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ABSTRACT.  Subsurface characterization is an important requirement in developing a simulation model of the processes of subsur-
face contaminant transport and degradation. This paper presents a methodology that can model the inherent uncertainty that arises due 
to simplification of the processes and assumptions made about site data. The linear interpolation method was adopted to represent the 
changes in the hydraulic characteristics under study at uncertain locations within the subsurface site. An optimization method was de-
signed to identify the proper range of those uncertain locations within which the hydraulic characteristics were assumed to change. A 
3D contaminant fates and transport simulation model – UTCHEM (University of Texas at Austin, 2000) was used in this study to pre-
dict the site status. The solution method for this nonlinear optimization function was the multi-level cubic spline function. Results from 
the multi-level cubic spline function were compared with results generated from the fitting polynomials in the 6th and 9th orders. This 
method was used to analyze some data from a laboratory experiment. The results indicated that the optimized linear interpolation func-
tion can model this kind of uncertainty and enhance accuracy of the simulation model. 
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1. Introduction  

The first step in the design of a remediation strategy for a 
petroleum contaminated site is to use a multiphase and 
multicomponent model to simulate the passive and enhanced 
bioremediation processes in the subsurface. In this step, accu-
racy of the simulation model directly affects quality of the 
decision making. However, uncertainty is inherent and un- 
avoidable in some of the input parameters in the simulation 
and accuracy of the simulation model can be compromised 
because of this uncertainty. 

Previously, Larue (1997) suggested that the uncertainty 
inherent in hydrogeological modeling could originate from 
both randomness and vagueness of the parametric values. To 
handle the uncertainty that is caused by the vagueness of the 
parametric values, fuzzy set theory, probability analysis and 
stochastic analysis have been adopted. Different approaches 
have been adopted for modeling uncertainties in the problem. 
For example, Christakos et al. (1998), Zhu and Sykes (2000) 
and Freeze et al. (1990) used the stochastic method for 
evaluating uncertainties in groundwater flow and transport; 
Dou et al. (1997), Schulz and Huwe (1999), Schulz et al. 
(1999) and Zou and Lung (2000) applied fuzzy-set theory for 
modeling the imprecise parameters involved in groundwater 
transport; Abdin et al. (1996), Davis and Keller (1997) Naff, 
(1998a, b) and Hu et al. (2002) solved the simulation model 
using numerical methods based on the probability distribu-
tions of the input parameters. Li (2003) made a detailed re-
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view of the different approaches for modeling uncertainties in 
the problem. But scant attention has been focused on model-
ing the uncertainty that arises due to randomness of paramet-
ric values. In this paper, the Optimized Linear Interpolation 
Method will be developed to model the uncertainty derived 
from randomness of parametric values. In the following, the 
source of uncertainty, the methodology for modeling this kind 
of uncertainty and the solution method will be presented in 
detail, and then a case study and some result analysis will be 
discussed. 

2. Sources of Uncertainty 

Subsurface characterization is an important requirement 
in simulating the processes of subsurface contaminant trans-
port and degradation. For a contaminated site, heterogeneity 
appears in both site hydraulic properties and contaminant 
transport processes. However, the heterogeneity of aquifer 
properties is almost always poorly understood. Current field 
investigation methods do not adequately define the aquifer 
properties. 

In remediation a real-world petroleum contaminated site, 
often remediation decisions are made based on a random, 
systematic or stratified sample because the site is typically so 
large that it is impossible to collect data on the entire area. 
Due to inadequacy of the sampled data and uncertainty in the 
assumptions of aquifer properties, heterogeneity at the site 
cannot be adequately and deterministically characterized. As a 
consequence, simulation of the contaminant transport and 
degradation is associated with inherent uncertainties. Hence, it 
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is important to develop a methodology that can determine the 
hydraulic characteristics such as soil particle size distribution, 
hydraulic conductivity, and contaminant concentration distri- 
bution of the entire site from limited soil sampling data. The 
Optimized Linear Interpolation Method has been developed 
for this purpose. 

