
70 

06JEI00078 
1726-2135/1684-8799 

© 2006 ISEIS  
www.iseis.org/jei 

Journal of Environmental Informatics 8(2) 70-85 (2006) 
 
 

Optimization of Second-Order Grey-Level Texture in High-Resolution Imagery  
for Statistical Estimation of Above-Ground Biomass 

 
Y. O. Ouma1* and R. Tateishi2 

 
1Centre for Environmental Remote Sensing, Graduate School of Science and Technology, Chiba University,  

1-33 Yayoi, Inage, Chiba 263-8522, Japan 
 2Centre for Environmental Remote Sensing, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan 

 
ABSTRACT.  In this paper, part of the Mt. Kenya forest with mixed vegetation biophysical characteristics was selected for grey-level 
co-occurrence matrix (GLCM) optimization and comparison based on semivariogram modeling from high spatial resolution QuickBird 
imagery. The results were applied to demonstrate the role of GLCM-textures in the estimation of Above-Ground Biomass (AGB) for: 
the dominant afromontane (camphor) trees, tea, young and old planted pine trees from QuickBird imagery. The texture optimization re-
sults were compared and combined with spectral (near-infrared) information for AGB estimation. To quantify the significance of 
GLCM-textures in AGB estimation, regressions between the field-AGB estimates and estimates from the NIR band and the tested 
GLCM-textures as independent variables, and their integration as dependent variables were compared. As independent variables, NIR 
and variance-texture bands gave the best results for the dominant camphor trees, with accuracies of 72 and 67.34% respectively. Vari-
ance and mean textures gave the best results upon combination with NIR, showing an improvement of 4.33 and 4.82% respectively 
over the NIR estimates. For tea, the combination of NIR with homogeneity, entropy and second moment textures gave the best and 
equal results (R2 = 0.684). For the young pine trees, correlation texture gave the overall best results (R2 = 0.741), and for the older pine 
trees, contrast texture gave the best results (R2 = 0.753) as independent variables. We conclude that the role of texture type and optimal 
window in AGB estimation depends on the: size (height), age, species, inherent spatial structure (natural or planted) and crown size of 
the vegetation species. 
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1. Introduction  

Biomass determines potential carbon emission that could 
be released to the atmosphere due to deforestation or conver-
sion to non-forest land use. Forest biomass or the dry mass of 
live plant material is a measure used in studies of forest eco- 
system processes and in models that calculate or forecast car- 
bon budgets. Estimation of Above-Ground Biomass (AGB) is 
becoming significant because the change of biomass regional- 
ly is associated with important components of climate change. 
AGB estimation for tropical forests is necessary for studying 
productivity, carbon cycles, nutrient allocation, and fuel accu- 
mulation in terrestrial ecosystems (Brown et al., 1999; Ryu et 
al., 2004). Accurately quantifying the role of tropical forests 
in the global carbon cycle is one of the key requirements to 
improve our understanding of current patterns of terrestrial 
carbon exchange. In particular, the estimates of forest biomass 
used in models of carbon flux in tropical regions, are an im- 
portant source of uncertainty. Therefore, accurate biomass es- 
timation is necessary for better understanding of deforestation 
impacts on global warming and environmental degradation. 
Computer-processed remotely sensed data are possibly the 
best data for economical AGB estimation in the tropical re- 
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gions over large areas. 
Many studies have demonstrated that the indices such as 

spectral vegetation index (SVI), simple ratio (SR), normalized 
difference vegetation index (NDVI), and corrected normalized 
difference vegetation index (NDVIc) obtained from satellite 
data are useful predictors of leaf area index (LAI), biomass, 
and productivity in grasslands and forests (Jakubauskas, 1996; 
Paruelo and Lauenroth, 1998; Steininger, 2000; Chen et al., 
2002). Stand level biomass is frequently calculated from li- 
near and nonlinear regression models established by species 
with field measurements. Although the estimates of AGB vary 
with species composition, tree height, basal area, and stand 
structure, bole diameter at breast height (DBH) is the most 
commonly used and widely available variable for calculating 
AGB (Crow and Schlaegel, 1988). 

Previous studies have shown varying degrees of success 
in estimating forest biomass and primary production from re- 
mote sensing data in temperate and tropical forests worldwide 
(Jakubauskas, 1996; Lee and Nakane, 1997; Brown et al., 
1999; Steininger, 2000; Sannier et al., 2002; Chen et al., 2002). 
Recent studies suggest that such relationships vary temporally 
and spatially; however, the biomass estimates at the landscape 
level are necessary for understanding processes of the target 
landscapes and provide baseline data for future studies (Foody 
et al., 2003). 
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Image texture (Olthof and King, 1997), has been sugges- 
ted in improving the forest biophysical parameters estimation, 
however mostly at medium resolutions of Landsat or SPOT 
data. With the advent of the very high spatial resolution sen-
sors like IKONOS and QuickBird, the existing techniques for 
AGB estimation in the medium-resolution sensors may not 
apply, since at these high resolutions, we are considering indi- 
vidual trees (forest biotic parameters and species composition) 
and not patches (Bailey et al., 2001) as in Landsat or SPOT, 
for example. 

The launch of the QuickBird satellite, with 0.61 m panch- 
romatic and 2.44 m multispectral 11 bit data, ushers in a new 
era in civilian remote sensing. The QuickBird characteristics 
provide an opportunity for capturing quantitative parameters 
of floristic structural and species composition changes across 
the small topographic gradients at very fine spatial resolution 
(0.61 to 2.44 m) enabling capture of spectra from individual 
units such as a tree crown. High resolution images have de- 
monstrated the possibility of extracting the location of indi- 
vidual tree crowns from 1 m panchromatic data to produce 
image maps representing stem densities and crown cover den- 
sities (Read et al., 2003). 

