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ABSTRACT.  An economical design of water distribution network is the aim of any agency dealing with water supply distribution. 
The fund needed for the construction, maintenance and operations of these systems requires an achievement of a good compromise be-
tween technical and economical aspects. Though the overall planning process of water distribution networks consists of three phases: 
layout, design and operation and each phase is not independent, but from a technical point of view, each can be formulated and solved 
as a separate problem. Several methods are available for designing a water distribution networks. In the present research, optimal de-
sign of water distribution network is experimented with particle swarm optimization (PSO) under dynamic adaptation and it is com-
pared with genetic and simulated annealing algorithm. Particle swarm optimization is a relatively new generation of combinatorial 
meta-heuristic evolutionary algorithm that utilizes the swarm intelligence to achieve the goal of optimizing a specified objective func-
tion. This algorithm uses the cognition of the individuals and social behavior in the optimization process. The effectiveness of this 
algorithm is reported in terms of number of function evaluations and CPU time. 
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1. Introduction  

A water distribution system is an essential infrastructure 
for supplying water to domestic as well as industrial uses. It 
connects consumers to sources of water, using hydraulic com- 
ponents, such as pipes, valves, pumps and tanks. The design 
of such a system is a multifarious task involving numerous in- 
terrelated factors requiring careful consideration in the design 
process. Important design parameters include water demand, 
minimum pressure requirements, topography, system reliabi- 
lity and economics of piping, pumping and energy uses. Two 
sets of simultaneous equations are needed to solve a network 
simulation problem. The first set of equations describes that 
conservation of flow must be satisfied at each network junc- 
tion. The second set of equations is based on the principle of 
conservation of energy, which is described by the non-linear 
relation between flow and head loss in each pipe. Solving the 
simultaneous equations using iterative procedure requires the 
aid of computer as the equations are non-linear and number of 
equations is large. Hence, the developments in the field of 
computing place a great role in the planning and design of 
water distribution pipe network. Finding the optimal design of 
a distribution system is a challenging task as it is a time-con- 
suming work involving reliability-cost trade-off. Selecting a 
network configuration with minimum pipe-cost and maximum 
reliability is a complex process. Numerous works have been 
reported in the literatures for the optimal design and optimal 
design considering certain reliability factors. Wide varieties of 
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optimization tools have been applied in the past 30 years for 
optimal design of networks which include linear programming, 
different kinds of non-linear programming, heuristic methods 
like the genetic algorithm, simulated annealing technique, and 
colony algorithm, etc. Each method has its own advantages 
and disadvantages in formulation, speed of solving, handling 
nonlinearity, efficiency, etc. The last few decades have wit- 
nessed a growing interest in adapting mathematical models 
that can mimic natural biological processes into engineering 
design algorithms, thereby increasing the robustness and effi- 
ciency of these tools. Genetic algorithms (GA) are search and 
optimization tools, which work differently, compared to 
classical search and optimization methods. The primary rea- 
sons for their success are their broad applicability, ease of use 
and global perspective (Goldberg, 1989). The application of 
genetic algorithm on the optimal design of pipe networks are 
reported in Goldberg and Kuo (1987), Simpson et al. (1994), 
and Savic and Walters (1997). Goldberg and Kuo (1987) 
applied the genetic algorithms for optimizing operations of a 
gas pipeline. Simpson et al. (1994) were first applied genetic 
algorithm for optimal design of water distribution network. 
Unknown decision variables are coded as binary strings and 
three simple operators of GA are used in evaluation process. It 
is reported that GA helps to find near global optimal at the 
expenses of few evaluations compared to the size of the 
search space. Wu and Simpson (1996) used messy genetic 
algorithms for optimization of water distribution network 
through two different formulations, namely discrete pipe sizes 
model and split pipe cost model. A messy genetic algorithm 
uses variable-length strings, a threshold genetic selection and 
messy operators of cut and splice. Savic and Walter (1997) 
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applied genetic algorithm to two well-known problems avail- 
able in literature and it is reported that the result obtained is 
promising when compared with other methods. Halhal et al. 
(1997) experimented a structured messy genetic algorithm for 
optimal rehabilitation of a water distribution system. The 
structured messy genetic algorithm has some features of the 
messy GA such as coding scheme and variable length strings. 
It is based on progressively building up the complexity of the 
individuals in successive populations of solutions, in a struc- 
tured manner, partially imitating the natural evolution of com- 
plex life forms from single cell organisms. Montesinos et al. 
(1999) proposed a modified GA for water distribution opti- 
mization by introducing several changes in the selection and 
mutation processes of a simple GA. Dandy and Engelhardt 
(2001) applied GA for optimal schedule for the replacement 
of the water pipes with the aim of minimizing the present 
value of capital repair and damage costs. 

