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ABSTRACT.  Evolutionary Algorithms (EAs) are a set of probabilistic optimization algorithms based on an analogy between natural 
biological systems and engineered systems. In this paper, the computational performance a set of specific EAs (specifically, the Ge-
netic Algorithm, Evolutionary Programming, Particle Swarm Optimization, Ant Colony Optimization and Shuffled Complex Evolution 
Algorithm) are compared using a set of four mathematical test objective functions. In addition, a hybridization of EAs with other local 
search methods is introduced to improve or fine-tune the performance the primary EA. As a case study, the EAs are applied to a 
calibration problem for a water distribution system and ably show their robust and global convergence characteristics. 
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1. Introduction  

Although sometimes requiring great effort to do so, many 
engineering design problems can be casted as an optimization 
problem. The fundamental process of an optimization begins 
with some candidate solutions and iteratively refines and im-
proves them through various procedures. The task is to find a 
design that is optimal in terms of a specific objective function 
where the solution is determined by the values of the decision 
variables that best achieves the specified purpose of the pro-
ject. 

Classical methods of optimization involve the use of 
gradients or higher-order derivatives of the objective function 
with respect to changes in the candidate solutions. Such meth-
ods can be shown to have exponential local convergence on 
certain well-conditioned functions, but could also result in 
suboptimal solutions on the responses that generate multiple 
local optima. Also, they are not well suited for processing 
inaccurate, noisy and complex data, although they do some-
times excel at dealing with complicated systems (Back et al., 
1997). The real world problems always generate non-convex 
response surface so robust methods of optimization are often 
required to generate suitable results. 

Evolutionary Algorithms (EAs) define a field where such 
difficult optimization problems are studied in depth. It 
complements the study of traditional computational systems. 
There are several types of EAs in use today. The four tradi-
tional algorithms are: the Genetic Algorithm (GA) created by 
Holland (1973) and made famous by Goldberg (1989), the 
Evolutionary Programming (EP) created by Fogel (1963) and 
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developed further by his son Fogel (1992), the Evolution 
Strategies (ES) strongly promoted by Back (1996), and the 
Genetic Programming (GP) recently developed by Koza 
(1992). More recently, new EAs have arisen, such as Particle 
Swarm Optimization (PSO) created by Kennedy and Eberhart 
(1995), Ant Colony Optimization (ACO) created by Dorigo 
and Gambardella (1997), and the Shuffle Complex Evolution 
(SCE) algorithm introduced by Duan et al. (1992). The field 
of evolutionary computation has grown up around these tech-
niques, with its roots still firmly in evolutionary biology and 
computer science. 

The purpose of this paper is to present EA and its specific 
algorithms of GA, EP, PSO, SCE and ACO. Also, a hybridiza-
tion of EA with a local search method is suggested to improve 
the performance of the original EA. These four algorithms are 
tested with four nonlinear benchmark functions where two are 
unimodal and the other two are multimodal. Moreover, EA is 
applied to an optimization problem for a water distribution 
system calibration using so-called inverse transient analysis 
(Liggett and Chen, 1994; Jung and Karney, 2004a). The EAs 
help to solve the inverse problem in which system parameters 
(such as the lumped leak coefficients and friction factors) are 
determined using measured transient pressure head data, a 
transient simulation program and an optimization routine. 

2. General Framework of Evolutionary Algorithms 

EA is the study of computational systems that use ideas 
and get inspiration from the natural evolution and adaptation. 
This method aims to understand such computational systems 
and developing more robust and efficient ones for solving the 
complex real-world problems. Problems that are dealt with by 
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such computational systems are usually highly nonlinear and 
contain inaccurate and noisy data. 

All evolutionary algorithms have two prominent features 
which distinguish themselves from other search algorithms. 
First, they are all population-based. A certain number of 
individuals, grouped as a population, are used to explore the 
solution space and thus to find the optimum in the system. 
Although some of EAs (i.e., Evolution Strategies) may have 
much more offspring than that of the parent generation, the 
best-fitted offspring are selected to achieve the same number 
from one generation to the next. Second, there is communica-
tions and information exchange among individuals in the test 
population. Such communications and information exchange 
are represented as search operators (i.e., crossover, recombi-
nation and mutation) in Figure 1 which summarize a general 
framework of EA. By applying the search operators, offspring 
(new individuals) can be generated from parents (exiting 
individuals). 
 

Initialize the population at random 

Evaluate the fitness of each individual 

Select parent from the population  
based on fitness 

Apply search operators 

Produce new generation 

 Population converge? or 
maximum time is reached? 

Stop 

No 

Yes 

 
Figure 1. General framework of ECA. 

