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ABSTRACT.  Investigations on the effectivity of different neural network architectures, viz. number of hidden neurons, constrained 
neuronal connections (hierarchical network), and fuzzy aggregation based synaptic neuronal functions (fuzzy neural network) for satel-
lite data classification are presented. Performance of networks trained with varied number of training sizes for classification in large 
spatial extensions are used as illustration through two case studies, viz. land use/land cover classification of Delhi Ridge and species 
classification of floral resources in Shimla and Chopal regions in India. The results have been compared with statistical methods. 
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1. Introduction  

Use of neural networks to remote sensing applications 
continues to receive attention in research, despite apprehen-
sions regarding its effectivity in all situations. The effectivity 
of artificial neural networks (ANN) in satellite image classi- 
fication is due to its intrinsic ability to generalize the non- 
dependence on statistical distribution of data, and capability to 
form highly nonlinear decision boundaries in the feature space 
(Lippmann, 1987; Hush et al., 1993). 

Also, ANN models do not require any a priori knowledge 
of the class distribution in a remotely sensed image unlike the 
statistical classifiers wherein distributions may change with 
data class as well as with data structure. The ANN models are 
distribution free (Benediktsson et al., 1990). In multisource 
remote sensing data classification, ANN does not require any 
a priori specifications of the weight of each data source mod-
els. The procedures involved with neural network spectral 
classification are more closely associated with "supervised" 
classification as opposed to "unsupervised" classification 
techniques. With supervised techniques, the analyst initially 
defines several training areas in the imagery, which are 
representative of the desired classes. 

Lippmann (1987) concluded that neural network classifi-
ers are non-parametric and are more robust when distributions 
are strongly non-Gaussian. Neural networks have been used in 
a number of studies to classify remotely sensed satellite data 
(Benediktsson et al., 1990; Tzeng et al., 1997). Hepner and 
others (Hepner et al., 1990) examined the application of neu-
ral networks for land cover classification and demonstrated 
that the ANN classifies imagery better than conventional 
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supervised statistical classification procedures. The accuracy 
of classification using ANN models with single training 
site-per-class was found to be comparable to the accuracy 
obtained using statistical methods with four training-sites- 
per-classes and the statistical supervised classification using 
the single minimal training set was very inferior to the ANN 
classification. These results suggest that the neural network 
based techniques have a potential advantage of minimizing 
training sets and hence ground truth data requirement. How-
ever, the investigations thus far are not comprehensive and do 
not cover complex cases of large up-scaling ratios, viz. ratio 
between numbers of classification pixels to training pixels. 
Pao (1989) hypothesized that additional non-linear processing 
of the data before presenting it to the network, can result in 
linearly separable classes that dramatically decrease effectiv-
ity of training. 

Dreyer (1993) calculated a number of textural features 
based on gray-level statistics and found that the use of these 
features increased the accuracy of a ‘field’ class, has without 
any effect for ‘urban’ and ‘water’ classes while decreasing the 
accuracy in case of a ‘forest’. Key et al. (1990) used texture 
calculations such as second momentum and entropy to pro-
duce a single texture measure for each pixel in the classifica-
tion of land cover and cloud types, with classification results 
superior to those using spectral pixel values alone. However, 
Geaga et al. (1992) have reported that the use of seven princi-
pal component images instead of the original LANDSAT 
spectral values does not result in faster training or higher 
accuracy. Yoshida et al. (1994) proposed a neural network 
classification method for remotely sensed data analysis in 
order to improve neighborhood relation between pixels and to 
decrease error probability for pattern classification. Civco 
(1993) investigated the effectiveness of training with a single 
mean vector for each class in land use classification and con-
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cluded that non-inclusion of variability in the data leads to 
spurious convergence of the network. Paola et al. (1995) have 
demonstrated the advantages of the neural network method 
over traditional classifiers for classification of remotely - 
sensed multi spectral imagery. 

Despite the distinct advantages offered by neural network 
methods, their success is contingent upon further research to 
achieve improvements in convergence speed, sensitivity to 
architecture and fewer requirements of initializations. Several 
investigations to remedy these drawbacks (Bernard et al., 
1997; Paek et al., 1997) are reported in the literature. Signifi-
cant reduction in training time was achieved by Tzeng and 
others using a dynamic learning neural network and Kalman 
filtering technique (Tzeng et al., 1997). 

Chen et al. (1997) adopted a neural network classification 
approach using non-backpropagation learning leading to a fast 
convergence and built-in optimization function. Such a result 
demonstrates that fractal information significantly improves 
the discrimination capability of heterogeneous area such as an 
urban region, while it degrades accuracy for homogeneous 
areas such as open water. 

Foody et al. (1997) investigated the effects of the di-
mensionality of the remotely sensed data, the neural network 
architecture, and the characteristics of the training and testing 
set on the accuracy of classification using neural networks. 
The salient conclusions were: 

 Variation in the dimensionality of the data set, as well as 
the training and testing set had a significant effect on 
classification accuracy; 

 The network architecture, specifically the number of 
hidden neurons and layers, did not have a significant ef-
fect on classification accuracy. 

Paola et al. (1997) found that there was a range of opti-
mal hidden layer sizes below which the accuracy is decreased 
and above which the training time is increased. However, they 
have also reported that, for a fairly wide range, the hidden 
layer size made little difference to the final classification 
accuracy. 