Cunha and Sousa (1999) used simulated annealing algo-
rithm for optimal design of water distribution network. The 
simulated annealing procedure simulates the process of slow 
cooling of molten metal to achieve the minimum function 
value in a minimization problem. The cooling phenomenon is 
simulated by controlling a temperature-like parameter intro-
duced with the concept of the Boltzmann probability distribu-
tion. Maier et al. (2003) applied ant colony algorithm in opti-
mal design and rehabilitation of water distribution network. It 
is highlighted that the computational performance and search-
ing of global solution is promising compared with the genetic 
algorithms. Liong and Atiquzzaman (2003) proposed shuffled 
complex algorithms for optimal designs. Eusuff and Lansey 
(2003) proposed a shuffled frog-leaping algorithm for water 
distribution network optimization, which mimics the culture 
of frogs and the algorithm is developed based on the concept 
of memetic evolution in the form of infection of ideas from 
one individual to another in a local search. A shuffling stra- 
tegy allows for the exchange of information between local 
searches to move toward a global optimum. In present work, 
an attempt is made for applying Particle Swarm Optimization 
(PSO) with dynamic adaptation for optimal design of water 
distribution network. 

The particle swarm optimization is a relatively new ge- 
neration of combinatorial metaheuristic algorithms, which is 
based on a metaphor of social interaction, namely bird flock-
ing or fish schooling. PSO utilizes both ‘social’ and ‘cogni- 
tion’ components of individuals. Adjustment in the behavior 
of an individual according to the successful individual in the 
neighborhood forms the ‘social’ component while the adjust- 
ment due to individual’s isolated experience forms the ‘cog- 
nition’ component. PSO has gained importance due to its 
comparative ease of operation and ability to quickly reach at 
an optimal or near optimal solution. PSO is considered as a 
potential competitor to other promising techniques like ge-
netic algorithms, simulated annealing and tabu search. PSO 
has many resemblances with evolutionary computation tech-
niques such as genetic algorithms (GA). However the infor- 
mation sharing mechanism in PSO is significantly different 
from others. In GAs, the chromosomes share information with 

each other and so the whole population involves in the next 
generation. In PSO, only the global best and local best gives 
information to others and so it is a one-way information shar-
ing mechanism. The evolution only looks for the best solution. 
In this paper, an attempt is made to apply the PSO for the 
optimization of a water distribution system. The objectives of 
this study are to apply the PSO under dynamic adaptation for 
optimal design of water distribution network and to compare 
the performance of PSO and other algorithms for two bench-
mark water distribution system optimization case studies. 

2. Water Distribution Optimization Model 

In this study, the layout of the network, the nodal demand, 
and the minimum pressure requirements at different nodes are 
assumed known. The water distribution network design is for- 
mulated as a least-cost optimization problem with a selection 
of commercially available discrete pipe sizes as the decision 
variables. The optimization of given layout and demand at va- 
rious nodal points of water distribution network is to find the 
combination of commercial pipe diameters that gives the least 
cost network by fulfilling the constraints on pressures. Mini- 
mization of the total cost of the distribution system may be 
expressed mathematically as 

 

),....,( 21 NDDDfCostMinimize =                       (1) 
 
where D1 represents pipe diameter for link 1 and N is the total 
number of links in the network. The network cost is calculated 
as the sum of the pipe costs where pipe costs are expressed in 
terms of cost per unit length. Total network cost is computed 
as follows: 
 

∑
=

⋅=
N

i
ii LDcCost

1

)(                                  (2) 

 
where c(Di) is the cost per unit length of the ith link with 
diameter Di, and Li is the length of ith link. For a given layout, 
lengths are fixed and so diameters are the decision variables. 
This objective function needs to be minimized subject to a set 
of constraints as follows. 