3. Optimized Linear Interpolation Method 

3.1. Linear Interpolation 
To clearly illustrate the method, distribution of the soil 

particle size is being analyzed here as an example. For all of 
the other site characteristics, the same method can be applied. 

For a real-world contaminated site, the type of subsurface 
soil at different locations is likely to be different; however, 
between any two locations, the change in the soil particle size 
distribution can in fact be continuous. That is, the change in 
soil particle size distribution between two adjacent sampling 
points that have different soil types might be gradual. There-
fore, it is not reasonable to represent the transition zone be-
tween different soil types at two sampling points as a crisp 
boundary between two different soil type zones. Since only 
isolated samples are taken from a site, describing the soil 
distribution and other hydraulic characteristics of the entire 
site requires making assumptions for areas from which no 
data have been collected. The assumption made is that the de- 
gradation occurs between soil type changes. As well, the 
hydraulic characteristics which are solely affected by media 
properties are also assumed to change gradually between any 
two sampling points. 

The Optimized Linear Interpolation Method has been 
used to describe distribution of the soil particle size for loca-
tions from which no sampling data were collected. In a 2-D 
figure, A(x0, y0), B(x2, y0), C(x2, y2) and D(x0, y2) are the sam-
pling points; while M(x, y) is an unknown point located in the 
degradation belt among these four sampling points (Figure 1). 
The degradation between any two contiguous sampling points 
is assumed to be linear, which is a reasonable assumption 
because soil type degradation is normally linear in the real 
world subsurface. When the required accuracy of soil type 
classification is not very high, error due to this assumption is 
acceptable. The volume percentage of sand (R) at point M(x, 
y) can be determined by using linear interpolation as follows: 
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The same methodology can then be used for calculating 

the volume percentages of clay and silt, and any other media 
properties under study. 

M (x, y) 

A (x0, y0) 

D (x0, y2) C (x2, y2) 

B (x2, y0) 

 

 

 
Figure 1. Sketch map of the location of samples and 
unknown point. 

 
This method assumes that degradation regions exist be-

tween any two contiguous sampling points. In these degrada-
tion regions, the soil distribution and hydraulic characteristics 
solely affected by the media properties will degrade linearly 
from one sampling point to its neighbour. If a proper width of 
the degradation belt or region can be determined, the accuracy 
of the modeling results will be improved. The optimization 
method proposed in this study is used for determining the 
proper width of the degradation belt. 

 
3.2. Optimization for the Width of Degradation Belt 

When using the Linear Interpolation Method to calculate 
the value of an unknown point which is surrounded by some 
available sampling points, it is likely that the soil type around 
those sampling points are similar to the sampling points, but 
the soil type at points which are far away from those sampling 
points are less likely to be similar to those points. The proper 
width of the degradation belt is mainly affected by char- 
acteristics of the site itself. To more accurately simulate sub- 
surface conditions at the concerned site, an optimization func-
tion is used. The Optimized Linear Interpolation Method is 
described as follows. 

First, we can define the width of the degradation belt (wt). 
Assuming a 1-D domain (x direction only), and A(x0, y0), 
B(x2, y0) are two sampling points, the distance between these 
two sampling points is: AB = |x0 - x2|. 

Then for sampling point A, all points located along the 
line AB within the section (x0, x0  + |x0 - x2| (1 - wt)/2) have 
the same soil particle size as sampling point A, and all points 
located along the line AB with the section (x2 - |x0 - x2| (1 - wt) 
/2, x2) have the same soil particle size as sampling point B. 
For those points located within the sections ((|x0 - x2| (1-wt)/2) 
+ x0, y0) to (x2 - (|x0 - x2| (1 - wt)/2), y0 ), the soil particle size 
changes gradually, as shown in Figure 2. 