The suitability of Back Propagation Neural Network 
(BPNN) for classification of remote sensing images is pro-
posed by Aria et al. (2003). Their approach consists of three 
steps to classify IRS-1D images is proposed. In the first step, 
features are extracted from the first order histogram measures. 
The next step is feature classification based on BPNN, and in 
the finally step the results are compared with the maximum 
likelihood classification (MLC) method. 

In summary, the review of the literature indicates that de-
spite the potential benefits of approaches based on neural 
networks, the entire potential of ANN is yet to be harnessed in 
its applications to remote sensing. 

Following conclusions are made from the literature re-
view on neural network approaches for classification of satel-
lite imageries: 

 training algorithms for classification are slow and thus, 
noneffective in practical implementation though accu-

rate in many cases; 
 wide variation exists in effectivity of classification with 

training algorithms and architectures; 
 incorporation of the expert knowledge and the ancillary 

information is possible; 
 dependence of training size on accuracy of classification 

is not conclusive, and is based on small spatial exten-
sions, and lack validation using ground truths; 

 absence of demonstration of effectivity of neural net-
works for finer classification such as forest classification 
based on dominant species, and built-up land use of 
different densities. 

This study investigates the performances of neural net-
work trained with varied number of training sizes, and its 
usage in classification for different spatial extensions and fine 
classification categories. The research will demonstrate the 
application of neural networks trained with considerably small 
training size in the analyses of large spatial areas and fine 
classification with two case studies, viz. land use/Land cover 
classification of Delhi Ridge in India, and species classifica-
tion of floral resources in Shimla and Chopal Regions in India. 
The results will be compared with the statistical methods, viz. 
the maximum likelihood classifier, the Mahalonobis distance 
classifier, and the minimum distance classifier. 

The paper also repots the investigations carried out with 
different neural network architectures viz. different number of 
hidden neurons, constrained neuronal connections (hierachical 
networks) and fuzzy aggregation based synaptic neuronal 
functions (fuzzy neural network). 

2. Field Survey and Ground Truth Data Collection 

2.1. The Ridge Forest Area in the National Capital 
Territory of Delhi 

The Delhi Ridge is the northern extension of Aravalli hill 
range, the oldest mountain chain in the country, entering the 
National Capital Territory of Delhi in the Southeast at the 
Tughlakabad – Bhatti mines – Dera Mandi axis and terminat-
ing in the north near Wazirabad on the right bank of river Ya-
muna. 

The Delhi Ridge is characterized by tropical, thorny, 
secondary forest. The bulk of the vegetation consists of co- 
dominant, spinous scrubs and trees, and is capable of drought 
resistance. The ground flora is seasonal, and the thorny shrubs 
occur in widely spaced clumps supporting a number of twines 
and climbers. The species composition has undergone changes 
over the decades, and the climax forest has been replaced by 
thorny secondary forest with Prosopis juliflora as the domi-
nant tree species. 

The topography of the ridge is undulating with uniformly 
distributed drainage network. The ridge has 16 perennial tanks 
and 56 pits, which are good groundwater recharge points. The 
drainage is hindered by about 30 hectares of built up area 
mainly on the central ridge. Delhi Ridge is divided into four 
administrative regions viz. Northern, Central, Southern Cen-
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tral and Southern ridges. 
The Northern Ridge covers a total area of 87.0 hectares 

out of which 42% of landmass is covered by built up area. 
The scrub, fallow and degraded forests together cover an area 
of 22 hectares and dense forest covers an area of about 20 
hectares. A major portion of the forest is managed and the 
eastern flank having extensive cover of Prosopis juliflora with 
Acacia nilotica. The Central Ridge envelops an area of 864 
hectares. The built up area and cropland constitute 28 and 3% 
of the landmass respectively. The dense forests cover 116 
hectares. There are 13 natural perennial tanks and 34 water 
holding pits in this part of the ridge. The South Central part of 
the ridge constitutes an area of 626 hectares out of which 15, 
7, 20, and 20% of landmass is under land use categories of 
built up, cropland, scrub and fallow respectively. The vegeta-
tion in this central part is very poor and is limited to Sanjay 
Van that covers only 37% of the landmass. The undergrowth 
in Sanjay Van is very poor. 

The Southern Ridge envelops an area of 6200 hectares 
out of which built up, plantation; crop, scrub and fallow land 
use categories constitute 5, 10, 7, 48, and 28% of landmass 
respectively. The sandy area extends over 84 hectares; and 
there is no forest vegetation in this part of the ridge. A mosaic 
of Prosodic Juliflora with occasional bushes of Carisa spina-
rum, and Zizyphys maurtiana characterizes the vegetation. 
The vegetation in the Asola Wild Life Sanctuary located in the 
Southern Ridge is mainly scrub interspersed with plantations. 

 
2.2. Shimla and Chopal Regions 

The Shimla and Chopal regions are located in three 
administrative districts in the state of Himachal Pradesh, 
namely, Solan, Shimla, and Shirmour. This region is moun- 
tainous and constitutes the headwaters of the Yamuna river 
tributaries. The river system in this region is constituted by 
Pabbar and Giri Rivers. Alpine grasslands to grasslands of 
semi arid tropics constitute the biological features. The region 
and its contiguous areas are characterized by wide clima- 
tological and topographical variations. The forest types and its 
composition vary widely from the altitudes 34 meters to 250 
meters across the region. 