Continuity of flow in each node should be maintained in 
the network. The quantity of flow entering the node should be 
equal to the quantity of flow leaving the node. The quantity of 
flow leaving the node includes the external demand and flow 
going out through other pipes emerging from node. This is 
expressed in the mathematical form as 
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where Q = pipe flow; NDn = Demand at node n; in,n = set of 
pipes entering to the node n; out,n = set of pipes emerging 
from node n; and NN = node set. 
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The total head loss around the closed path (loop) should 
be equal to zero or the head loss along a path between nodes 
should be equal to the difference in elevation. 

 

i
i loop p

hf H p NL
∈

= Δ ∀ ∈∑                         (4) 

 
where hfi  = head loss due to friction in pipe i; NL = loop set; 
ΔH = Difference between nodal heads at both ends, ΔH = 0, if 
the path is closed. 

The Hazen-Williams head loss equation for pipe i of con-
necting nodes j and k is given as follows: 
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where NP = number of pipes; CHW = Hazen-Williams co- 
efficient; Di = Diameter of the pipe i; Li = length of the pipe i; 
α = Conversion factor which depend on the units. Different 
values of α are found in literature – as low as 10.4516 to as 
high as 10.9031 (Savic and Walters, 1997). 

The pressure head in all nodes should be greater than the 
prescribed minimum pressure head as follows: 

 

minHH n ≥                                 (6) 
 
where Hn = Pressure head at node, n; Hmin = Minimum re-
quired pressure head. The diameter of the pipes should be wi- 
thin available commercial size: 

 

[ ] NPiDD j ∈∀= ,                               (7) 

 

3. Particle Swarm Optimization 

The particle swarm optimization (PSO) was originally 
designed by Kennedy and Eberhart (1995) to model naturally 
occurring swarming behaviors in a computer program, and 
called their creation as particle swarm optimization. A particle 
represents a bird or a bee or a fish, or any other type of natural 
agent that exhibits a swarming behavior. Such a technique in- 
volves simulating social behavior among individuals (parti-
cles) ‘flying’ through a multidimensional search space, each 
particle representing a single interaction of all search dimen-
sions. The particle evaluate their positions relative to a goal 
(fitness) at every iteration, and particles in a local neighbor-
hood share memories of their ‘best’ positions, then use those 
memories to adjust their own velocities, and thus subsequent 
positions. As a consequence, the particles move towards the 
global best solution. The original PSO formula developed by 
Kennedy and Eberhart (1995) was greatly improved by Shi 

and Eberhert (1998) with the introduction of an inertia para- 
meter ω that increases the overall performance of PSO. The 
inertia weight is employed to control the influence of the 
previous history of velocities on the current velocity, thus to 
influence the trade-off between global (widespread) and local 
(narrow) exploration abilities of the ‘flying points’. A larger 
inertia weight facilitates global exploration (searching new 
areas) while a smaller inertia weight tends to facilitate local 
exploration to fine-tune current search area. Suitable selection 
of the inertia weight can provide a balance between the global 
and local exploration abilities and thus reduces the number of 
iterations required to reach optimum. Thus the inertia weight 
helps generate non-dominated solutions and maintains diver- 
sity. 

The initial velocity matrix can be set as follows: 
 

][* min,max,1min,, nnnnm xxrxv −+=                    (8) 

 
where m is the population size, n is the number of decision 
variables, xmin, n is the minimum value of individual in popula-
tion and xmax, n is the maximum value of the individual in 
population. Thus the new positions of particles can be com-
puted using the following equation: 
 

)1()()1( ,,, ++=+ tvtxtx nmnmnm                    (9) 

 
The velocity matrix is updated at each iteration as fol-

lows: 
 

)(**)(***)()1( ,22,,11,, nmnnmnmnmnm xgrCxprCwtvtv −+−+=+

                                              (10) 
 

where pm,n is the local best ( a particle’s best so far), gn is the 
global best (best position so far among all particles), w is a 
non-linear inertia weight, taken as (n/3 + r3/2)n, C1 and C2  are 
two positive constants, and r1, r2 and r3 are random numbers 
between 0 and 1. 