The soil particle size distributions in the entire site can be 
obtained using this method. As well, before inputting any 
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Figure 2. The width of the degradation belt (wt). 
 

er parameters under study into the simulation model, this 
thod can also be used to handle this kind of uncertainty 

sociated with them. 
Since the value of wt affects accuracy of the simulation 

del, the optimization function was used to identify the 
oper wt value. After pre-treating all concerned uncertain 
rameters by the linear interpolation degradation belt method, 
 selected the proper value of the width of the degradation 
lt (wt), in order to improve accuracy of the simulation re-
lt. 

Let us assume all other input parameters are certain, so 
t the simulation result is affected by the width of the 

gradation belt (wt) only. The objective function aims to 
nimize the difference between the simulation results and 
 monitored real site data, here the simulation results are the 

lculated contaminant concentration at each monitored point. 
e least square method has been used as the objective func-
n, which serves to minimize the overall relative error be-
een the calculated value and the monitored value. The 
jective function is generated as follows: 
jective:  
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ere Ci, t+d is the measured contaminant concentration at 

point i at time t + d; C’i, t+d is the calculated concentration 
value at point i at time t + d; the simulation model UTCHEM 
{University of Texas at Austin, 2000| has been used to calcu-
late C’i, t+d; i is the monitored point at the concerned site, in 
total, there are N monitored points; d is the monitored time, in 
total, there are M times the monitored data will be used in the 
function; M is decided by the user and affected by data 
availability. 

4. Solution through Multi-Level Spline Functions 

Objective (3) is a constrained nonlinear function. Since 
the relationship between wt with C’i, t+d is nonlinear and com-
plex, it is difficult to solve this function using analytic 
calculation methods. In this study, a numerical calculation 
method was used to generate the optimal wt value. 

In numerical calculation with a digital computer, it is 
necessary to consider problems of interpolation between given 
data points. One of these interpolating functions is known as a 
spline function. Schönberg first introduced the concept of 
Spline function in 1946 (Schöenberg, 1946). It was used in 
many applications such as interpolation, data fitting, numeri-
cal solution of ordinary and partial differential equations, and 
in curve and surface fitting. Spline functions have the useful 
properties of being (1) smooth and flexible, (2) easy to store 
and manipulate on a computer, (3) easy to evaluate, along 
with their derivatives and integrals, and (4) easy to generalize 
to higher dimensions. 

A multi-level spline function method has been adopted in 
this study, because it is difficult to select the number of knots 
that represent the curvature believed to correctly represent the 
data. In order to avoid generating only a local optimal result, 
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two different sets of knots were used to generate optimal re-
sults, which were then compared. Finally, the interval of inter-
est will be refined to get a more accurate result. The detailed 
procedure of the multi-level spline function is as follows: 

(1) Place 2 sets of knots (sets a and b) at regularly spaced 
intervals; 

(2) Construct two different spline functions based on 
each set of knots, find out two optimal wta and wtb correspond-
ing to each set of knots respectively and their spline intervals 
(Wamin, Wamax) and (Wbmin, Wbmax ); 

(3) If the location of wta and wtb is far from each other, 
(Wamin > Wbmax, or Wamax < Wbmin,) then generate more knots 
and go back to step 2;  

(4) Else input wta and wtb to the simulation model, so as 
to obtain the values of J(wta) and J(wtb)by using the objective 
function (Equation (3)); 

(5) Generate more sub-intervals in the interval 
(min(Wamin, Wbmin), max(Wamax, Wbmax)) by generating more 
knots in order to increase accuracy of the spline function in 
the concerned region, find out the wt’ value; 

(6) Compare wta, wtb with wt’, and also J(wta), J(wtb)and 
J(wt’). 

If J(wt’) is less then or equal to min(J(wta), J(wtb)), then 
terminate the loop and output wt’. Else go back to step 2 and 
generate more knots. 