3. Characters of Evolutionary Computation 

EA is an emerging field which has grown rapidly in re-
cent years. EA has been found to be a source of some of the 
most flexible, efficient and robust of all search algorithms 
known to the computer science. There are many beneficial 
characteristics of evolutionary computation. 

The main advantage of EA is that it is conceptually sim-

ple. The traditional deterministic gradient-based methods can 
provide a rigid guarantee of success, but they normally do so 
at the expense of requiring that the function satisfy certain 
restrictive conditions such as meeting a number of specific 
gradient conditions. Even with these, gradient-based methods 
sometimes converge to local sub-optima. In addition, they are 
not robust for dynamic changes in the environment and often 
require a complete restart in order to provide a solution (e.g., 
dynamic programming). On the other hand, the simplicity of 
EA provides a superior adaptability for finding a solution in 
changing circumstance. Moreover, EA involves the evaluation 
of the function at a random sample of points in the feasible 
parameter space, followed by subsequent manipulations of the 
sample using a combination of deterministic and probabilistic 
rules. Even though the evolutionary algorithms can guarantee 
convergence only in a probabilistic sense, they are quite effi-
cient in practice and have the major advantage that they do 
not usually impose restrictive conditions on the nature of the 
function. Of particular importance, evolutionary algorithms 
often possess the capability for the search process to climb out 
of a local minimum or to prevent the search from becoming 
prematurely localized. These characteristics give evolutionary 
computations a higher potential of locating the region of the 
global optimum solution. 

EA can be applied to virtually any problem that can be 
formulated as a functional optimization task. EA produces a 
data structure to represent solutions, a performance index to 
evaluate solutions, and variation operation to generate new 
solutions from old solutions. The state space of possible solu-
tions can be disjoint and can encompass infeasible regions. 
The formulation procedure is independent to functional 
characteristics, in contrast with other numerical techniques 
which might be applicable for only continuous values or other 
constrained sets. The representation of EA allow for variation 
operators that maintain a behavioural link between parent and 
offspring. A continuum of possible changes should be allowed 
such that the effective step size of the algorithm can be turned, 
perhaps online in a self-adaptive manner. This flexibility al-
lows for applying essentially the same procedure to discrete 
the combinatorial problems, the continuous-valued parameter 
optimization problems, the mixed-integer problems, and so 
forth. 

Another useful feature is capability of self-optimization. 
Most of classic optimization techniques require appropriate 
setting of exogenous variables. This is true for evolutionary 
algorithms as well. However, there is a long history of using 
the evolutionary process itself to optimize these parameters as 
part of the search for optimal solution (Back et al., 1997). 

EA, despite its excellent properties, is notorious for its 
computational burden due to its population-based characteris-
tic. Especially, it has disadvantages of the well-noted slow 
final convergence and the ever present danger of still converg-
ing to a local minimum. However, EA offers a framework 
such that it is relatively easy to combine with local search 
optimization to improve its performance by exploiting their 
advantages. This may be as simple as the use of a gradi-
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ent-based minimization used after primary search with an EA 
(Kapelan et al., 2000), or it may involve simultaneous 
application of algorithms (Kapelan et al., 2002). Also, EA can 
be used to optimize the performance of neural network, fuzzy 
systems, production systems, and other program structures 
(Back et al., 1997). In many cases, the limitations of conven-
tional approaches can be avoided. 

The other interesting characteristic to relieve the 
computational burden of EA is that it is intrinsically a highly 
parallel process. As the distributed processing computers are 
becoming more readily available, there is a corresponding in-
creased potential for applying the evolutionary algorithms to 
more complex problems (Back et al., 1997). It is often the 
case that individual solutions can be evaluated independently 
of the evaluations that are assigned to the competing solutions. 
The evaluation of each solution can be handled in parallel and 
only selection requires some serial processing. Recently, Balla 
and Lingireddy (2000) reported results from an exploratory 
research that implemented a complicated optimization model 
based on a distributed genetic algorithm on a network of PCs. 

4. Evolution Algorithms 

There are many algorithms that are based or inspired by 
biological systems. Five fairly well-known ones and a new 
hybrid one are described and used here. 

 
4.1. Genetic Algorithm 

The best known EC paradigm is the Genetic Algorithm 
(GA), created by Holland and made popular at least for engi-
neers by Goldberg (1989). The GA approach is used widely, 
especially in engineering and industrial applications. In the 
GA approach, the population is, mostly, binary encoded and 
genetic operators, inspired to mimic DNA evolutionary proce-
dures, are applied to the population in order to stimulate the 
system to evolve, and thus to explore the search space effi-
ciently. Numerical approaches using GA have been explored 
(Goldberg, 1989; Simpson et al., 1994; Balla and Lingireddy, 
2000, Jung and Karney, 2006). Since this procedure is now 
well known, it is only briefly reviewed here. 