The search can be terminated if one of the following cri- 
teria is satisfied: (a) the number of iterations since the last 
change of the best solution is greater than a pre-specified 
number or (b) the number of iterations reaches the maximum 
allowable number. The flow chart for PSO is presented in 
Figure 1. 

PSO has many resemblances with evolutionary computa-
tion techniques such as genetic algorithms (GAs). The system 
is initialized with a population of random solutions and sear- 
ches for optima through updating. However, unlike GA, PSO 
does not have any evolution operators such as crossover and 
mutation. Compared to GA, the advantages of PSO are that 
PSO is easy to implement and there are few parameters to be 
adjusted. Though GA is a useful algorithm for optimization, 
drawbacks of premature convergence and weak exploitation 
capabilities, especially in optimizing continuous multi-model 



C. R. Suribabu and T. R. Neelakantan / Journal of Environmental Informatics 8(1) 1-9 (2006) 

 

4 

functions, are well known (Goldberg, 1989; Chelouah and 
Siarry, 2000, 2003; Wang and Wu, 2004). Loss of diversity in 
the population often causes premature convergence (provides 
a local optimal solution). Optimization problems involving 
many local optima suffer from excessively slow convergence 
when solved with GA. This slow convergence is because of 
the fact that standard genetic algorithm does not exploit the 
neighborhood information. Such a slow convergence problem 
has been highlighted by a few authors (Forrest and Mitchell, 
1993; Schenecke and Vornberger, 1997; Ching-Hung et al., 
1998; Olivier, 1998; Wang and Wu, 2004). Further, genetic 
algorithm converges fast initially and slows down to a rela- 
tively inefficient rate after a number of iterations. When a va- 
riable is discrete and expressed in binary form, moving of 
decision variable to neighborhood point is rare through cross- 
over and mutation process. Even good solutions are made in 
multiple copies through the selection process in each genera- 
tion; when these solutions undergo crossover and mutation 
process, more number of poor solutions are generally resulted. 

 
 Initialize population of particles with random positions 

and random initial velocities  

Evaluate fitness of particles 

Update local best 

Update global best 

Update velocity 

Update position of particles 

Is termination 
criteria met? 

Global best is 
the solution 

Yes 

No 

 
 
Figure 1. Flow chart describing the PSO algorithm. 

4. Optiwaternet 

A combined simulation-optimization model is applied in 
this study. The optimization model is the outer driver model 
and simulation is the inner model. The United States Environ-
mental Protection Agency (USEPA) developed freeware soft-
ware called EPANET (Rossman, 2000) for the simulation of 
water distribution networks. They also provide EPANET Pro-
grammer's Toolkit that is a dynamic link library (DLL) of 
functions, which allows developers to customize EPANET's 
computational engine for the user’s specific needs. In the pre-
sent research, Toolkit DLL file is included as a module and its 
library functions are used in Visual Basic code for combined 
optimization and simulation model. 

The steps involved in the development of OPTIWATER-
NET are presented in Figure 2. The algorithms used for opti- 
mizing the water distribution networks are genetic algorithm 
(GA), simulated annealing algorithm (SA), non-equilibrium 
simulated annealing algorithm (NESA) and particle swarm 
optimization with non-linear inertia weight. In order to com- 
pare the computational time needed for finding the optimal 
solution for example networks, a separate module is dev- 
eloped for GA, SA and NESA similar to PSO and interfaced 
with EPANET’s computation engine. The detailed description 
of GA, SA and NESA modules are not presented here since 
the focus of the present work is to explain the application PSO 
with dynamic adaptation. Optimization techniques used in this 
study is experimented with equal number of trial runs in order 
to compare the number of function evaluations and computa- 
tional time to obtain the same cost solution. 

 

 

Optimization Algorithm 

New / Initial  
Decision Vectors 

Improve Selected 
Vectors Using 

Algorithm’s 
Parameters/Operators 

Select Best-fit 
Decision 
Vectors 

Hydraulic 
Simulation Model

Fitness 
Function 

Decision Vector  Fitness Value 
 

Repeat for Each Decision Vector 

Pressures and Flow rates 

 
Figure 2. Flow chart of OPTIWATERNET. 
 