Although various methods for biomass estimation have 
been tested, as already mentioned, rarely has research at very 
high spatial resolutions been successfully conducted in moist 
tropical rainforest regions due in part to the resulting complex 
tropical forest stand structure and abundant tree species. The 
previous research used mainly spectral signatures to establish 
biomass estimation models (Franklin and Hiernaux, 1991; 
Nelson et al., 2000; Steiniger, 2000), but ignored spatial infor- 

mation largely due to lack of understanding about the relation- 
ships between biomass and spatial characteristics (texture). 

Image spatial information (texture) is an important factor 
in improving biomass estimation accuracy even though many 
uncertainties exist at high spatial resolutions. For example, 
what types of texture are appropriate to extract biomass in- 
formation? What size of moving window for selected texture 
measures can most effectively extract biomass information? 
Which models can be used to estimate biomass using remote 
sensing technology? Is there a specific or general role played 
by texture in the estimation of AGB at high spatial resolutions. 
Because of the complex stand structures and abundant vege- 
tation species at high-spatial resolution remote sensing data, 
the role of texture in Above-Ground Biomass (AGB) estima- 
tion in tropical forests ought to be understood. 

In order to explore biomass-texture relationship in high 
spatial remote sensing data, QuickBird image of part of Mt. 
Kenya forest was studied. Grey-level co-occurrence (GLCM) 
textures were computed and optimized using semivariogram 
geostatistics for optimal texture window determination. The 
optimization results were used to demonstrate the significance 
of texture and spectral information, as independent variables 
and as combined variables, for AGB estimation for afromon-
tane (camphor) tree. With this approach, the suitable texture 
type(s) for this case study was also revealed. The overall ob- 
jective of this study was to compare field observed AGB and 
that derived form remote sensing data in order to establish a 
background for understanding: (1) the relationships between 
texture and AGB in high resolution imagery, and (2) the influ-
ence of combining the high resolution image spatial variables 
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Figure 1. (a) Location of the study site; (b) 543 false color composite of Landsat ETM+ of the study area. 
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with its spectral variables in AGB estimation. 

2. Study Area 

The study area is located on Mt. Kenya in Kenya (Figure 
1). Mt. Kenya, located in central Kenya at approximately 0o 

09' S, 37o 18' E, is the second largest mountain (5,199 m above 
mean sea level, AMSL) in Africa after. The approximated 
boundary of Mt. Kenya encloses a total area of about 3,132.56 
km2, and includes the top sub-alpine and alpine belts of the 
mountain and other forest cover as shown in Figure 1b. The 
heterogeneity of the landscape within this site is extreme both 
between and within land use and land cover types. 

Due to the wide range of altitude that spans the indi- 
genous forest (from 1,200 m to 3,400 m) and the major cli- 
matic differences between the slopes, the forest vegetation of 
Mt. Kenya is characterized by a high diversity of forest types 
and various vegetation zones can be distinguished on the 
Mount Kenya (Figure 1b). For example, the natural vegeta- 
tion ranges from sparse tundra vegetation, bamboo and afro- 
montane rainforest, to sparse grasslands in the lower ele- 
vation, dryland area, with altitudes ranging 600 m AMSL. 

Figure 2a shows part of the QuickBird bands 321 false 
color composite image that was used in this study. It covers 
the southeastern portion of the ETM+ image shown in Figure 
1b. The predominant land cover is the afromontane (camphor 
trees) broadleaf forest. Non-forest land cover like tea and co- 
ffee plantations have over the years replaced some of these 
indigenous species or primary forest cover. In efforts to con-
serve the forests, needle-leaved forests have been planted 
mostly around the plantations. Logging of camphor in this 
locale has given way to open grasslands and sometimes bare 
soil as seen in Figure 2. In Figure 2b, four representative land- 
cover types within the study site are shown: (i) deciduous 
afro-montane forest (camphor trees), (ii) planted coniferous 
trees (young and old) on the lower part of the image and tea 
plantations on the upper part of the image, and (iii) logged 
area with grass and other understory. Figure 2b manifests the 
intensity of afforestation and deforestation within the lower 
parts of the most fertile south eastern (SE) sections of moun-
tain. 

In terms of area and stocking of species, the montane for-
est zone forms the most important zone. It contains the high-
est mean total volume per ha with standing volume estimated 
at 253 m3/ha and an average timber volume of 61 m3/ha, in 
the eastern side of the forest. In the more accessible areas the 
natural vegetation is sometimes converted into plantation 
forests. The remaining undisturbed primary forests montane 
forest trees are mainly confined to the deep inaccessible areas. 
Within the western rainforest region, the standing volume is 
estimated at 230 m3/ha and the mean timber volume at 78  
m3/ ha. 

Our research focuses on the most significant and primary 
species on Mt. Kenya, which is the afromontane forest domi-
nated by camphor species. The afromontane (camphor) hard-
wood tree is a multiple-use tree species with high economic 

and medicinal values, primarily for its bark (traditional medi-
cines) and hard timber, and is the main contributor to the 
ecosystem stability not only within the Mt. Kenya forest, but 
also in the entire region around the mountain. 