 
4.2. Evolutionary Programming 

Evolutionary Programming (EP) developed by Fogel 
(1963) is the one of traditional EA paradigms. EP is similar to 
GA in its use of a population of candidate solutions to evolve 
an answer to specific problems; however EP places emphasis 
on developing behavioural models, that is, models of the way 
observable system interact with the environment. EP is de-
rived from the simulation of adaptive behaviour in evolution; 
GA is derived from the simulation of genetics. The difference 
is perhaps subtle, but important. GA works in the genotype 
space of the information with, in most cases, a binary coding, 
while the EP emphasizes the phenotype space of observable 
behaviours using real numbers. Therefore, EP is directed at 
evolving behaviour that solves the problem at hand with what 

is called “phenotypic evolution”. Another significant charac- 
teristic of EP is self-adaptation, which provides the capability 
of strategy parameters to evolve themselves, thus directing 
mutation into more promising parts of the search space. 

EP is a more flexible approach to evolution than some of 
the other paradigms. The operators are freely adapted to fit the 
problem at hand. Generally the paradigm relies on mutation, 
not sexual recombination, to produce offspring. EP usually 
generates the same number of children as parents. The parents 
are selected to reproduce using a tournament method; their 
features are mutated to produce children who are added to the 
population. When the population doubled, the members of 
parents and offspring are ranked, and the best ranking half is 
kept for the next generation so the original population size is 
maintained. Recently, Soh and Dong (2001) incorporated EP 
algorithm with the finite-element method for solving various 
inverse problems in civil and structural engineering. They also 
introduced several improved techniques that were added to 
the conventional EP algorithm to increase the efficiency and 
yet to retain the versatility of the conventional EP algorithm. 

 
4.3. Particle Swarm Optimization 

Recently, a new EA approach has arisen, based on an-
other population search procedure, called Swarm Intelligence 
(SI). SI argues that intelligent cognition derives from the 
interaction of individuals in a social environment and that the 
main ideas of sociocognition can be effectively applied to 
develop stable and efficient algorithms for selected optimiza-
tion tasks (Kennedy and Eberhart, 2001). One of these SI 
techniques, called Particle Swarm Optimization (PSO), has 
been developed to simulate the movement of a flock of birds 
searching for food. PSO has been used mainly for Continuous 
Optimization tasks and was originally developed by Kennedy 
and Eberhart (1995). In this technique, the population of 
potential solutions is called a “swarm” and the approach is to 
explore the search space simulating the movement of a flock 
of birds searching for food. However, in the computer version 
of this search, the global exchange of information among all 
individuals, which are called “particles”, takes place and each 
particle can profit from the discoveries of the rest of the 
swarm. PSO has proven to be an efficient algorithm for solv-
ing hard optimization problems and engineering applications, 
including neural network training and human tremor analysis 
(Kennedy and Eberhart, 2001). 

There are many variants of the PSO technique developed 
thus far. In this paper, a version of the algorithm derived by 
adding an inertial weight to the original PSO dynamics has 
been used (Shi and Eberhart, 1989). Assuming that the search 
space is D-dimensional, we denote the current position by Xi = 
(xi1, xi2, …, xiD) of the ith particle of the swarm and by Pi = 
(pi1, pi2, …, piD) the best position it ever had within the search 
space. Let g be the index of the best particle in the swarm and 
Vi = (vi1, vi2, …, viD) the velocity (position change) of the ith 
particle. The swarm is manipulated according to the equa-
tions. 
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1 1 2 2( ) ( )id id id id id idv wv c r p x c r p x= + − + −               (1) 
 

id id idx x v= +                                     (2) 
 
where d = 1, 2,…, D; i = 1, 2,…, N and N is the size of the 
population; w is the inertial weight; c1 and c2 are two positive 
constants; r1 and r2 are two random values in the range [0, 1]. 
Equation (1) is used to calculate the ith particle’s new velocity, 
a determination that takes into consideration three main terms: 
the particle’s previous velocity, the distance of the particle’s 
current position from its own best position, and the distance of 
the particle’s current position from the swarm’s best experi-
ence (position of the best particle). Thus, each particle or 
potential solution moves to a new position according to (2). 
The performance of each particle is measured using a prede-
fined fitness function. The inertial weight w plays an impor-
tant role for the convergence behaviour of the technique. It is 
used to control the impact of the previous history of velocities 
to the current velocity of each particle, regulating this way the 
trade-off between the global and local exploration abilities of 
the swarm, since large values of w facilitate global explora-
tion of the search space (visiting new regions) while small 
values facilitate local exploration, i.e., fine-tuning the current 
search area. The initialization of the swarm is done using a 
uniform distribution over the search space. By gradually 
decreasing the inertial weight from a relatively large value to 
a small value through the course of the PSO run, the PSO 
tends to exhibit a more global search ability at the beginning 
of the run while having more local search ability near the end 
of the run. Recently, Jung and Karney (2004b, 2006) apply 
PSO to calibrate system parameter in water distribution sys-
tem and to obtain optimal pipe diameters in the pipeline sys-
tem with allowance for water hammer conditions, respectively. 
This PSO applications are compared with GA and present fast 
convergences and slightly better optimization results than GA. 