 
Table 1. Node Details of Two-loop Network 

Node Elevation (m) Min. Pressure 
(m) 

Demand 
(m3/hr) 

1 210 - -1120 
2 150 30 100 
3 160 30 100 
4 155 30 120 
5 150 30 270 
6 165 30 330 
7 160 30 200 

 

5. Design Examples 

5.1. Example 1: Two-Loop Network 
The water distribution network shown in Figure 3 is used 

for demonstration. This network was first used by Alperovits 
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and Shamir (1977) optimization studies. It is a simple small- 
size benchmark network commonly used for testing the opti- 
mization algorithms in water distribution network studies. The 
network consists of 8 links, 6 demand nodes, and 1 reservoir 
(node 1). The node details of this network are given in Table 1. 
The minimum required pressure at all demand nodes is 30 m. 
Each link is 1000 m long. Alperovits and Shamir (1977) and 
subsequently many others used a constant Hazen-Williams 
coefficient of 130 for all pipes. Table 2 shows the costs of the 
pipes of various diameters. 

 
Table 2. Cost Data of Pipes for Two-loop Network 

Diameter (in) Diameter (mm) Unit Cost (unit/m) 
1 25.4 2 
2 50.8 5 
3 76.2 8 
4 101.6 11 
6 152.4 16 
8 203.2 23 
10 254.0 32 
12 304.8 50 
14 355.6 60 
16 406.4 90 
18 457.2 130 
20 508.0 170 
22 558.8 300 
24 609.6 550 

 
In optimization models, continuous diameters and split 

pipes (two or more diameter/size pipes form a link) were pro- 
minently used a decade ago when suitable algorithms were 
not available for using discrete commercial diameters/sizes. 
However, the use of commercial sizes is preferred as they re- 
present realities more. Since two-loop network possess eight 
pipes and fourteen discrete pipe diameter sets for each pipe, it 
ultimately forms the search space containing 148 = 1.48 × 109 
different possible designs. The number of the explicit decision 
variables is eight and other decision variables, like demand 
and pressure at various nodes will be implicitly handled by 
hydraulic network solver. Table 3 shows solutions obtained by 

different authors using different techniques and also methods 
considered in the present study for the two-loop network. The 
least cost obtained using discrete diameters is 419,000 units 
with the 457.2, 254, 406.4, 101.4, 406.4, 101.4, 406.4, 254, 
254 and 25.4 mm pipes respectively for links 1 through 8. Fi- 
gure 4 presents the evolution of optimal solution for two-loop 
network. The solution obtained by Savic and Walter (1997), 
Cunha and Sousa (1999), Eusuff and Lansey (2003) and 
Liong and Atiquzzaman (2004) have exactly the same least 
cost solution. It can be seen from Table 3 that PSO has taken 
only two seconds of CPU time while running the module us-
ing PC IV 65 MHz. Even though there is a decreasing trend of 
computation cost, it is essential to explore the fast converging 
algorithms, which will be more appropriate in handling large 
size problem and handling several constraints. In the present 
study, few trial runs are performed with different permutation 
and combinations of C1, C2 and n value of inertia weight (n/3 
+ rnd/2)n. 
  

 
 

Figure 3. Schematic diagram of the two-loop network. 
 

From above analysis, it is indicated that the least cost 
for two-loop network (419,000 units) was obtained with mini-
mum number of function evaluations at C1 and C2 with 2 and 

 

Table 3. Solutions for Two-Loop Network 

Sl. No Authors Technique used Optimal cost 
(Units) 

Number of 
function evaluation

CPU time (s)