3. Materials and Methods 

3.1. Data Collection and Analysis 
The satellite data used in this study were the pan-sharp- 

ened multispectral QuickBird channels: blue: 450 to 520 nm; 
green: 520 to 600 nm; red: 630 to 690 nm; near-IR: 760 to 
900 nm. These channels were resampled from 0.61 m using 
nearest-neighbor convolution to 1 m spatial resolution. A nes- 
ted sampling strategy, organized by region, site and subplot, 
was employed to collect field data, which was primarily to se- 
lect sample land cover/trees for the proposed texture and bio- 
mass estimation experiments. In this report, the focus is on the 
experimental plot that consists of the afromontane (camphor) 
trees. Landsat ETM+ and differential global positioning sys-
tem (DGPS) devices were used during the fieldwork. Plots 
were designed to inventory afromontane trees, and subplots 
were used to inventory the different forestland cover as shown 
in Figure 2. These land cover representatives are referred to 
here as “training samples”. The size of these samples was se- 
lected at 23 m × 23 m to represent an entire camphor tree, 
with minimum noise. The same size was applied to the other 
samples, for experimental purposes. At the high spatial of 
QuickBird, the outline or crowns for the trees and the non- 
trees are visible clearly identifiable, as in Figures 2a and 2b. 
This mapping capability allowed for more precise and easy 
measurement of 2D-physical parameters like the crown size 
of these trees from the imagery. In the experimental plot, the 
diameter at the breast height (DBH) were identified and mea- 
sured and also the total tree height (H). 

The “training samples” represented in Figure 2 were used 
in assessing the behavioral characteristics of the co-occurance 
texture, with respect to window size, texture type and utility 
of texture in AGB estimation. The natural and dominant afro- 
montane (camphor) trees were compared against planted trees 
of pine species (both young and old) as well as tea plantations, 
logged (understory), bare soil, grass and clouds with respect 
to texture characteristics. Cloud was used here only to analyze 
the hypothetical characteristics of “100% pure” or homoge- 
nous surface spatial signature. The spectral signatures of the 
“training samples” were compared between: blue, green, red, 
NIR bands and NDVI (= (NIR – red) / (NI + red)). 

From the plot of the spectral patterns of all training sam-
ples, it was observed that all the patterns or signatures ap-
peared to be similar except for clouds and bare soil, which of 
course have no green-matter (chlorophyll). The spectral na- 
rrowness and confusion in the visible bands was evident, 
depicting the fact that the visible bands are by themselves 
obviously not suitable for biophysical parameters extraction. 
It is noted that even in the NIR and NDVI where vegetation is 
supposed to be most sensitive; there is strong evidence of high 
spectral confusion. NIR is the only band that appeared to pre-
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sent different spectral behavior for all the 8-training samples. 
The NDVI is not used for further analysis as would prompt 
the questions of comparing it with other similar vegetation 
indices. These observations imply that the spectral signatures 
alone may not be wholly relied upon for accurate separation 
of these ground cover and even AGB estimation. Therefore 
this study suggested the combination of spectral patterns with 
spatial characteristics (texture) in AGB estimation, as argued 
in the introduction. 

To determine which of the QuickBird bands available for 
research is suitable for spatial information extraction, we plot-
ted the regressions between the NIR band versus the blue, 
green and red bands. The following regressions with the NIR 
band were obtained: (a) 0.71 (blue), (b) 0.85 (green) and (c) 
0.79 (red). All the visible bands show high correlation (R2 > 
0.70) with the NIR thus band supporting the observations 
from spectral pattern plots, that NIR is the best band for tex-
ture extraction in this particular case. 

           
                                         (a) 

            (i)                        (ii)                         (iii) 
                                      (b) 

  
Figure 2. (a) False color composite of QuickBird bands 321 showing the selected test site; (b) Sample vegetation 
land cover within the forest test-site. 
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From the above observations, it was concluded that the 
texture or spatial pattern structure of the vegetation classes in 
this scene are resident in the NIR band. Arguing that the tex-
ture depends on the spatial resolution, the higher the spatial 
resolution, the better is the texture information revealed in an 
image. Also for reliable texture, one must select the suitable 
spectral band(s). Panchromatic band has been widely used for 
texture analysis in higher spatial resolution imagery. However 
in the vegetation analysis the wavelength of the panchromatic 
band is considered to be too wide and contains extra informa-
tion that can be viewed as noise for vegetation texture extrac-
tion. Since the current study is concerned with texture win-
dow and type optimization, we do not detail further on the 
selection of suitable texture band(s). 

 
3.2. GLCM Texture Extraction 

First-order statistics measures the likelihood of observing 
a grey value at a randomly chosen location in the image. First- 
order statistics can be computed from the histogram of pixel 
intensities in the image. These depend only on the individual 
pixel values and not on the interaction or co-occurrence of 
neighboring pixel values. The average intensity in an image is 
an example of the first-order statistic. Second-order statistics 
on the other hand are defined as the likelihood of observing a 
pair of grey values occurring at the endpoints of a dipole (or 
needle) of random length placed in the image at a random 
location and orientation. These are properties of pairs of pixel 
values. Co-occurance measures do not assess the texture of 
the image directly; rather, they assess patterns that arise in the 
matrix formed by the juxtaposition of particular tonal values 
or classes. In this study, the co-occurance texture was selected 
due to its inter-pixel spatial information extraction properties. 
The application of a set of textural measurements to remotely 
sensed data began with the second-order textural measures 
based on Haralick’s grey level co-occurance matrix (GLCM) 
(Haralick et al., 1973). Distance and angular spatial relation-
ships among grey levels are summarized in a GLCM, as it is a 
measure of the probability of occurance of two grey levels 
separated by a given distance in a given direction. 