 
4.4. Shuffled Complex Evolution Algorithm 

The shuffled complex evolution (SCE) algorithm intro-
duced by Duan et al. (1992) is a robust, effective and efficient 
strategy for function minimisation. This algorithm combines 
four concepts that have each proved successful for global 
optimisation: a combination of probabilistic and deterministic 
approaches, the concept of clustering, systematic evolution of 
a "complex" of points across the parameter space, and the 
utilization of competitive evolution. Gan and Biftu (1996) 
noted that these four features represented the best features of 
several optimisation methods. This algorithm was constructed 
around the controlled random search (CRS) method described 
by Price (1983), using its best features such as global sam-
pling and complex evolution, and incorporated the powerful 
concepts of competitive evolution and complex shuffling. 
These latter features allow the sample information to be thor-
oughly exploited in order to find global solutions. 

The SCE algorithm is initiated by sampling a random set 
of parameter values from the feasible parameter space. This 
set of points, termed a "population", is then partitioned into a 

number of smaller groups (or "complexes"), each of which is 
allowed to evolve independently according to a competitive 
complex evolution strategy, adapting the deterministic sim-
plex method of Nelder and Mead (1965). This method of 
evolution allows each complex to search the parameter space 
in different directions. The complexes are periodically shuf-
fled to enable information sharing, and at random locations 
new parameter values are introduced to the complexes to 
ensure the process of evolution does not get trapped by un-
promising regions (Duan et al., 1992). This method is re-
peated until sufficient convergence is achieved, with the 
population moving towards the globally optimal values. By 
combining competitive evolution and complex shuffling, the 
SCE algorithm ensures that information about the parame-
ter space obtained by each complex of samples is shared 
across the entire population, which allows an efficient search 
of the feasible parameter space. 

The SCE algorithm has a number of parameters that re-
quire specification, including the number of complexes; the 
number of points in a complex; the number of points in a sub-
complex; the number of consecutive offspring generated by 
each subcomplex; and the number of evolution steps taken by 
each complex. Duan et al. (1993, 1994) provide default values 
for all of these parameters, except for the number of com-
plexes, which is highly dependent upon the complexity of the 
problem. In this study the number of complexes was set equal 
to the dimension of the problem. (i.e., 2, 6 and 20). 

 
4.5. Ant Colony Optimization 

Ant Colony Optimization (ACO) algorithms were first 
introduced by Dorigo et al. (1996) for solving combinatorial 
optimization problems. ACO mimics behaviors of a popula-
tion of ants when determining the shortest path from its nest 
to a food source. Each ant deposits a chemical substance, 
pheromone, which provides an indirect form of communica-
tion with other colony members. Ants select a path propor-
tional to the level of pheromone, thus over time creating a 
‘feedback mechanism’ with shorter paths being reinforced 
with higher levels of pheromone. An ACO algorithm itera-
tively constructs solutions whereby each ant utilizes the 
probabilistic policy given in Equation (3) to select an option 
(path) for every decision variable. That is, the probability p of 
selecting option i for path j at some iteration t depends upon 
the pheromone intensity τi,j(t), that is representative of the 
learned information; and the desirability ηi,j, that acts as a bias 
against less desirable options. Two parameters α and β control 
the relative importance of pheremone intensity and desirabil-
ity: 
 

, ,
,

, ,

( )
( )

( )
i j i j

i j
i j i j

i

t
p t

t

α β

α β

τ η
τ η

∀

=
∑                              (3) 

 
After the generation of solutions by the colony, a decay 

parameter, ρ, is used to reduce the existing pheremone levels 
on all paths and new pheremone is added to given paths 
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depending upon a specified updating policy. The decay 
parameter represents the degree to information for previous 
iterations is retained, and can be used to control sub-optimal 
convergence. Numerous ACO algorithms exist, with most of 
the variation between them due to different pheremone updat-
ing policies. The standard ACO version is referred to as Ant 
System (AS), where each ant in the colony updates the phere-
mone for the paths it traversed using the policy given in Equa-
tion (4): 
 

, ,( ) ( 1)
(.)i j i j

k

Qt t
f

τ ρτ= − +                           (4) 

 
where fk(.) is the overall solution quality determined by ant k 
(where fk(.) is positive and has lower values representing bet-
ter solutions) and Q is an arbitrary proportionality constant to 
ensure that pheremone additions are of a suitable magnitude. 
Other versions such as ASrank, and ASelite restrict the updating 
policy to a select number of ants and another popular algo-
rithm, the Max-Min Ant System, uses dynamically evolving 
bounds for the pheremone levels on each path to encourage 
wider exploration. 