1. Savic and Walter (1997) Genetic Algorithm 419,000 65,000 600 
2. Cunha and Sousa (1999) Simulated Annealing Algorithm 419,000 25,000 40 
3 Eusuff and Lansey (2003) Shuffled leap frog algorithm 419,000 11,155 Not available
4 Liong and Atiquzzaman (2004)  Shuffled complex algorithm 419,000 1,019 18 
5 Present work Particle swarm optimization 419,000 760 2 
6 Present work Genetic Algorithm 420,000 58,380 86 
7 Present work Simulated Annealing  419,000 2,68,200 43 
8 Present work  Non-Equilibrium Simulated Annealing 419,000 1,09,957 25 
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1.5 for n. From the trial runs, it is identified that the value of 
inertia weight in PSO plays a vital role in reaching the optimal 
solution. The population size, the random numbers and values 
of C1 and C2 and the inertia weight all seems can affect the 
optimization process. The analysis was also repeated with a 
constant inertia of 1 in PSO algorithm instead of dynamic in- 
ertia weight. However, this does not provide a better result. In 
this case, out of ten trials, the mean number of evaluation re- 
quired to reach the optimal solution is 212,175. This clearly 
shows that the value of inertia weight in PSO plays a vital role 
in reaching an optimal solution. However, with only limited 
attempts being made, it is seldom to deduce some specific 
values or ranges for these parameters. The results obtained by 
GA for the two-loop problem is slightly higher than that of 
PSO. Comparing the results of PSO and GA, it is evident that 
the PSO is performing definitely better than GA. With GA, 
even after 58,380 function evaluations, an optimum cost of 
419,000 units could not be achieved for the different cases 
tried, where as the PSO could reach the optimum at the ex-
panse of 760 function evaluations in 2 seconds. Number of 
function evaluations reported by the simulated annealing pro-
posed by Cunha and Sousa (1999) and the present work hold 
opposing view because of considered initial configuration as 
an initialization to the algorithm and simulation model used 
for analyzing the network. Even though number of function 
evaluations taken for obtaining same solution is different from 
that of Cunha and Sousa (1999), the CPU time for both cases 
are more or less the same. Cardoso et al. (1994) proposed a 
non-equilibrium simulated annealing algorithm (NESA), in 
which the temperature will be decreased as soon as better 
solution is found while trying to reach equilibrium through 
large transitions at any fixed temperatures. Since the reduction 
of temperature is carried out before its reaching the thermal 
equilibrium, the method is named as Non-Equilibrium Simu-
lated Annealing (NESA) algorithm. While optimizing the net- 
work through NESA, it is found that convergence to optimum 
is quite improved over simulated annealing. However, it has 
taken more number of function evaluations and CPU time 
than PSO. Though these independent results cannot be com- 
pared directly as randomness place a vital role in reaching the 
optimum, generally the number of function evaluations and 
CPU time are significantly less in the case of PSO. 
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Figure 4. Evolution of optimal solution for the two-loop 
network design. 

5.2. Example 2: Hanoi Network 
The second test network (Figure 5) is a three-loop Hanoi 

city water distribution network, which consists of thirty-two 
nodes, thirty-four links and a reservoir. The input data for this 
problem is given in Fujiwara and Khang (1990, 1991) and is 
presented in Tables 4 and 5. This three-loop network is used 
by several researchers earlier (Sonak and Bhave, 1993; Eiger 
et al., 1994; Verma et al., 1997; Sherali et al., 1998; Cunha 
and Sousa, 1999; Eusuff and Lansey, 2003). 

 
Table 4. Node and Link Data for Hanoi Network 

Node Demand 
(m3/hr) 

Link Connecting 
nodes 

Length 
(m) 

1 (Source) -19,940 1 (1,2) 100 
2 890 2 (2,3) 1,350 
3 850 3 (3,4) 900 
4 130 4 (4,5) 1,150 
5 725 5 (5,6) 1,450 
6 1,005 6 (6,7) 450 
7 1,350 7 (7,8) 850 
8 550 8 (8,9) 850 
9 525 9 (9,10) 800 
10 525 10 (10,11) 950 
11 500 11 (11,12) 1,200 
12 560 12 (12,13) 3,500 
13 940 13 (10,14) 800 
14 615 14 (14,15) 500 
15 280 15 (15,16) 550 
16 310 16 (16,17) 2,730 
17 865 17 (17,18) 1,750 
18 1,345 18 (18,19) 800 
19 60 19 (19,3) 400 
20 1,275 20 (3,20) 2,200 
21 930 21 (20,21) 1,500 
22 485 22 (21,22) 500 
23 1,045 23 (20,23) 2,650 
24 820 24 (23,24) 1,230 
25 170 25 (24,25) 1,300 
26 900 26 (25,26) 850 
27 370 27 (26,27) 300 
28 290 28 (27,16) 750 
29 360 29 (23,28) 1,500 
30 360 30 (28,29) 2,000 
31 105 31 (29,30) 1,600 
32 805 32 (30,31) 150 
    33 (31,32) 860 
    34 (32,25) 950 