This study adopted the most common type of spline func-
tion, which is the cubic spline. In cubic spline, each polyno-
mial is a cubic of order 4. For the 1-dimensional cubic spline 
for a set of n + 1 points, (j0, j1, …, jn), the detailed algorithm 
of the cubic spline functions is as follows: 

According to Bartels et al. (1998), let the ith piece of the 
spline be represented by: 
 

2 3( )i i i i iJ t a b t c t d t= + + +                                 (5) 
 
where t = (wti - wtimin)/(wtimax - wtimin), t ∈ [0, 1]. When wti = 
wtimin , t = 0, when wti - wtimax , t = 1. 

In this equation, wtimax, wtimin are the upper bound and 
lower bound of the ith piece of the spline. Then 
 

(0)i i iJ j a= =                                     (6) 
 

1(1)i i i i i iJ j a b c d+= = + + +                            (7) 
 

Taking the derivative of ji(t) in each interval and then 
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Solve (6) to (9) for ai, bi, and ci. Then 

i ia j=                                          (10) 
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The the second derivatives match at the interior points: 
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For endpoints: 
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there are 4n unknowns. Based on Bartels et al. (1998), the 
equations can be arranged as follows: 
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            (22) 

 
In this study, Matlab 7 (Mathworks Inc., 2003) was used 

to generate the cubic spline functions. Using the above 
method, the optimal wt value can be obtained. 

5. Case Study 

A pilot-scale tank system was used for the verification of 
this optimization algorithm. Figure 3 shows the plan view of 
the tank, which includes the whole size of the tank, the size of 
each grid used in the simulation model and the location of 
monitored points inside the tank. The study zone was conta- 
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minated by petroleum hydrocarbons; the well locations and 
soil type distribution of the experimental tank is shown in 
Figure 4. The monitored concentrations of benzene from day 
2 to day 10 are listed in Table 1. The measured and estimated 
intrinsic permeability (k) and porosity values of each grid are 
listed in Table 2.1 and Table 2.2. Since only some of the grids 
in this Table were sampled and measured in the experiment, 
the concerned hydraulic characteristics of the unknown grids 
were estimated based on the available sampling data. 

 
Table 1. The Monitored Concentrations of Benzene from Day 
2 to Day 10 

 Day2 Day4 Day6 Day8 Day10 

well 1 0.304 0 0 0 0 
well 2           
well 3 1.926 1.593 1.429 0.508 0.401 
well 4 0 0 0.090 0.400 0.285 
well 5 1.497 1.920 2.070 1.985 0.824 
well 6 0.444     0.472 0.265 
well 7 0.385 0.733 1.227 0.686 0.300 
well 8 0.524 0.703 0.366 0.527 0.359 
well 9 1.270 1.202 1.398 1.257 1.083 
well 10 1.366 1.628 0.947 1.590 2.055 
well 11 0.649 0.710 0.663 0.554 0.463 
well 12 0.417 0.741 0.166 0.443 0.322 

 

For a detailed explanation on the input file of the other 
site data (Huang, 2004). As shown in Figure 4, the boundaries 
between different soil types are crisp in each layer, which 

means that the particle size combinations of those grids alone 
and at different side of each boundary changed suddenly. But 
in the real word, the soil particles distributions at the subsur-
face are continuous; so it is reasonable to assume that a 
degradation belt exists, in which the soil types changed gradu-
ally. In the simulation model used in this study, the input pa-
rameters of intrinsic permeability and porosity are functions 
of the media properties only. When linear interpolation is used 
to represent the degradation of the soil particle size distribu-
tion in one layer between two soil types, the degradation of 
porosity can be assumed linear also, and the intrinsic 
permeability is a function of the pore diameter, with the unit 
of L2 , defined as: 
 

2K Cd=                                        (23) 
 
where K is intrinsic permeability (L2); C is shape factor 
properties of Media; and d is mean pore diameter (L). 