ACO has been successfully applied to the Travelling 
Salesman Problem (Dorigo and Gambardella, 1997) and for 
the optimal design of water distribution systems, Maier et al. 
(2003) demonstrated the superior performance of an ACO 
when compared to a GA. This paper applies only the standard 
ACO, known as AS. The objective functions in this paper do 
not allow for the feature of path desirability to be imple-
mented, thus ηi,j, was set equal to unity. The parameter alpha, 
was given a standard setting α = 1, and the pheremone decay 
parameter was set to ρ = 0.9 after preliminary testing. The 
initial pheremone levels on all paths were arbitrarily set to 
50.0, and a proportionality constant of 1000.0 was used in the 
updating procedure. 

 
4.6. Hybrid Evolutionary Algorithm 

As indicated in Section 3, it has several disadvantages in-
cluding the well-noted slow final convergence and the ever 
present danger of still converging to a local minimum despite 
its population basis. However, one of good characteristics of 
EA is that they are easy to hybridize with other kinds of 
optimization to improve its performance by exploiting their 
advantages. Such optimization methods range from exact 
algorithms which are studied in mathematical programming, 
such as integer programming, dynamic programming, branch 
and bound, polyhedral approaches, and linear and nonlinear 
programming, to heuristic (or approximate) algorithms that 
are tailored to the given problem domains, such as greedy 
methods, local search (or hill climbing) and other heuristic 
constructions of solutions (Back et al., 1997). 

However, the most simple, but most efficient hybridiza-
tion might be to combine EA with local search method. Quick 
convergence of a local search method would help to increase 
overall convergence speed of the EA. Therefore, hybridization 

of evolutionary computation with a local search method is an 
attractive methodology to compensate for their disadvantages. 
The characteristics of two optimizations make it obvious that 
EA should be used first to find the region of global optimum 
solution. The local search method is then employed to find the 
optimum point to the required level of accuracy. 

Kapelan et al. (2000) suggested a hybrid form of GA and 
Levenberg-Marquardt (LM) method for the calibration of 
water distribution system hydraulic models. A GA search is 
performed in the first stage until some termination criterion is 
met. Subsequently, the LM search is performed using the best 
solution found by the first-stage GA search as the starting 
point. However, the main problem associated with the 
two-staged method is how to decide when to stop the GA and 
start using the LM method. Therefore, they introduced an-
other hybrid method to include local search operator with 
pre-specified probability rate in the genetic operators of GA 
(Kapelan et al., 2002). The hybridization with LM method in 
the both approaches efficiently improves the performance of 
the GAs but it requires the expense of gradient information of 
the system. Recently, Zyl et al. (2004) developed a hybrid 
method which combines the GA method with a hillclimber 
search strategy. Unlike the previous approaches, local search 
method using Hillclimber strategies complement GAs by be-
ing efficient in finding a local optimum, but require no gradi-
ent information. This characteristic reserves the robustness of 
the EA, as well as improves the convergence speed of EA. 

In this paper, a new hybrid form to combine PSO with lo-
cal search method is introduced. As a local search method, 
Powell’s method is applied because it is quadratically conver-
gent without requiring derivative evaluation (Press et al., 
1992). PSO is used first to get the solution near the global 
optimum solution and then Powell’s method is employed to 
find the best solution starting with the result of the PSO 
search. However, the switching from PSO to Powell’s method 
is a tough problem and it should be carefully considered 
depending on the system structures. To decide when to termi-
nate both methods, the relative error is defined as: 
 

( ) 2
new old

new old

f f
f f

ε
−

=
+                               (5) 

 
where fnew and fold are the function values for the present itera-
tion and the previous one, respectively. When ε becomes less 
than a pre-specified stopping criterion, the computation is 
terminated. The fractional tolerances, the stopping criteria, are 
pre-defined for the both PSO (Ftol, PSO) and Powell’s method 
(Ftol, Powell). It might be reasonable to choose the bigger num-
ber of Ftol, PSO than that of Ftol, Powell because the PSO’s purpose 
is to find the approximate region where a global optimum is 
located while Powell’s method could save computation time 
in finding the global optimum. Also, due to the stochastic 
character of PSO, it may be useful to wait more generations 
(NPSO), thus allowing the search to reach a better solution re-
gion after the relative error ε becomes smaller than the frac-
tional tolerance. This might prevent premature convergence to 
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a local optimum in a multimodal function and provide more 
chance to reach the global solution region by stretching out 
the PSO particles to other local optima. The proper selections 
of the two fractional tolerances (Ftol, PSO and Ftol, Powell) and the 
consecutive generation number (NPSO) are important for 
increasing the performance of the hybrid evolutionary algo-
rithm and are strongly dependent upon the system characteris-
tics. 