 
The design of this network is restricted to select the six 

different commercial diameter pipes assumed available in the 
market. The solution space consists of 634 numbers of solu-



C. R. Suribabu and T. R. Neelakantan / Journal of Environmental Informatics 8(1) 1-9 (2006) 

 

7 

tions (i.e., 2.87 × 1026) as there are 6 possible pipe diameters 
for each pipe. The number of explicit decision variables is 34 
and other decision variables such as demand and pressure at 
various nodes will be implicitly handled by hydraulic network 
solver. For the head loss (KQ1.85), length (L), diameter (D) in 
meters and flow rate (Q) in cubic meters per second, different 
values of α (Equation 5) are found in literatures ranging be-
tween 10.4516 to 10.9031. In present study, the default value 
used in EPANET (i.e., 10.679) is applied. In the PSO analysis, 
few trial runs are performed with different permutation and 
combinations of C1, C2 and n value of inertia weight similar 
that of first example. From the analysis, it is found that the 
least cost solution for Hanoi network (6,081,087 units) was 
obtained with minimum number of function evaluation at C1 
and C2 with 2 and 1.5 for n. Table 6 gives the optimal solution 
of Hanoi network. Further, keeping the total number of the 
function evaluation as 25,000, few trials are carried out by 
changing the n values and it is found that at higher values of n 
(greater than 2), convergence to global optimal slows down. 
However, it is very difficult to conclude about the appropriate 
value of C1, C2 and n unless if it is tried with other kind of 
problems.  

 
Table 5. Cost Data for Pipes for Hanoi Network 

Diameter (in) Diameter (mm) Unit Cost (unit/m) 
12 304.8 45.73 

16 406.4 70.4 

20 508 98.38 

24 609.6 129.3 

30 762 180.8 

40 1,016 278.3 
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Figure 5. Layout Hanoi water distribution networks. 
 

From Table 7, it is evident that the use of non-linear 
inertia weight in PSO reduces not only number of function 

evaluations but also the CPU time. It can be seen from Table 7 
that the cost of solution obtained by the present method is 
marginally higher that of Savic and Walter (1997), Cunha and 
Sousa (1999) and Eusuff and Lansey (2003). However the 
solution of Cunha and Sousa (1999) and Savic and Walter 
(1997) violates pressure at 6 nodes and 2 nodes respectively. 
The solution presented by Cunha and Sousa (1999) has least 
cost of 6,056,000 units. However, this result has been ob-
tained by a slightly different coefficient of Hazen-Willams 
equation (α = 10.5088). While solved by EPANET, it is found 
that the pressure at the nodes 13, 16, 17, 27, 29 and 30 falls 
between 29 and 30 m. Savic and Walters (1997) reported a 
minimum cost of 6,073,000 units by genetic algorithm. The 
pressure head at two nodes namely 13 and 30 falls between 29 
and 30 m. Hence these two solutions can be considered as 
infeasible solution in the present context. It can be seen from 
the Table 7 that the computation time for all other algorithms 
including results of other researchers is higher than PSO. As 
most of the earlier works are not employed EPANET’s com- 
putational Engine for simulation, it is not worthwhile to com- 
pare its computation time with present works.  
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Figure 6. Evolution of optimal solution for the Hanoi network 
design. 

6. Conclusions 

Use of traditional optimization methods for solving pipe- 
sizing problems was limited due to difficulties in handling 
commercial pipe sizes. Introduction of meta-heuristic popula- 
tion based algorithms is more promising to handle such kind 
of problems. In this paper, the efficacy of dynamic non-linear 
inertia weight based particle swarm optimization was tested 
through solving the benchmark problems and compared with 
genetic and simulated annealing algorithms. The results of an 
application shows that PSO will be more promising technique 
for optimal design of water distribution network as the com- 
putation time and number of times the function need to be 
evaluated are less while comparing with the genetic algorithm 
and the simulated annealing algorithms. As the randomness 
plays a vital role, like GA and SA, it is seldom to conclude the 
optimal values of PSO parameters. However the introduction 
of non-linear inertia weight accelerates the exploration of a 
global solution. 
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