The Shimla region has four forest types viz. upland hard-
woods mixed with coniferous, mixed coniferous, blue pine, 
fir/spruce besides exposed rocks, barren lands; and agricul-
tural land and habitation. The details of four forest types that 
were based on the dominant floral species classification are 
delineated in Table 1. The detail of codes viz. A, B, C, D, E, 
and F used for representing the types of land cover forming 
the classification categories was presented in Table 1. 

Field surveys of both Delhi Ridge and Shimla & Chopal 
Regions were carried out within the experimental area with 
the grid sizes of 50 m × 50 m and 250 m × 250 m respectively. 
The purpose of field survey was to establish the main char- 
acteristics and variability of the land cover and dominant spe-
cies based forest classification. Field survey also provided 
good ground truth data for training and testing the classifiers. 

Table 1. Dominant Floral Species in Shimla and Chopal 
Regions 

Class Code Class Name 

A Upland hardwoods mixed with coniferous 
B Exposed rocks, barren lands 
C Mixed coniferous 
D Agricultural land and habitation 
E Blue pine (Kail) 
F Fir, spruce 

 
The sizes of the grids were chosen to ensure that each 

grid was large enough to be easily identifiable on the satellite 
imageries. The land cover and dominant species in each grid 
were recorded in detail, which included the main land cover 
class and dominant species, the forest types and crown density, 
the topographical and geological conditions and man made 
features including roads. 

The boundaries of each grid were also recorded precisely 
on topographic maps. The survey was designed to capture the 
details of as many different kinds of land cover and vegetation 
details as possible. All of the field data after requisite digitiza-
tion were managed in a Geographic Information System 
(ARC/INFO Version 6.1) as geocoded polygon coverage with 
appropriate polygon attribute information. The association of 
ground truths obtained in grids with those of remote sensing 
information in pixels has been established using union opera-
tion in Geographical Information System (ARC/INFO 6.1). 

Ground truths in the regions - Ridge Forests in National 
Capital Territory of Delhi, and Shimla and Chopal forests in 
India – have been grouped as training and testing sets for 
ascertaining the effectivity of neural network models for land 
use classification and species classification of crown cover 
respectively. 

3. Satellite Data 

To carry out the land cover classification in Delhi Ridge, 
data from the Indian Remote Sensing Satellite (IRS IA), LISS 
II (Linear Imaging Self-Scanner) with the ground resolution 
of 36.5 sqm. is used. The LISS II digital image is of August 
1995 which has seasonal correspondence with the times of 
field surveys. The image was obtained in raw digital format, 
and was analyzed and geocoded to the field data in Polyconic 
projection system and further processed using Digital Image 
Processing software ERDAS Imagine 8.2. Likewise, the domi-
nant species based classification of floral resources in Shimla 
and Chopal regions, was carried out with LISS I data from 
Indian Remote Sensing Satellite (IRS IB) having ground 
resolution of 72.5 sqm. The LISS I digital image was also 
obtained in raw format (not geo-coded). Geometrically Regis- 
tration using the image using ground control points was con-
ducted out for both the images to obtain pixel registration 
accuracy (RMS error 0.5). The data from Indian Remote 
Sensing Satellites (IRS IA & IB with LISSII and LISSI) sen-
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sors cover the 0.45 - 0.52, 0.52 - 0.59, 0.62 - 0.68, and 0.77 - 
0.86 µm spectral ranges. The spectral (band) information form 
inputs for the neural network. Training and testing set consti-
tutes sets of data of different pixels corresponding to different 
ground locations. 

The data set was split, by random selection, into in- 
dependent training and testing sets comprising different pixels 
of each class. The distribution characteristics of spectral res- 
ponses are chosen to be different for different spectral bands 
and classes. The distribution characteristics are also chosen to 
be different for training and test data sets. The choice of train-
ing and testing data sets is chosen to test the following 
hypotheses: 

 Neural networks based classification methods are not 
dependent on statistical distributions of spectral re-
sponse of different classes in the test and training data 
sets; 

 Neural networks based classification methods are not 
dependent upon choice of training data set sizes and spa-
tial characteristics, and upscaling ratio; 

 Neural Networks based classification methods are accu-
rate with small sizes of training data set and large 
upscaling ratio. 

4. Neural Network Models 

4.1. Neural Network Models 
In the present study, the following neural network models 

for classification of satellite imageries of Delhi Ridge and 
Shimla and Chopal regions in India have been investigated:  

 Crisp Neural networks 
 Neural network with fuzzy synaptic operation 
 Neural networks with constrained connections based on 

spectral relevance (hierarchical neural networks) 
The classification results obtained using the models are 

compared to those obtained using parametric decision rule, 
viz. Maximum likelihood classifier, Mahalonobis distance 
classifier and Minimum distance classifier. 

The issue of choice of different representations including 
data transformation is not addressed in this research due to, 
conclusive negative evidence reported in the literature. How-
ever, the investigations on effectiveness of different models of 
neural networks, dependence on architecture (number of hid-
den neurons), size of training set, and ratio of the size of test-
ing and training data set (scale-up-factor) have been the focus 
of this investigation. Scale-up-factor provides a measure of 
the geographical extent over which a neural network trained 
with a training set shall be usable for classification. 

 
4.1.1. Crisp Neural Networks 

The crisp neural network model was characterized by 
three-layered structure with simple backpropagation learning 
algorithm without momentum term (Werbos, 1974; Rumelhart 

et al., 1986) and sigmoidal synaptic function. The architecture 
of the neural network model is varied to identify the model 
with higher accuracy in learning and smoother convergence. 
The learning rate is similarly varied to achieve improvements 
in convergence.  