Traditionally, texture methods have been evaluated over 
windows of a single size, the latter being commonly defined 
on experimental basis. The role played by both the shape and 
size of evaluation windows was studied in (GarcíaSevilla and 
Petrou, 2000), showing that texture characterization is much 
more influenced by window size than by its shape. Although 
many studies regarding the performance of the different fami- 
lies of the texture feature extraction methods have been carri- 
ed out in the past (e.g. Chang et al., 1999; Randen and Husoy, 
1999), only a few have dealt with the issue of determining 
optimal window sizes. The majority of these works are actual- 
ly outside the scope of land cover mapping. In the scope of 
pixel-based AGB estimation from high-resolution imagery, a 
technique for determining the optimal window size that leads 
to the best possible estimator among different GLCM texture 
models of interest is necessary. Determining optimal GLCM 

windows via trial-and-error methods are time consuming and 
may not always be reliable. 

An optimal window size for calculating GLCM texture 
measures is a compromise between providing enough spatial 
information to characterize the land cover and limiting over- 
lapping textures between different land covers. No rules have 
been recommended for the texture measures selection. The 
most appropriate combination of the texture features depends 
strongly on the surface properties of the land cover types of 
interest. Since unique texture patterns are hypothesized to dis- 
criminate different land cover types, a proper window size 
that matches the patch size can extract the textural pattern of 
this particular landscape. Large window size can capture the 
spatial patterns of each land cover type better, but may con-
tain more than one land category, which could introduce sys- 
tematic errors. The window should then be small enough to 
keep the variance low and to maximize the potential for class 
separability. 

 
3.2.1. Texture measures from GLCM 

Arguably, due to the different landscape feature interac-
tions at different image spatial resolutions, different texture 
windows and types will obviously result for the same scene. 
This step of the study is thus trivial in the analysis of any 
imagery. To determine the spatial information present in a di- 
gital image, a co-occurance matrix is computed on a pixel nei- 
ghborhood delimited by a moving window of a given size. 
Each element P(i, j, d, θ) of the co-occurance matrix re- 
presents the relative frequency with which two neighboring 
pixels (separated by a distance d and having an angular rela- 
tionship θ) occur on the image, one with grey level i and the 
other with grey level j. Subsequently, statistics are computed 
from the grey level co-occurance matrix and they describe the 
spatial information according to the relative position of the 
matrix elements. The 8-texture measures analyzed in the work 
are summarized in Table 1: mean, variance, homogeneity, 
contrast, dissimilarity, entropy, angular second moment and 
correlation. A more complete theoretical description of the 
most commonly used co-occurance measures can be found in 
(Haralick et al., 1973; Soares et al., 1997). 

 
3.2.2. Evaluation of texture methods over multisized windows 

Let {τ1, τ2, …, τT} be a set of T texture models of interest. 
Each model τT is described by a sample image Ik that contains 
a pattern of that texture. Let I be a two-dimensional test image 
of R × C pixels that contains several regions of uniform tex-
ture. The usual way of classifying each pixel I(x, y) consists of 
computing a texture feature f obtained by applying a texture 
feature extraction method µ to the pixels contained in a neigh- 
borhood of I(x, y): f = µ(x, y). That neighborhood is usually a 
square window centered at I(x, y) whose size is experimen- 
tally set for each method. The computed feature is then fed 
into a pattern classifier in order to determine the texture mo- 
del corresponding to I(x, y).  

In Table 1:
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Table 1. The GLCM Texture Tested in This Study 

Co-occurance texture and formula Description 

Mean 

)(* ipiMEAN
i

yx ∑=∆∆
 

Mean is the average grey level in the local window. 

Variance 

),(*)( 2 jiPiVAR
i

i
j

yx ∑∑ −=∆∆ µ  
Grey level variance in the local window. High when there is a 

large grey level standard deviation in the local region. 

Entropy 

yx
i j

yxyx jiPjiPENTH ∆∆∆∆∆∆ ∑∑−= ),(log),(  
Entropy is a measure of the degree of disorder in an image. 
Entropy is larger when the image is texturally non-uniform or 
heterogeneous and approaches its maximum when all GLCM 
entries have similar contents, indicating an image with 
completely random pixel values. High entropy when GLCM 
have relatively equal values and low when the elements are 
close to either 0 or 1. 

Angular Second Moment (ASM) 

∑∑ ∆∆∆∆ =
i j

yxyx jiPASM 2),(  

 

Also called energy, angular second moment and uniformity is 
a measure of textural uniformity or pixels pairs repetitions. 
When the pixels of the image window under consideration 
have similar grey levels, energy reaches its maximum (equal 
or close to 1). Therefore, constant or periodic distribution of 
grey levels over the window will produce high values for 
energy. It is high when GLCM has few entries of large 
magnitude, when all entries are almost equal. This is the 
measure of the local homogeneity. Entropy and ASM are 
inversely correlated. 

Homogeneity 

∑∑ −+
= ∆∆

∆∆
i j

yx ji
jiP

HOM yx

2)(1
),(

 

Also called inverse difference moment, homogeneity is a 
measure of lack of variability or the amount of local similarity 
in the scene. High homogeneity values suggest small grey 
tone differences in pair elements. In this case, the associated 
GLCM will present elements around the main diagonal. 
Homogeneity is high when GLCM concentrates along the 
diagonal. This occurs when the image is locally homogenous 
in the scale of the length of spatial 

Contrast  

yx
i j

yx jiPjiCONT
yx ∆∆∆∆ ∑∑ ∆∆

−= ),()( 2  
Contrast is a measure of the degree of spread of the grey levels 
or the average grey level difference between neighboring 
pixels. The contrast values will be higher for regions 
exhibiting large local variations. The GLCM associated with 
these regions will display more elements distant from the main 
diagonal, than regions with low contrast. Contrast is high 
when the local regions have a high contrast in the scale of 
spatial. Local statistics contrast and GLCM contrast are 
strongly correlated. Contrast and homogeneity are inversely 
correlated. 