5. Benchmark Test 

In order to compare the computational performances of 
specific EAs, four benchmark functions are presented as fol-
lows: 

Sphere function: 2
1

1
( )

n

i
i

f x x
=

= ∑                      (6) 

Rosenbrock function: 
 

( ) ( )
1 2 22

2 1
1

( ) 100 1
n

i i i
i

f x x x x
−

+
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑                 (7) 

 
Generalized Rastrigin function: 
 

2
3

1

( ) 10cos(2 ) 10
n

i i
i

f x x xπ
=

⎡ ⎤= − +⎣ ⎦∑                    (8) 

 
Generalized Griewank function:  
 

2
4

1 1

1( ) cos( ) 1
4000

nn
i

i
i i

xf x x
i= =

= − +∑ ∏                   (9) 

 
Function f1 and f2 are unimodal functions that have a sin-

gle local maximum or minimum only. The sphere function f1, 
shown in Figure 2(a), is well-known simple function with the 
global minimum at 0ix∀ = but Rosenbrock function f2, 
shown in Figure 2(b), is widely known as the banana function, 
which has been notorious for its slow convergence because of 
the way the curvature bends around the origin. The global 
minima is at 1ix∀ = , as is clearly visible from the formula, 
but the valley passing through the origin descends very slowly 
in comparison with the steepness of the valley walls, which 
create a difficulty in finding the minima. 

In contrast, the generalized Rastrigin function f3 and 
generalized Griewank function f4 are typical examples of 
nonlinear multimodal functions that have many local optima 
as well as a global one. Both functions have the same global 
minimum at 0ix∀ =  and their number of local minima in-
creases exponentially with the problem dimension. These 
functions are fairly difficult problems due to its complicated 
search space and its large number of local minima. 

For unimodal functions, the convergence rates of EAs are 
more interesting than the final results of optimization; for 
multimodal functions, the final results are much more impor-
tant since they reflect an algorithm’s ability to escape from 
poor local optima and thus to locate a good near-global opti-

mum. The number of test functions might be insufficient to 
assess all characteristics and performance of each EA, but 
they provide the general trend and some guideline for each 
algorithm. Certainly the shape of these functions can offer 
some significant challenges to an optimization procedure. 

 
5.1. Test of EAs 

Five EAs - GA, EP, PSO, SCE and ACO are first ex-
plored with the four benchmark functions. Also, in order to 
compare the algorithm performances according to the differ-
ent dimension sizes, three sizes (2, 6 and 20) are considered 
for all benchmark functions. Due to the different characters of 
the EAs, the parameters chosen for each algorithm differ, but 
the common parameters like population size, generation num-
ber and the search space of each dimension are fixed and set 
as 200, 200 (total 40000 evaluations) and -100 to 100, respec-
tively. 

More specifically for the GA, the probability of mutation 
is 0.02; the probability of (uniform) crossover is 0.5; tourna-
ment selection and elitism (in which the best individual is 
copied to the next generation) are selected. The chromosome 
length of each dimension is set as 15 so that the discrete 
searching space of the GA is about 0.006 (200/215). In the EP, 
the algorithm has no recombination and relies on mutation 
only as the search operator. It also uses the self-adaptation 
principle to evolve the probability of mutation online during 
the search. After calculating the standard deviation propor-
tional to the fitness value, mutation is applied to all individual 
with Gaussian noise of zero mean. As a selection method, a 
stochastic tournament selection is used. After mutating the 
parent generation, the algorithm compares each individual 
with other individuals and records the number of wins. Both 
original parent and mutated version are sorted in descending 
order of wins scored. Based on the empirical study of PSO 
(Shi and Eberhard, 1999), a linearly decreasing inertial weight 
is used which starts at 0.9 and ends at 0.4 and c1 = 2 and c2 = 
2 in Equation (1). The maximum velocity of the PSO is set as 
10 for all dimensions. The parameters used for SCE and ACO 
are described in the sections 4.5 and 4.6 before. 

Figure 3 presents the evolution procedure to minimize 
the 6 dimensional Sphere function with GA, EP, PSO, SCE 
and ACO. After 10000 evaluations, the PSO, SCE, GA and EP 
solutions have converged to similar minimum values but the 
PSO and SCE approaches shows a more rapid initial conver-
gence rate than GA and EP. Compared to other four algo-
rithms, ACO presents the slowest convergence as well as the 
worst minimum value in the final result. Figure 4 shows the 
evolution procedure to minimize the 20 dimensional general-
ized Griewank function with the five algorithms. 