In the case of crisp neural network, the spectral responses 
of the four channels (bands) constitute the input to the neu-
rons in the input layer and each output neuron represents a 
class. The input and output neurons are allowed to take 
continuous values and the value of output neuron that is 
between 0 and 1 is taken to represent confidence level of the 
class assignment. In the case of crisp neural networks, the 
number of neurons in the single hidden layer is varied from 1 
to 8. Convergence characteristics have been measured for all 
different training and prediction sets. The convergence of the 
neural networks with six hidden neurons in the case of land 
use classification in Delhi Ridge and with eight hidden 
neurons in the case of Shimla and Chopal regions are found to 
be the best. Within 10,000 iterations, and convergence has 
been faster and smoother for small sizes of training sets.  
 
4.1.2. Fuzzy Neural Networks 

Neural information processing comprises of three basic 
steps: synaptic processing, aggregation of the synaptic in- 
formation by the neuron; and encoding of the aggregated 
information into the neural activation. Fuzzy logic fused with 
neural networks promise a system to deal with the cognitive 
uncertainties in a manner more like humans.  

The following are salient alternative approaches to fuzzy 
neural networks: 

 To incorporate fuzzy aggregation of information arriving 
at each node (Bezdek, 1991) 

 To introduce fuzziness into the input data, weights and 
target vector(Yamakawa, 1989) 

The input-output architecture of fuzzy neural networks 
has been chosen with four input neurons and one output neu-
ron. Different ranges of values at the output neuron represent-
ing classes are delineated in Table 2. The fuzzy neural neural 
networks, in this study, use additive-operator based aggrega-
tion operator and back propagation learning algorithm. In the 
case of fuzzy neural networks, the parameter governing the 
relative importance of and or operations for neuronal aggrega-
tion has been varied, in addition to the number of hidden neu-
rons to study the relative performances.  
 
4.1.3. Hierarchical Neural Networks 

In a decision making situation, where inputs to the neural 
network are of different hierarchical levels and can be consis-
tently related to one another, the massively connected multi- 
layered networks, crisp or fuzzy, may be redundant. In such 
cases, the hierarchical network is considered as suitable 
choice (Krishnapuram and Lee, 1992). The fuzzy hierarchical 
aggregation networks are fuzzy extensions of hierarchical 
networks where neuronal aggregation is performed using 
fuzzy connectives. 
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The hierarchical aggregation is frequently encountered in 
decision-making processes that involve aggregation of criteria 
at several levels. 

 
Table 2. The Representation of Output Class in Fuzzy Neural 
Networks 

Class Name Representation of Output 

Dense forest 0.8 
Open forest 0.7 
Degraded forest 0.6 
Built-up Area 0.5 
Forest blank 0.4 

 
In hierarchical networks, in order to aggregate and propa-

gate degrees of satisfaction of criteria, proper type of connec-
tive at each node is to be choosen. The type of aggregation 
choosen at each node depends on the type of behavior the 
network is expected to exhibit. Krishnapuram and Lee studied 
the utility of various fuzzy connectives in fuzzy aggregation 
networks. The iterative algorithm introduced by them deter-
mines the aggregation function and its parameter at each node 
of the network. The behavior of the network can also be 
modified depending on the decision making situation and 
convergence of the algorithm in few sample cases is also 
illustrated (Krishnapuram and Lee, 1992). The hierarchical 
aggregation networks require: 

 Hierarchical system structure  
 Known neuronal aggregation function  

In the present study, in the case of hierarchical neural net-
works, the spectral responses of the four channels (bands) 
constitute the input to the neurons in the input layer; and each 
output neuron represents a class. The input and output neu-
rons are allowed to take continuous values; and the value of 
output neuron between 0 and 1 is taken to represent confi-
dence level of the class assignment. 

The configuration of the hierarchical neural network 
incorporates prior knowledge regarding spectral relevance. 
The three neurons in the hidden layer represent vegetation, 
mixed vegetation, and non-vegetation classes of land cover. 
The models for crisp neural networks for land cover classi- 
fication, neural network with fuzzy synaptic operation, and 
hierarchical networks are presented in Figures 1 to 3 respec-
tively. 

 
4.2. Parametric and Non Parametric Decision Rules 

A parametric decision rule is trained by the parametric 
signatures. These signatures are defined by the mean vector 
and covariance matrix for the data file values of the pixels in 
the signatures. When a parametric decision rule is used, every 
pixel is assigned to a class since the parametric decision space 
is continuous (Kloer, 1994). 

A nonparametric decision rule is not based on statistics; 
therefore, it is independent of the properties of the data. If a 
pixel is located within the boundary of a nonparametric signa-

ture, then this decision rule assigns the pixel to the signature’s 
class. Basically, a nonparametric decision rule determines 
whether or not the pixel is located inside of nonparametric 
signature boundary. 

In the present study, the classification results obtained us-
ing the models are compared to those obtained using paramet-
ric decision rules, viz. the Maximum likelihood classifier, the 
Mahalonobis distance classifier and the Minimum distance 
classifier. 