Dissimilarity 

jijiPDIS
i j

yx yx
−= ∑∑ ∆∆∆∆ ),(  

Similar to contrast. High when the local region has a high 
contrast. 

Correlation 

ji

i j
yxji

yx

jiPji
COR

σσ

µµ∑∑ ∆∆

∆∆

−−
=

),())((

,
 

Correlation is a measure of grey level linear dependencies in 
the image. High correlation values denote a linear relationship 
between the grey levels of pixel pairs. A completely 
homogeneous area is a limiting case of linear-dependency, for 
which correlation reaches its maximum (equal to 1). 
Correlation is uncorrelated to entropy and energy, i.e., to pixel 
pair repetitions. 
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),(
),(),( and ),()(

jiP
jiPjipjipip

j j
j

x ∑∑∑ == . 

 
Each element P(i,j)∆x∆y represents the relative frequency 

with which two neighboring pixels separated by a distance of 
∆x columns and ∆y lines occur (Soares et al., 1997). 

Instead of using a single window, we propose the evalua-
tion of the given texture method µ over N square windows, 
{w1, w2, …, wN}, with each window having a different size. 
Every window wj is considered to contain sj × sj pixels, with sj 
= 2j + 1. Hence, every texture method µ generates a feature 
vector with N texture features for every pixel to which the me- 
thod is applied. We consider that whenever an evaluation win- 
dow is not totally contained in the given image, the texture 
method cannot be evaluated, since it would generate a value 
based on a fraction of the texture pattern. This means that the 
strip of pixels that belong to the boundary of I will not be ana- 
lyzed, as no window centered at them will entirely fit into the 
image. Let W, W ≤ N, be the number of windows that do en- 
tirely fit into the image for a specific pixel I(x, y). In this case, 
µ generates a vector F of W features: F = (f1, f2, …, fw). To 
evaluate the window sizes, the selected homogenous “training 
samples” shown in Figure 2 are used. Eight GLCM texture 
measures described in Table 1 are computed for 20-window 
sizes ranging from 3 × 3 to 41 × 41. We chose these window 
ranges as 3 × 3 is the minimum possible texture mask and 41 
× 41 approximately corresponds to the largest tree crown size 
within the study site. 

Assuming the “training samples” are homogenous and 
that they accurately represent the ground cover, then theoreti-
cally it implies that the best GLCM texture should have the 
least variance over the given training sample image. Thus the 
variance for each of the tested GLCM texture type was com-
puted over the test windows and compared for each training 
sample. This optimal texture measure is then used to deter-
mine the optimal window size for each of the “training sam-
ple” using variogram geostatistical method. The derived opti-
mal window is assumed to be the same for the rest of the 
GLCM texture measures. 

 
3.3. Multisized Texture Window Optimization Using 
Variogram Modeling 

The variogram is derived by calculating half the average 
squared difference (semivariance) between pairs of pixels se- 
parated by a distance h (the lag distance). Variograms are cha- 
racterized by variation in the sill, range and nugget. The sill is 
the background level of variance among samples. The range is 
the inter-core distance at which the fitted curve reaches the sill, 
indicating the distance over which spatial autocorrelation (i.e., 
patchiness in occurance of species) can be detected. The 
nugget variance (y-intercept of the fitted line) is the variance 
unexplained by the fitted curve. Geostatistics is currently a 
well-understood and frequently applied image processing te- 
chnique: it has been shown that range is directly related to the 

texture and/or objects size, while sill is proportional to object 
(class) variance. 

The spatial scales at which “training samples” can opti-
mally be mapped were determined using standardized vario- 
grams; with the geostatistical program Variowin 2.2 (Pannatier, 
1993 – 1996). The Spherical, Gaussian and Exponential mo- 
dels were fitted to all the samples and the model with the best 
fit selected. The average change of a property is illustrated by 
a changing lag and the classical equation of the semivario- 
gram γ(h) can be expressed as follows: 

 

∑
=

+−=
)(

1

2)]()([
)(2

1  )(
hN

i
ii hxZxZ

hN
hγ         (1) 

 
where Z is DN value, and x is the DN location, and N(h) is the 
number of pairs of locations separated by the lag distance h. h 
is a vector in both distance and direction. In our case we used 
the omnidirectional condition to avoid directional biasness. 
The properties of typical variogram and main descriptors of 
the semivariogram used are illustrated in Figure 3. 
 

 
Figure 3. A variogram and its main descriptors (Curran and 
Atkinson, 1998). 
 

The following spherical model was fitted to the semivar- 
iograms: 
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where C0  is the nugget, (C0 + C) is the sill, and a is the cor- 
relation length. The resulting variogram is used for the fit of a 
model with known mathematical properties. The quality of the 
semivariogram fit to the data was indicated by using regress- 
ion (R2) and an F-test calculated as: 
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where N is the number of samples and k is the number of vari-
ables in the regression model. The semivariograms of the ei- 
ght land cover classes were fitted and the qualities examined. 
From the semivariance modeling results, the optimal windows 
were determined for each training sample class. In this study, 
as opposed to most texture and spectral information integra-
tion for land cover classification studies; we utilize the opti-
mized texture in estimating the AGB for afromontane trees. 

