
GA Binary-encoded genetic algorithm 4632 53792 
GHHAGA Gray-encoded, Hooke-Jeeves, hybrid accelerating genetic algorithm 303 708 

 
Table 4. The Calculating Result with Several Methods for the Dynamical Optimization Problem 

  Parameters     
Method Evaluation number for h A K b a Least mean square sum h 
Initial interval 0 [500, 700] [200, 300] [5, 8] [0, 1] / 
GHHAGA 2400 607.740 247.395 5.974 0.860 6.690 
AAGA 6000 603.667 243.487 5.665 0.838 6.934 
BAGA 3000 600.700 240.700 6.069 0.853 8.130 
40 

2

1

( ( ) )
n

i i
i

h y t y
=

= −∑                                (15) 
 
where yi is the observation value of the wastewater treatment 
cost in the ti

th year, unit: 104 US $, n is the total number of 
observation data. The least residual square sum h is 6.690 
with GHHAGA. GHHAGA runs 1 second for optimization of 
this model only. The computational results of the above model 
are given in Table 4. For the GHHAGA, the evaluation num-
ber of the objective function is 2400. For adaptive accelerat-
ing genetic algorithm (AAGA) (Yang, 2002), the evolution 
number is 6000. For binary-encoded accelerating genetic 
algorithm (BAGA) (Jin, 2000), the evolution number is 30000. 
The comparison of the above methods can be observed in 
Table 4. The results of our GHHAGA are satisfied both in 
efficiency and in accuracy. 

Example 2. Consider the forecast problem of the sedi-
ment concentration in Gongzui reservoir as a system opti- 
mization to satisfy: 
 

2 3
0 1 2 3( ) ( ) ( ) ( )su t c c x t c x t c x t= + + +                   (16) 

where ( )su t is the simulated value of the sediment concentra-
tion in Gongzui reservoir in the tth year, ( ) ( ( ) ( ))in upx t Q t Q t= −  
/1000, ( )upQ t is the runoff of upstream reservoir and ( )inQ t  
is the inflow into Gongzui reservoir in the tth year, c0, c1, c2, c3 
are optimization parameters. The observation data can be 
found in the literature (Jin, 2000). The amount of the sediment 
concen- tration into Gongzui reservoir is one of the most 
important elements in deciding the running of the Gongzui 
reservoir. The objective function is given as follows: 
 

min 2 2

1

1[( ) ( ) ( )]
n

si i i si
i i

f u u u u
u

ψ
=

= − ⋅ + +∑                 (17) 

and 
0 0

( )
500 0

si
si

si

u
u

u
ψ

≥⎧
= ⎨ <⎩

                            (18) 

 
where ui and usi are the observation value and the simulated 
value of the sediment concentration in Gongzui reservoir in 
the ti

th year, respectively; n is the number of observation data; 
( )siuψ  is a penalty function. 
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The objective function f is 317.628 with GHHAGA. For 
the GHHAGA, the evaluation number of the objective func-
tion is 1800. For binary-encoded accelerating genetic algo-
rithm (BAGA) (Jin, 2000), the evaluation number of the 
objective function is 10500, and the objective function f is 
331.21. The result of GHHAGA is given in Table 5. From 
Table 5, we can conclude that our GHHAGA are highly effec-
tive in optimization. 

From above two examples, we find that the evaluation 
number of objective function through GHHAGA is less than 
those obtained through other GA techniques in optimization. 
The convergence of GHHAGA has been considerably 
improved by providing new initial interval information in 
accelerating cycle step of gray encoding. And its com- 
putational amount is significantly reduced. This GHHAGA 
overcomes the Hamming-cliff phenomena in existing genetic 
methods. 

 
Table 5. The Calculating Result for the Sediment 
Concentration in Gongzui Reservoir with GHHAGA 

 Parameters  
Evaluation 
number for f C0 C1 C2 C3 

Objective 
function f 

0 [-5, 5] [-5, 5] [-5, 5] [-5, 5] / 
1800 -0.918 4.998 -3.362 1.356 317.628 

5. Conclusions 

In this paper, a new method, GHHAGA, is proposed to 
solve nonlinear optimization problems in environmental 
systems. The capability of the global convergence of the 
corresponding algorithm was analyzed in detail. With the 
techniques of Gray-encoding, Hooke-Jeeves hybrid searching 
operator and accelerating cycle being emplyed, the efficiency 
and accuracy of the proposed algorithm are significantly 
enhanced compared with those traditional algorithms. 
GHHAGA has been applied to five nonlinear test functions 
and two cases of environmental systems optimization. 

Based on comparisons, the proposed algorithm presented 
good performances for optimization of nonlinear systems with 
continuous variables. It can effectively mitigate the Ham-
ming-cliff phenomena that were common in other genetic 
methods. As an extension in the future, the proposed algo- 
rithm can also be applied in tackling multi-objective opti- 
mization problems in environmental systems. 
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