5. Evaluation of Classification Accuracy 

Many methods for assessing classification accuracy have 
been proposed (Congalton, 1991; Foody, 1995). Lewis and 
others (Lewis et al., 2000) proposed a generalized confusion 
matrix for assessing area estimates from remote sensing im-
agery. Ideally, classification accuracy should be expressed in 
the form of a single index which is readily interpretable and 
which allows the relative performance of different classifica-
tions to be evaluated. The most widely used measures are 
derived from classification confusion or error matrix. This 
matrix gives the predicted and actual classes of membership 
for a set of pixels sampled from the classified image or the 
test data. In confusion matrix, main diagonal shows those 
pixels, which have been allocated correctly whilst the off- 
diagonal elements represent incorrect allocations. If desired, 
this could be calculated for individual classes from the 
producer’s and user’s perspectives (Story et al., 1986). In this 
investigation, classification accuracy computed using the 
confusion matrices for each class, is used for assessing the 
effectivity of classification methods. The confusion matrix 
lists the correct classification against the predicted classifica-
tion for each class. The number of correct predictions for each 
class falls along the diagonal of the matrix. All other numbers 
are the number of errors for a particular type of misclassifica-
tion error. For example, in Table 4 Dense forest class is cor-
rectly classified as 402 times , but is erroneously classified as 
Open forest class 17 time(s), Degraded forest class 35 times, 
Builtup area class as 4 time and Forest Blank class as 25 times 
and unclassified pixels as 33 times. The accuracy of dense 
forest is 77%. Similarly, the Open forest class is correctly 
classified as 562 times , but is erroneously classified as Dense 
forest class 7 time(s), Degraded forest class 1 time, Built –up 
area class as 6 times and Unclassified as 19 times. The accu-
racy of Open forest is 94%. In the present study, based on the 
confusion matrix the individual accuracy of each class has 
been measured and also the average accuracy has been meas-
ured. 

6. Results and Discussion 

The current research was restricted to the following 
objectives: 

 Comprehensive study of effectiveness of supervised 
neural models for the classification of satellite imageries, 
and comparison of classification accuracies with those 
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obtained with statistical classifiers; 
 Investigations on different sizes of training sets, scale-up 

factor ratios, and neural network architectures in terms 
of classification accuracy and convergence time. 

The investigations have been conducted for two cases of 
analysis: (i) Land use/Land Cover classification in Delhi 
Ridge, and (ii) Dominant species based forest classification in 
Shimla and Chopal Regions. In both the cases, the effectivity 
of neural network models to perform a finely tuned classifica-
tion has been investigated. 

In order to arrive at a preferred neural network for 
classification of satellite imageries, following approaches 
have been investigated. 

 
6.1. Crisp Neural Networks 

In the case of land use classification in Delhi Ridge, the 
neural network with number of hidden neurons varied from 
eight to one has been used. Performances of classification 
using crisp neural network for Delhi Ridge have been evalu-
ated for the cases wherein: 

 Locations of predictions/verification sets have been var-

ied; 
 Size of training sets has been varied from 252 to 50; 
 Ratio of prediction set size to training set size, scale-up 

factor has been varied from 2 to 60 in contrast to statisti-
cal classifiers wherein the reliable maximum ratio 
recommended is 10. 

Representative confusion matrices for theses cases are 
shown in Tables 3, 4, and 5. Table 3 is for crisp neural net-
works with one constant size for training data, but with varied 
sizes, viz., 3000, 2000, 1500, 1000 and 500 for prediction data. 
Both training data and prediction data correspond to 
geographical locations distributed across the study area. Table 
4 is with the same training set but for different verification 
sets, whose geographical locations are different and selected 
from larger geographical spread. The average accuracy for 
Table 3 is above 86.8% while for Table 4 the average accu-
racy is above 77.6%. The verification pixels corresponding to 
Table 3 are more clustered, and have less geographical spread 
compared to the verification sets corresponding to Table 4. 

Table 5 is for neural networks with a minimum size of 50 
for training, with prediction sets same as of Table 3. The aver
 

Table 3. Confusion Matrix of Neural Network Classifier for 6 Hidden Neurons and 252 Training Pixels in the Delhi Ridge 

Class Name Unclassified Dense forest Open forest Degraded forest Built-up Area Forest Blank Accuracy 
(%) 

Average  
Accuracy (%)

Verification Set 3000 
Dense forest 33 402 17 35 4 25 77 87.4 
Open forest 19 7 562 1 6 0 94  
Degraded forest 39 19 13 560 24 9 84  
Built-up Area 27 2 0 1 944 1 96  
Forest Blank 19 8 0 0 6 217 86  

Verification Set 2000 
Dense forest 22 244 10 29 4 17 74 87.2 
Open forest 14 6 336 1 6 0 92  
Degraded forest 28 15 5 438 13 6 86  
Built-up Area 17 1 0 0 617 1 97  
Forest Blank 13 3 0 0 5 149 87  

Verification Set 1500 
Dense forest 17 193 6 24 2 10 76 87.8 
Open forest 11 4 279 1 5 0 93  
Degraded forest 21 13 4 296 9 5 85  
Built-up Area 10 1 0 0 461 0 97  
Forest Blank 10 3 0 0 2 113 88  

Verification Set 1000 
Dense forest 12 106 1 20 2 7 71 86.8 
Open forest 8 2 151 0 4 0 91  
Degraded forest 20 8 2 234 6 4 85  
Built-up Area 5 1 0 0 322 0 98  
Forest Blank 6 2 0 0 1 76 89  