 
3.4. Integration of AGB and Remotely Sensed Data 

Remote sensing data are comprehensive responses of the 
vegetation stand structure, vegetation density and vegetation 
species composition. Different forest stand structures have di- 
fferent reflectance and texture patterns in various wavelengths, 
and the relationship between AGB and remote sensing data 
are different. The Pearson’s correlation may be used to ana- 
lyze such relationships. It measures the strength of linear rela- 
tionships between two variables. If the coefficient is close to 1, 
it implies there is a strong relationship between the variables. 
In this study, one variable is AGB; the other one is remotely 
sensed data-NIR and texture measure. Using biomass as de- 
pendent variable and remotely sensed data as the independent 
variable, regression computations are used to establish the re- 
lationships between the AGB and the remotely sensed data 
independently and upon integration (texture + NIR). The cri- 
tical step here is to find the appropriate independent variables, 
so that combination of multiple independent variables could 
provide the best results. 

The coefficient of regression (R2) is an indicator that can 
be used to determine whether or not the estimation is good 
enough, since (R2) measures the percent of variation explained 
by the regression model. Stepwise regression was used to find 
the best independent variable and also the best combined vari-
ables between the optimal texture window size and the NIR 
band. A single tree of the dominant afromontane (camphor) 
forest cover was used in the demonstration of the results of 
this phase of the study. This choice was made because of the 
relatively large area size (approximately 530 m2) covered by 
the tree. This area was considered as appropriate experimental 
size and also because the selected tree was a good sample re- 
presentative of the afromontane (camphor) forest-cover trees. 
Also due to conservation and accessibility limitations, it was 
advised against felling of these valuable trees. 

The allometric model (Y = aX^sup b^), in which X can 
be measured such as diameter at breast height (DBH), or DBH 
^sup 2^ x total tree height, and Y is tree component biomass 

such as foliage, branch, stemwood or stembark, has been wi- 
dely used in biomass studies. Both the linear form [In (Y) = A 
+ BIn (X)] and nonlinear form (Y = aX^sup b^) of the allo- 
metric model can be used to develop biomass equations for 
different tree species. The precision of such allometric equa- 
tions may be good for stem biomass but is often unsatisfac-
tory for canopy biomass components, like in this case study. 
Other variables, such as stand age, stand density, crown geo- 
metry, and site index, which influence biomass production 
and allocation, may need to be added to the model to improve 
the accuracy for these components. The process of biomass 
estimation is well established and thus not explained in details 
in this paper. 

Preparation of biomass regression equations for forest 
trees is expensive and time-consuming. Many biomass equa-
tions have been published over the past two decades, and it is 
therefore natural that practicing foresters and ecologists on 
limited budgets will want to use them to estimate individual 
stand biomass or regional biomass from a large-scale survey. 
However, biomass estimates for a particular stand obtained 
using published equations can vary greatly according to which 
equation is used. This results from differences in stand density, 
stand development history, and tree growth rates (due to diff- 
erences in climates and soil, for example) between the stands 
on which the equations are based and the stands to which they 
are being applied. Substantial errors in biomass estimation 
could be produced when biomass regression equations estab- 
lished at a given and in one area were applied to another. 

In this study, the importance of accurate tree biomass is 
taken into account. For this reason, we did not rely on the exi- 
sting biomass estimation allometric equations in this area, but 
rather on actual physical tree biomass estimation. Within a gi- 
ven plot, different sized afromontane trees were identified and 
a single tree used to calculate the biomass. The physical para- 
meters of the trees were measured and used to correlate with 
the actual biomass content. The objective of identifying diff- 
erent-sized camphor trees was to be able to rigorously verify 
the AGB estimates from the single chosen tree through predi- 
ction or interpolation. For example, the tree height was pre- 
dictable from the DBH. Crown diameters could also be re- 
lated to height and DBH of the camphor tree samples. The re- 
sults of these correlations are not relevant to the current re- 
search objectives hence detailed thereof are omitted. 

Briefly, for biomass measurements of the sample trees, 
after felling, the live crown of afromontane sample tree was 
proportioned into three sections of equal length along the bole. 
All branches with leaves and twigs attached were removed 
from the main stem and weighed fresh. A 10% subsample of 
the crowns of trees with DBH > 55 cm was taken; for trees 
with DBH less than 55 cm, 100% of the crown was taken. All 
leaves were separated from the sampled branches. The fresh 
weight of all tree components was determined in the field. 
Subsamples of leaves, live and dead branches, stemwood, and 
bark were oven-dried at 70 oC to determine field moisture 
content, which was used to convert fresh weight to dry weight. 
Stem discs cut from the bottom of each stem section were 
measured to obtain the moisture content, specific gravity and 
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bark/wood ratio. Stem volume of each stem section was mea- 
sured using Smalian formula. The dry weight of stemwood 
and stembark were calculated on the basis of the above 
measurements. Cumulative biomass of the test trees was then 
obtained and compared for the other sized trees. Through 
interpolation, the actual biomass for selected tree was then es- 
timated. As already stated, only one test tree was investigated 
in detail to demonstrate biomass-texture relationship, since 
our objective here is to experimentally understand the signi- 
ficance of texture at high spatial resolution on AGB estima- 
tion. The AGB is measured in Tons (T) or (kg) over the size of 
the test area, which in our case is equivalent to the tree crown. 

4. Results and Discussions 

In this section, the results of the study are presented. A 
discussion on these results is also presented along side the re- 
sults. A more detailed discussion on the afromontane camphor 
trees is presented, as it is the most significant and dominant 
vegetation on this part of Mt. Kenya. 