Under the assumption that within the degradation belt, 
the volumes of the soil particles changed linearly, so the 
degradation of k3/2 can be assumed linear also. To define the 
maximum width of the degradation region, the sampling data 
have been reviewed for this purpose and the width of the soil 
type degradation region has been defined as the distance be-
tween two sampling points which have different soil types 
along the X direction. For those regions that do not have de-
tailed soil sampling data near the boundary between different 
soil types, the degradation belt is simply assumed to be equal 
to 4 grids (1.2 m) in the X direction, corresponding to wt  
equal to 1. 
 
 

Figure 3. Tank plan view. 
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Table 2.1. The Measured and Estimated Porosity Values of Each Grid 

Layer 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Layer 2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.35 0.35 0.35

Layer 3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.45 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.35 0.35

 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.35 0.35

Layer 4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
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Table 2.2. The Measured and Estimated Intrinsic Permeability Values of Each Grid 

Layer 1 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 

Layer 2 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 890 

 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 890 890 890 890 

Layer 3 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 

 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 

 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 800 800 800 800 800 1000 700 700 

 430 430 430 430 430 430 430 430 430 700 700 700 700 600 500 1300 1300 1300 1300 1300 1200 1000 700 700 

 430 430 430 430 430 430 430 430 430 430 430 430 700 700 900 900 900 1000 1000 1000 1000 700 700 700 

 430 430 430 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 700 1000 700 700 700 

 430 430 430 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 700 1000 700 700 700 

 430 430 430 430 430 430 430 430 430 430 430 430 700 700 700 700 700 700 700 700 1000 700 700 700 

Layer 4 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 1000 1000 1000 1000

 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 1000 1100 1100 1000

 700 700 700 700 700 700 700 700 700 700 700 700 700 500 1300 1300 1300 1300 1300 1300 1100 1100 1100 1000

 700 700 700 700 700 700 700 700 700 700 700 700 700 600 600 1300 1300 1300 1300 1300 1300 1000 1000 1000

 700 700 700 700 700 700 700 700 700 700 700 700 600 600 1300 1300 1300 1300 1300 1300 1000 1000 1000 1000

 700 700 700 700 700 700 700 700 700 800 800 800 1000 1000 800 800 800 800 800 800 1000 1000 1000 1000

 700 700 700 700 700 700 700 700 700 700 700 700 1000 1300 1300 800 800 800 800 1100 1000 1000 1000 1000

 700 700 700 700 700 700 700 700 700 700 700 700 700 700 1300 1100 800 800 800 1100 1000 1000 1000 1000
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Figure 4. Well locations and soil types. 

 
Table 3. Knots Values (wt) and the Corresponding J(wt) Levels at Interested Wells during Days 2 to 6 

wt 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
J(wt) 2.2587 2.2798 2.2764 2.273 2.2699 2.2706 2.2683 2.2659 2.2659 2.2613 2.2588 

wt 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ― 
J(wt) 2.2568 2.2547 2.2525 2.2505 2.2484 2.2464 2.2444 2.2428 2.2412 2.2853 ― 
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Two sets of wt values are selected first, Wt(1) = (0,0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), and Wt(2) = (0, 0.05, 
0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1). Table 3 
lists all wt values and the corresponding J(wt) levels. 

For set a, the calculated optimal wt value wt(a) = 0.87, 
which belongs to interval (0.8, 0.9), the corresponding J(wt) 
value is 2.2419. For set b, the optimal wt value wt(b) = 0.92, 
which belongs to interval (0.85, 0.95), the corresponding J(wt) 
value is 2.2348. Figure 5 shows the curves of sets a and b. In 
this figure, the dotted line represents the data for set b and the 
line with “x” represents those for set a. 

 

 
Figure 5. The fitting curves generated by cubic spline 
function of sets a and b. 
 

Therefore new knots have been generated within region 
(0.8, 0.95) as wt = (0.82, 0.84, 0.86, 0.88, 0.91, 0.93). By us-
ing the multi-level cubic spline function described above, the 
optimal wt value is 0.92 and the corresponding J level is 
2.2372. 