Remarkably, SCE and PSO not only show the fastest 
convergence (like Figure 3), but also present the best mini-
mum function value in the final result. This may indicate that 
the both optimizations have a strong ability to escape from 
poor local optima and to find a global or near-global mini-
mum. Table 1 show the results of all 12 benchmark tests with 
the five optimization methods and four different functions. 
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Figure 2. Topographies of the benchmark function with 2 dimensions. 
urprisingly, the final results of the all optimization 
rate as the dimension size increases but one noticeable 
 is that that the all minimum results of SCE are better 
ose of the other algorithms except for the result of PSO 
wo dimensional generalized Griewank function. This 
ent convergence may be partly due to the “hybrid-like” 
teristic of SCE using the simplex algorithm, as a local 
 method, for generating offspring. However, even the 
pproach had difficulties finding a minimum in high 

sional problem of the Rosenbrock function and con-
 to a poor minimum (17.6); of course, the other proce-
did even worse, but this shows that no single technique 
ect. 

st of Hybrid PSO 

s shown in Figures 3 and 4, EA optimizations have a 
l trend of a rapid initial convergence followed by a 

slower final one. Interestingly, the hybrid characteristic of 
SCE provides a faster convergence as well as the smaller 
minimum function value than the other classical EAs. There-
fore, this benchmark test introduces a hybridization of EA 
with Powell’s method as a local search method. Due to its 
strongest performance of the four classical EA algorithms, 
PSO is selected and hybridized with Powell’s methods, called 
as Hybrid Particle Swarm Optimization (HPSO). For the 
convergence criteria, two fractional tolerances (Ftol, PSO and 
Ftol, Powell) and the consecutive generation number after the 
tolerance (NPSO) are selected as 10-2, 10-6 and 10, respec-
tively. 

Table 2 presents the optimization result of HPSO, espe-
cially indicating the number of generation to converge to opti-
mum and its minimum function value. In most tests, HPSO 
converges within 100 generations, which clearly indicate the 
hybridization of EA improves the computation time of the 
original EA. In addition, the HPSO find better improved mini-
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mum results than the PSO and SCE in Table 1, especially for 
high dimensional unimodal functions. The final results of 
HPSO in the multimodal functions are better than the original 
PSO but it still show the localized optimum in the multimodal 
functions. It might be reason that the Powell’s method finds 
the local minimum in the valley that PSO assume a global 
minimum would be located, but this was the wrong location. 
Therefore, the results of multimodal functions present that the 
success of this hybrid optimization method crucially depends 
on the first-stage PSO search. 

Table 1. Optimal Function Value of EAs 

Benchmark function 
 

Dim. 

Sphere Rosenbrock Rastrigin Griewank

2 0 0 0 0 
6 0 0.31 5.76 0.03 

PSO 

20 8.58 1230 147 0.29 
2 0 0.01 0 0.01 
6 0.35 165 16.1 0.11 

GA 

20 1600 1.47E+08 2150 1.40 
2 0.00 0.00 0.00 0.01 
6 0.00 11100 40.4 0.56 

EP 

20 850 8.71E+06 968 1.33 
2 0 0.450 0.44 0.02 
6 7.83 807 58.02 0.48 

ACO 

20 11000 3.01E+09 11400 2.9 
2 0 0 0 0.01 
6 0 0 0.995 0.01 

SCE 

20 0 17.6 10.07 0 

6. Application to the Calibration of Water 
Distribution System 

A water distribution system (WDS) is an engineered sys-
tem that is used to convey water from the source (well, river, 
etc.) to the consumer. The main aim of a WDS is to deliver 
water to the consumer when it is necessary, in the correct 
quantity and in accordance with the relevant water quality 
standards. Obviously, a mathematical model that can accu-
rately simulate WDS behaviour is of great importance for 
every WDS authority. 

To allow for meaningful use, any WDS hydraulic model 
should first be calibrated. Calibration is the process in which a 
certain number of WDS model parameters are adjusted until 
the model closely mimics the behaviour of the real WDS. 
Traditionally, calibration was, and unfortunately often still is, 
treated as a manual task. However, it has been shown recently 
that much better results can be achieved if calibration of the 
analyzed WDS model is formulated. This is another class of 
optimization problems using an objective function with the 
difference measured transient pressures and predicted pres-
sures which hydraulic simulation computer model yield with 
assumed system parameter, called as inverse transient analysis 
(Liggett and Chen, 1994; Jung and Karney, 2004a). 