Verification Set 500 
Dense forest 6 67 0 8 1 1 80 86.8 
Open forest 5 2 95 0 3 0 90  
Degraded forest 11 6 1 92 3 1 80  
Built-up Area 2 1 0 0 157 0 98  
Forest Blank 3 2 0 0 0 33 86  
86 
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Table 4. Confusion Matrix of Neural Network Classifier for 6 Hidden Neurons and 252 Training Pixels 

Class Name Unclassified Dense forest Open forest Degraded forest Built-up Area Forest Blank Accuracy (%) Average Accuracy (%)

Verification Set 2000 
Dense forest 39 147 12 56 1 22 53 77.8 
Open forest 5 0 314 0 0 0 98  
Degraded forest 56 37 83 354 24 15 62  
Built-up Area 7 0 6 3 557 32 92  
Forest Blank 20 5 1 2 8 194 84  
Verification Set 1500 
Dense forest 32 121 6 45 1 12 55 77.8 
Open forest 4 0 199 0 0 0 98  
Degraded forest 45 34 61 289 19 3 64  
Built-up Area 5 0 6 3 480 20 93  
Forest Blank 12 5 1 1 5 91 79  
Verification Set 1000 
Dense forest 22 76 6 35 0 9 51 77.6 
Open forest 2 0 134 0 0 0 98  
Degraded forest 31 20 43 198 13 2 64  
Built-up Area 3 0 4 2 312 16 92  
Forest Blank 7 3 0 0 2 60 83  
Verification Set 500 
Dense forest 10 31 5 15 0 4 47 79.4 
Open forest 0 0 69 0 0 0 100  
Degraded forest 12 5 24 110 7 1 69  
Built-up Area 1 0 3 0 160 8 93  
Forest Blank 3 1 0 0 0 31 88  

 
Table 5. Confusion Matrix of Neural Network Classifier for 8 Hidden Neurons and 50 Training Pixels 

Class Name Unclassified Dense forest Open forest Degraded forest Built-up Area Forest Blank Accuracy (%) Average Accuracy (%)

Verification Set 3000 
Dense forest 4 289 25 64 3 2 74 75.0 
Open forest 4 12 548 56 9 0 87  
Degraded forest 73 64 34 418 24 6 67  
Built-up Area 68 1 0 5 903 13 91  
Forest Blank 60 101 0 20 4 211 56  
Verification Set 2000 
Dense forest 6 176 16 45 2 1 71 76.0 
Open forest 4 9 364 6 8 0 94  
Degraded forest 57 40 21 330 13 5 70  
Built-up Area 51 1 0 5 584 9 89  
Forest Blank 40 50 0 13 4 140 56  
Verification Set 1500 
Dense forest 6 176 16 45 2 1 71 76.2 
Open forest 4 9 364 6 8 0 94  
Degraded forest 57 40 21 330 13 5 70  
Built-up Area 51 1 0 5 584 9 89  
Forest Blank 40 50 0 13 4 140 56  
Verification Set 1000 
Dense forest 4 94 9 11 2 1 77 76.8 
Open forest 1 6 139 25 4 0 79  
Degraded forest 36 18 13 182 5 2 71  
Built-up Area 26 1 0 3 303 5 89  
Forest Blank 10 18 0 7 0 75 68  
Verification Set 500 
Dense forest 1 52 4 9 2 0 76 75.6 
Open forest 0 5 89 18 2 0 78  
Degraded forest 7 12 8 71 3 1 69  
Built-up Area 11 1 0 2 148 3 89.00  
Forest Blank 10 3 0 4 0 34 66.00  
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age accuracy for all cases with 50 training pixels is above 
70%. 

The mininmum scale-up factor and the corresponding 
confusion matrices are given in Table 3 (Verification Set 500) 
and Table 4 (Verfication Set 500) wherein the accuracies are 
86.8 and 78.4% respectively. The maximum scale-up factor 
ratio is 60 and the corresponding confusion matrix is given in 
Table 5 (Verfication Set 3000) wherein the accuracy is 75%. 
Applicability of neural network with smaller size of training 
set for classification is thus evident. 

Similarly, in the case of Shimla region, the performance 
of classification has been studied for cases: 

 The training set size has been varied from 408 pixels to 
60 pixels and the corresponding confusion matrices are 
given in Table 6; 

 The location of training/prediction set has also been 
changed. 

 
6.2. Fuzzy Neural Networks 

The performance of the fuzzy neural network as an 
alternative neural network model has been evaluated for the 
classification and for the selection of best network architec-
ture: 

 the representations of land use at output layer have been 
varied; 

 the number of hidden neurons has been varied; 
 the value of gamma, viz. the relative weight of union 

and intersection operations in fuzzy neuronal synaptic 
function, has been varied. 

The classification accuracies obtained using fuzzy neural 
networks are not good. In all cases of different verification 
sets with a constant 252 training set size, the accuracies have 
not been above 19.0%. 

 
6.3. Constrained Connectivity or Hierarchical Neural 
Networks 

The performance of Constrained Connectivity or Hierar- 
chical Neural Networks has been calculated. The classifica-
tion accuracies of crisp neural network model have been com-
pared to those of the best results obtained using different 
supervised and unsupervised parametric and non-parametric 
statistical classifiers viz. Maximum likelihood, Mahalonobis 
distance, Minimum distance and Parallelpiped Classifier. 
Comparison of performance of crisp networks for different 
architectures and different training and verification sets with 
the statistical classifiers has been given in Tables 7 and 8 for 
Delhi Ridge. Similarly, in the case of Shimla and Chopal re-
gions have been given in Tables 9 and 10. The corresponding 
results for fuzzy neural networks and hierarchical networks 
are presented in Tables 11 and 12. 