6. Result Analysis 

The calculated optimal wt value has been used to modify 
the input permeability and porosity values. The square of the 
relative errors of wt equal to 0.92 (ε(0.92)2) at some monitor-
ing wells has been calculated and compared with the 
corresponding values under the condition that no degradation 
belt was considered (wt = 0, ε(0)2). Table 4 lists the difference 
between these values. It is shown that by using wt to model 
the uncertainty, accuracy of the simulation result of the entire 
site (Σ(ε(0.92)2 - ε(0)2)) and most of the concerned monitoring 
wells can be improved. It can be observed that at some 
monitoring wells, the accuracy of the simulation result when 

wt is equal to 0.92 is worse than that for when wt is equal to 0. 
This observation is reasonable and can be explained as fol-
lows: in a real-world site, since the distribution of soil 
characteristics might be different spatially, so different regions 
might have different proper wt values. In this study, the opti-
mal wt value was calculated based on the assumption that the 
entire site has the same wt value, so the optimal wt value can 
only improve accuracy of the result of the entire site and not 
that for each monitoring well. 

 
Table 4. Difference of the Squares of the Relative Errors 
under wt = 0.92 and wt = 0 for the Calculated Benzene 
Concentrations at Wells 8, 9, 10, 11 and 12 (ε(0.92)2- ε(0)2) 

 Day 2 Day 4 Day 6 Day 8 Day 10 

well 8 -0.01749 -0.01229 -0.05344 -0.00051 0.004647

well 9 -0.00342 -0.00392 -0.00126 -0.00221 -0.00448

well 10 -0.00135 -0.0015 -0.0125 -0.00039 0.000778

well 11 -0.00014 -0.00063 -0.00042 0.000667 0.001502

well 12 -0.05392 -0.02912 -1.05515 -0.09236 -0.1053 

 
The result has also been compared with the results gener-

ated by the Monte Carlo method and fitting polynomial. The 
Monte Carlo method can generate the same result but required 
more than 100 times of executing the simulation model. By 
using the multi-level cubic spline function method presented 
in this paper, only 24 times of executing the simulation model 
was needed. Therefore, it has been demonstrated that using 
the cubic spline method can reduce substantial computer time. 
The 9th order fitting polynomial was also tested; the result is 
void because of the appearance of the Runge Phenomenon. 

A sensitivity analysis was conducted and the values of 
J(0.96) and J(0.88) were calculated which correspond to wt 
with 5% error, 0.92(1 ± 5%). As listed in Table 5, J(0.96) = 
2.2497 and J(0.88) = 2.2436; the corresponding absolute rela-
tive errors of ABS(J(wt ± error) - J(wt))/J(wt) are 6 and 0.3%, 
respectively. Thus it can be seen that the change of wt value 
does affect accuracy of the simulation result. When the wt 
value approximates but is less than the optimal wt, then the 
effect of the error of wt will be less than that of the wt value 
which approximates but is larger than the optimal wt. 

7. Conclusions 

In this paper, the Optimized Linear Interpolation Method 
has been developed to handle uncertainties that arise due to 
simplification and assumption of site data in the simulation of 
 

Table 5. Sensitivity Analysis 

J (0.92) J (0.92 - 5% error) J (0.92 + 5% error) (J(wt - error) - J(wt))/J(wt) (J(wt + error) - J(wt))/J(wt)

2.2372 2.2436 2.2497 0.3% 6% 
01 
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NAPL fate and transport in groundwater. The multi-level cu-
bic spline function was used to solve the constrained non-lin-
ear optimization function. This method was applied on data 
from a tank at a laboratory. The result of the case study indi-
cated that the method presented in this paper can handle the 
problem of uncertain data and enhance accuracy of the 
simulation results. This method is potentially applicable to 
other fields that involve this kind of uncertain data. An objec-
tive in future work is to enhance the methodology for the pur-
pose of generating different wt values at different locations, in 
an effort to improve accuracy of the simulation results for 
both the entire site and for each monitoring well. 
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