The example pipe network shown in Figure 5 comprises 
two reservoirs at nodes 1 and 16, forty-five pipes, as well as 
twenty-nine nodes. This is a gravity flow system that draws 
water from the higher reservoir to the downstream network. 
The elevations of two reservoirs at node 1 and 16 are 50 m 
and 45 m, respectively, and other nodes are zero. The length, 
diameter, wave speed and Darcy-Weisbach friction factor of 
all pipes are assumed known and are given in 500 m, 0.3 m, 
1,000 m/s and 0.015, respectively. Ten 12 L/s demands at 
nodes 2, 3, 5, 14, 15, 25, 26, 27, 28 and 29, six 24 L/s de-
mands at nodes 7, 9, 13, 17, 19 and 23, and five 36 L/s de-
mands at nodes 10, 11, 12, 16 and 18 are considered for the 
specific case considered here. 

In order to introduce transient conditions into the case 
study for inverse transient calculation, a valve closing at node 
6 are chosen to characterize the performance of the system. In 
order to compare the inverse calculation responses according 
to the degree of transient severity, three kinds of valve closur-
ing time are introduced and initiate rapid transient (inst. shut-
off), moderate transient (5.0 s) and mild transient (20 s). In 
this case study, the leak point is located at node 22; the leak 
area is 0.0005 m2. In order to represent the global characteris-
tic of pipe system, the measurement points for inverse tran-
sient calibration are selected at node 13 and 16. In inverse 
calculation, the possible leakage nodes are select with node 4, 
8, 22, and 24 and the range of leak area in both optimization 
methods is 0 to 0.002 m2. Unknown pipe friction factors are 
pipe 3, 15, 18, and 26 and the range of friction factor is 0.001 
to 0.5. 

In the test, the population size and generation number for 
the optimization programs are set as 50 and 200, so the total 
number of evaluations becomes 10000. Figure 6 shows the 
evolution procedures of GA, PSO and SCE to minimize the 
difference between the measure head trace and the predicted 
one during the inverse calculation and Table 3 indicates their 
calibration results. This calibration study shows GA and PSO 
are slightly better convergence speed than SCE but PSO and 
SCE show the excellent ability to find the fairly accurate leak-
age and friction factors, especially SCE for mild transient 
case. 

Three optimization programs show poorer calibration re-
sults for the case of a mild transient (20 s) than the ones for 
rapid transients (inst. and 5.0 s). Perhaps, not surprisingly, this 
indicates that the rapid transient is much more efficient for 
determining the detailed characteristics of pipe system. There 
are obviously practical implications if this is a general result, 
since mild transients are certainly less intrusive to the system. 
Interestingly, the milder transient has the faster convergence 
speed in Figure 6. One reason might be that the mild transient 
does not uniquely characterize the system, so the ‘mismatch’ 
with real system doesn’t make a significant difference to 
optimization process, which causes quick but faulty conver-
gence. 

 
7. Conclusions 

Evolutionary Algorithms are robust and globally oriented, 
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Figure 3. Evolution Procedure with Sphere function (6 dim.). 
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Figure 4. Evolution Procedure with generalized Griewank function (20 dim.). 
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Figure 5. Example pipe network. 
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and are generally more straightforward to apply in situations 
where there is little or no a priori knowledge about the prob-
lem to solve. Because EA requires no derivative information 
and it is stochastic in nature, EA is capable of searching the 
solution space with a greater likelihood of finding the global 
optimum. 

This paper presents five EA optimizations (GA, EP, PSO, 
SCE and ACO) and compares the five algorithms with four 
benchmark functions. The benchmark tests show the SCE and 
PSO show not only fast convergence speed for the unimodal 
functions, but also has the strongest global convergence to 
escape from poor local optima for the multimodal functions. 
In order to improve the PSO performance, a hybridization of 
PSO with Powell’s method as a local search method is sug-
gested and compared with the four benchmark functions. The 
hybrid optimization clearly improves the convergence speed 
and the final optimal result but it still can become trapped in 
one of the local optima of the multimodal function. 

Many optimization problems from the civil and environ-
mental engineering world are complex in nature and difficult 
to solve by conventional optimization techniques. In particu-
lar for large pipeline systems, the optimization of construction 
and maintenance costs can save many millions of dollar every 
year. Also, a growing concern has arisen nowadays over water 
loss in the existing water supply infrastructure in aging sys-
tems, so the calibration of friction and leakage is an important 
problem in drinking water system. Among the many optimiza-
tion methods, it would be possible to say EA is excellent one 

to solve large and complex pipeline systems that have nonlin-
ear structural characteristics and multiple optima. In addition, 
as the speed of new computers is increasing rapidly, it seems 
evolutionary computation is more attractive program to solve 
large pipeline system. 
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