The classification accuracy is sensitive to the number of 
hidden neurons and it varies from 87.4 to 20.0% with the 
variation of hidden neurons from 8-1 in the case of land use 
classification in Delhi Ridge. This observation is independent 
of number of training pixels, sizes of verification sets and 

geographical locations of training and verification sets, and 
has been observed in both the cases of Delhi Ridge and 
Shimla & Chopal Regions. This is a significant result and is in 
variance to the earlier observations in the literature (Foody et 
al., 1995; Paola et al., 1995). The classification accuracy de-
creases by 6 to 15% as the size of the training set is reduced 
by five times in the case of land use classification in Delhi 
Ridge depending on the location of the choice of training/ 
testing sites. The decrease in classification accuracy is 10 to 
12% for the reduction in training size by 6.8 times in the case 
of dominant species in Shimla and Chopal regions. The loss in 
classification accuracy with the reduction in training set size 
is independent of neural network architecture but dependent 
on application and choice of location of training set.  

The scale-up factor, the ratio of the size of verifica-
tion/prediction set to the size of training set has no discernible 
effect on classification accuracy. However, it decreases by a 
maximum of 10% for certain neural network configurations. 

The variations of classification accuracy with number of 
hidden neurons, training set sizes and up-scaling ratios for the 
two cases, viz. land cover and floral species have been pre-
sented in this study. The corresponding results for statistical 
classification are also presented. It is interesting to note that 
the mean squared error of converged and trained neural net-
work beyond a certain limit does not improve the classifica-
tion accuracy. The classification accuracy for different classes 
varies from 71 to 98% in the case of crisp neural network with 
6 hidden neurons. Such wide variations in the classification 
accuracies for different classes are features in the case of 
statistical classifiers too. The built-up areas and open forests 
are classified best and confusions amongst forest classes do 
not exhibit a pattern. 

The classification accuracy using statistical classifiers 
varies from 64 to 74% and 69 to 77% in the cases of Delhi 
Ridge and Shimla region respectively (Tables 19 and 22). 
These statistical classification accuracies are for training set 
sizes of 252 and 408 pixels respectively. The corresponding 
classification accuracies obtained using the best neural net-
work architectures range from 87.8 to 77.6% and 80.1 to 
75.6% for Delhi Ridge and Shimla region with 252 and 408 
training set sizes respectively. The corresponding classifica-
tion accuracies with five times reduced training set size of 50 
and 60 for Delhi Ridge and Shimla Region, range from 76.8 
to 66.0% and 73.6 to 63.8% respectively. The accuracies ob-
tained with the reduced training sizes are better than the 
accuracies obtained using statistical classifiers with four times 
enlarged training sizes. 

The classification accuracy obtained using fuzzy neural 
network model is very poor. As indicated in the earlier pub-
lished work, the utility of fuzzy neural networks is more in 
identifying systems endowed with complex logics and small 
sizes. The classification accuracy using constrained connec-
tivity network is comparable to that of statistical classifiers. 
The classification accuracy varies from 64.1 to 67.2% with a 
specific advantage of faster convergence due to reduced num-
ber of network connections.
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Table 6. Confusion Matrix of Neural Network Classifier for 8 Hidden Neurons and 408 Training Pixels in the Shimla and  
Chopal Regions 

Class Name Unclassified A B C D E F Accuracy 
(%) 

Average  
Accuracy (%) 

Verification Set 2000 
A 19 281 4 20 28 14 8 75 80.16 
B 14 1 318 1 12 4 0 90  
C 40 3 0 190 2 17 4 74  
D 21 6 3 4 413 13 2 89  
E 48 1 3 4 8 162 0 71  
F 5 7 3 19 3 21 274 82  

Verification Set 1500 
A 12 245 4 15 26 11 7 76 79.16 
B 9 1 243 1 10 2 0 91  
C 27 2 0 105 0 12 4 70  
D 17 6 3 3 338 10 1 89  
E 31 1 3 3 8 91 0 66  
F 2 4 3 13 3 17 207 83  

Verification Set 1000 
A 6 168 1 8 17 8 5 78 79.16 
B 7 1 154 1 10 1 0 88  
C 17 1 0 77 0 10 1 72  
D 13 5 2 2 215 7 1 87  
E 22 1 0 3 5 64 0 67  
F 2 2 1 9 3 11 139 83  

Verification Set 500 
A 2 86 1 4 5 5 3 81 78.66 
B 5 0 77 0 4 1 0 88  
C 8 1 0 29 0 4 1 67  
D 8 3 2 2 107 36 0 85  
E 10 0 0 2 3 4 0 70  
F 0 1 1 7 3  72 81  

 

 
Table 7. Performance of the Neural Network Classifier for Different Neural Network Architectures, Training Sizes, and 
Geographical Land Locations (Clustered, Distributed, and Varied Sizes) in the Delhi Ridge 

Verification Accuracy (percentage of agreement with the ground truth) Hidden Neurons Number of 
Pixels Set I 

(3000 pixels) 
Set II 
(2000 pixels) 

Set III 
(1500 pixels) 

Set IV 
(1000 pixels) 

Set V 
(500 pixels) 