 
4.1. GLCM Results 

Results from the variance estimates of 8-tested GLCM- 
textures were plotted for all the training samples, over the 20- 
windows. All the 8-texture measures showed different results 
for the “training samples”. However, there are some common 

observations for all the eight training samples: (a) the texture 
measure with the least variance was consistently recorded as 
the angular second moment (ASM or S-Moment), (b) the se- 
cond and third least variances are the homogeneity and en- 
tropy textures, (c) the variance texture generally exhibited the 
highest variance measure, followed closely in some cases by 
contrast, and (d) the correlation texture is parallel to the an- 
gular second moment texture, except for the soil and clouds. 
The rest if the textures were mixed in the order of their vari- 
ance magnitudes. As hypothesized in the methodology, the 
ASM results were utilized to model or determine the optimal 
window size using variogram geostatistics. These results were 
then applied to the rest of the GLCM texture measures. 

 
4.2. Variogram Evaluation of ASM over Multisized 
Texture Windows 

The ASM-variance over the moving windows, from the 
GLCM results in sub-section 4.1, is shown in Figure 4. It is 
observed that apart from the clouds and soil, the rest of the 
“training samples” had significantly low variance and reached 
a saturation point after around the first nine or so windows. 
Clouds and bare soil are homogeneous covers whose spatial 
scale may be explained in terms of grain sizes and do not ea- 
sily converge at some window or point. For this reason it may 
be difficult to directly visually determine the optimal scales 
for texture mapping. Such surfaces require some modeling 
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  Figure 4. ASM-“training sample” variances over the texture windows. 
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like semivariance fitting. Other land covers like trees have 
unique sizes, which can be guessed directly through some ex- 
perimentation. The problem is that in trying to guess the opti- 
mal window sizes we realized that for each class, single win- 
dow determination was not possible. Thus for the test afro- 
montane trees, we illustrate its variance variability over the 
20-moving windows (Figure 5a) and present the results of se- 
mivariance-modeled threshold or optimal window along side 
(Figure 5b). 
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Figure 5. Variance and standard semivariance fitting of ASM 
texture for optimal texture window size determination for the 
afromontane test tree. 
 
 

In each case the Spherical, the Gaussian and Exponential 
models were fitted to the variograms. The spherical fit gave 
the best model fit based on the goodness of fit results pre-
sented in Table 2 for the “training samples”. The results indi-
cate that without some kind of optimization like the semivari-
ance window size modeling, it might not be possible to di-
rectly select on unique window. This observation can be sup-
ported by the fact that a single window cannot represent real 
world landscape features or components. However for actual 

application purposes, the objective is to determine that opti-
mal window with the maximum information and least noise. 

The results of the semivariance optimization are sum- 
marized in Table 2. The representative optimal window sizes 
from these results are either even or odd with decimal window 
sizes. One way of obtaining the optimal window size would 
be to take the approximate value or the nearest odd number. 
However, there is no physical meaning to justify this kind of 
“trial-and-error” window selection. We thus introduced the 
idea of multiple window sizes integration. Thus for an optimal 
window size sj × sj and texture model τk, we intuitively take 
the two window sizes: sj-1 × sj-1 and sj+1 × sj+1, where the win-
dow size is even and lies approximately in the middle be-
tween the two odd sized windows. Otherwise the nearest odd 
window size is selected. The results of this intuitive reasoning 
are presented in Table 2 for each “training class”. 

The results in Table 2 show that clouds, trees and logged 
areas required two optimal windows. For these classes, even 
the windows were approximated to be the best, by taking the 
average of the minimum and maximum as illustrated in the 
approximation (approx.) column. Thus for the afromontane 
trees, the 12 × 12 window size was approximated as the op- 
timal for texture mapping. Clouds and bare soil had the largest 
optimal window sizes as compared to afromontane trees with 
the least window size. Old (OTP) and young (YTP) trees, tea, 
soil and grass could be mapped using a single approximated 
window. YTP and tea exhibit closely related textural patterns 
and also have the same optimal window size. This may be 
attributed to their closeness in height, size and compactness of 
respective crowns. Grass also has the same optimal window 
size as tea and TYP, however its textural structure as seen in 
Figure 4 is slightly different. 

If we were to empirically determine the optimal texture 
bands, from the variance of the ASM plots directly as shown 
in Figure 5a, then the multiple window concepts for some of 
“training samples” is a reality. The drawback to this empirical 
selection is that it is time-consuming and there is high likeli-
hood of errors due to subjective estimations. 

The dependence of some of the “training samples” on 
multiple windows may be based on the fact that each window 
captures a feature of a particular size, which is constituted by 
pixels that are independently captured by the reflectivity of 
one or several micro-textured surfaces within the “training 
sample” area. Therefore, the same texture method may pro-
duce significantly different values when it is applied to a 
small window or to a large one, though both windows are cen- 
tered at the same pixel. This implies that the corresponding 
contributions of the two selected windows may also be di- 
fferent and uncorrelated. 

It was found that selection of the optimal window size 
was only possible in some cases by considering both the mini-
mum (min), average (approx) and maximum (max) windows 
as illustrated in Table 2. It may be concluded that the vario- 
gram determined optimal window should be used as an esti- 
mator to the maximum window size for the particular land 
cover considered. 
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A summary of the statistics for the optimal window over 
the afromontane tree is presented in Table 3 for all the tex-
tures. The minimum (min), maximum (max), mean, standard 
deviation and energy over the tree are computed. It is obser- 
ved that over the same tree, some texture measures like homo- 
geneity and second moment gave zero-value statistics. The 
variance based texture measure gave the highest variability of 
85 by comparing the min and max DN values, and also the 
highest standard deviation over the tree. The correlation gave 
a remarkably high mean, of course based on the high min and 
max DN values. 