8  252 74.0 74.0 74.2 72.2 74.0 
6 (best) 252 87.4 87.2 87.8 87.8 86.8 
3 252 67.0 68.0 68.0 66.4 68.0 
1 252 21.2 20.2 21.0 20.0 20.4 

8 95 76.1 75.0 75.0 74.3 72.0 
6 (best) 95 78.0 77.2 77.0 76.0 74.0 
3 95 71.0 71.0 71.3 71.6 68.0 
1 95 21.4 20.0 21.0 20.0 20.3 

8 (best) 50 75.0 76.0 76.2 76.8 75.6 
6 50 69.0 68.0 68.0 68.2 66.2 
3 50 70.0 70.0 70.0 69.0 64.4 
1 50 22.6 21.6 22.4 20.6 21.6 
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Table 8. Performance of Different Statistical Classifiers, for Different Geographical Land Locations (Clustered, Distributed, and 
Daried Sizes) in the Delhi Ridge 

Name of Classifier Number of  Verification Accuracy (percentage of agreement with the ground truth) 
 Pixels Set I (2000 pixels) Set II (1500 pixels) Set III (1000 pixels) Set IV (500 pixels)

Maximum Likelihood 252 71.0 71.0 70.0 72.0 
Mahalonobis Distance 252 74.0 70.0 69.0 67.0 
Minimum Distance 252 65.0 64.0 64.0 64.0 

 
Table 9. Performance of the Neural Network Classifier for Different Neural Network Architectures, Training Sizes and 
Geographical Land Locations (Clustered, Distributed, and Varied Sizes) in the Shimla and Chopal Reigions 

Hidden Neurons Number of  Verification Accuracy (percentage of agreement with the ground truth) 
 Pixels Set II 

(2000 pixels) 
Set III 
(1500 pixels) 

Set IV 
(1000 pixels) 

Set V 
(500 pixels) 

8  408 80.1 79.1 79.1 78.6 
6 (best) 408 77.0 76.3 76.0 75.1 
3 408 70.8 69.5 69.8 70.3 
1 408 17.0 17.0 17.0 16.0 

8 210 70.2 70.1 70.0 71.4 
6 (best) 210 70.0 70.0 69.0 71.0 
3 210 67.1 67.6 65.0 65.0 
1 210 17.0 16.8 17.0 16.0 

8 (best) 60 69.1 70.5 70.6 73.6 
6 60 66.6 64.6 64.6 62.8 
3 60 60.7 60.2 58.0 59.0 
1 60 17.0 17.0 16.8 17.0 

 
Table 10. Performance of Different Statistical Classifiers for Different Geographical Land Locations (Clustered, Distributed, and 
Varied Sizes) in the Shimla and Chopal Regions 

Name of Classifier Number of  Verification Accuracy (percentage of agreement with the ground truth) 
 Pixels Set I (2000 pixels) Set II (1500 pixels) Set III (1000 pixels) Set IV (500 pixels)

Maximum Likelihood 408 77.0 77.0 77.0 76.0 
Mahalonobis Distance 408 71.0 69.0 70.0 72.0 
Minimum Distance 408 74.0 74.0 74.0 75.0 

 
Table 11. Performance of the Fuzzy Neural Network Classifier for Different Training Sizes, γ-Values and Geographical Land 
Locations (Clustered, Distributed, and Varied Sizes) in the Delhi Ridge 

Number of  Verification Accuracy (percentage of agreement with the ground truth) 
Pixels γ- Value Set I (3000 pixels) Set II (2000 pixels) Set III (1500 pixels) Set IV (1000 pixels) Set V (500 pixels) 

252 0.3 18.4 17.0 18.2 18.4 19.0 
252 0.6 17.2 16.8 18.0 17.9 18.1 
252 0.8 18.1 17.0 17.9 17.6 17.8 

95 0.3 16.2 16.3 17.2 16.2 15.2 
95 0.6 17.0 15.2 16.3 16.7 16.2 
95 0.8 17.3 16.2 16.0 17.0 17.1 

50 0.3 15.2 15.1 15.6 17.2 15.7 
50 0.6 15.3 14.2 13.0 15.1 14.2 
50 0.8 15.1 14.4 14.2 17.3 13.3 
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7. Conclusions 

The study conclusively establishes the effectivity of crisp 
neural network based classifiers for satellite imagery analysis. 
The specific advantage with this set of classifiers is higher 
accuracy and reduced size of ground truth data in comparison 
to statistical classifiers. The above conclusion is not depend-
ent on application, geographical locations of training and 
verification data sets, and scale-up factor. The reduction in the 
requirement of ground truth data is a significant advantage in 
practical applications. In addition, the crisp neural network is 
effective in fine tuning the classification as demonstrated by 
the forest classification based on dominant species in Shimla 
and Chopal regions. 

The hierarchical neural networks, in despite of their 
inability in providing higher accuracies, are effective with 
reduced sizes of training set. As their convergence is faster, 
hierarchical neural network could be used as a placing them 
as an alternative to neural network classifier in practical and 
routine applications not requiring very high accuracies. 

The fuzzy neural network classifier has no specific 
advantage. It has poor accuracy of prediction and is sensitive 
to parameters governing fuzzy neuronal aggregation and 
exhibits slow convergence.  

In summary, the effectivity of crisp neural network in the 
analysis of remotely sensed data is demonstrated in this study 
with the help of the two distinct cases viz. Delhi ridge and 
Shimla and Chopal Regions in India. 
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