Another suitable estimator of the relevant information 
contained within a texture image is the energy measure over 
an optimal window. Energy depicts the general information 
about the image, by indicating how much detail is present in 
the whole image and is a measure of the disorder within the 
image. We constructed a histogram of the frequencies of 
occurrence (Pi) for digital numbers (i) associated with indivi- 
dual pixels, and then calculated energy (ENE) as follows: 

 

∑
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iPENE                                                       (4) 

 
The results for the energy computations are also presen- 

ted in Table 3. The results show that homogeneity and second 
moment texture measures have the highest and equal energy. 
This is followed closely by entropy and then dissimilarity and 
the least being the variance. These results indicates that the 
higher the standard deviation the lower the energy and vice 
versa within the optimal window. 

By plotting and comparing the histograms derived from 
the NIR bands and the 8-GLCM texture measures over the 
afromontane (camphor) trees, it is observed that the NIR re- 
flectance shows a typical deciduous tree crown reflectance, 
whereby the center of the crown is the peak. It was seen that 
each texture presents a different type of information regarding 
pixel distributions, in some cases different from the spectral 
signatures, and in other cases trying to replicate the spectral 
patterns like the mean-texture histogram. Variance, contrast 
and dissimilarity texture measures exhibited nearly the same 
texture patterns, except for a shift in the histogram peak as 
compared to the NIR. Correlation and entropy texture patterns 
show a closely related pattern that is nearly the opposite of the 
variance, contrast and dissimilarity. Homogeneity and second 
moment present have similar results with zero values, which 
can physically be attributed to no information. However, it is 
not directly conclusive from Table 3 results, as to which tex-
ture measure is suitable for the biomass estimation. Further 
robust regression measures need to be carried out in order to 

Table 2. Descriptive Statistics for “Training Samples” Standard Semivariance Fitting 

Selected  Square  WindowsTraining 
sample 

Range Sill Nugget Best fit 
model 

Goodness of 
fit found (F) 

min approx.  max 

Clouds 
Trees 
OTP 
YTP 
Tea 
Soil 
Logging  
Grass 

22.006 
12.123 
14.924 
13.074 
13.342 
19.093 
13.612 
12.415 

1.0000 
0.9399 
0.9900 
0.9699 
1.0000 
1.0000 
0.9999 
0.9800 

0.1199 
0.1300 
0.1499 
0.1399 
0.0900 
0.0050 
0.0600 
0.1000 

Spherical 
Spherical 
Spherical 
Spherical 
Spherical 
Spherical 
Spherical 
Spherical 

2.3836e-03 
1.2491e-03 
7.2938e-03 
6.4794e-04 
9.7408e-04 
8.9166e-03 
5.4590e-03 
5.0525e-03 

21 × 21 
11 × 11 
 
 
 
 
13 × 13 
 

22 × 22 
12 × 12 
15 × 15 
13 × 13 
13 × 13 
19 × 19 
14 × 14 
13 × 13 

23 × 23 
13 × 13 
 
 
 
 
15 × 15 
 

 
Table 3. Summary Statistics of Camphor Tree in the “12 × 12” Window Texture Measures 

Texture measure Min Max Mean (µ) Standard Deviation (σ) Energy (ENE) 

Mean 
Variance 
Homogeneity 
Contrast 
Dissimilarity 
Entropy 
Second Moment 
Correlation 

10 
6 
0 
5 
1 
3 
0 
103 

28 
91 
0 
33 
4 
4 
0 
126 

19.747 
28.240 
0.000 
12.645 
2.063 
3.985 
0.000 
121.157 

4.547 
16.147 
0.000 
5.932 
0.624 
0.122 
0.000 
3.845 

24,360 
8,920 
360,000 
22,590 
170,194 
349,362 
360,000 
37,284 
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determine the actual degree of the relationship between tex-
ture estimated AGB and field (actual) derived AGB. 

 

4.3. AGB Estimation Using Texture Measures-Afromon- 
tane Camphor Trees 

Using the physically derived biomass for the approxi-
mately 530 m2 crown sized tree, we determined the AGB as of 
11.73 T. The estimated AGB is compared to the 8-texture 
measures in order to determine which of the texture measure(s) 
gives the best regression with biomass. Note that in this study 
we are not directly concerned with the AGB estimation mo- 
dels, but rather with the demonstration of the significance of 
the texture. The differences between the field estimated AGB 
and the AGB estimated from NIR band and the texture mea- 
sures are presented in Figure 6. As independent variables, the 
NIR band gave the best results, with approximately 28.0% 
error (overestimate) as compared to the texture measures. The 
results in Figure 6 indicate that among the textures, the vari-
ance texture is the best AGB estimator, even though it over- 
estimated the AGB by relative error amount of (37.66%). Ho- 

mogeneity and second moment gave the worst results with no 
estimate at all of the AGB. The dissimilarity and entropy also 
poorly underestimated the AGB, both by over 90% error. The 
mean and correlation showed a relative error of above 60% 
and the contrast had a modest relative error of about 50%. The 
results shows that the textures by themselves may not be suit-
able for direct AGB estimation as they report large error mag- 
nitudes compared to the NIR and ground (actual) estimates. 
This may be attributed to the fact that texture measures only 
present the spatial information, which are not directly mea- 
sured by the sensors. The spectral information is directly mea- 
sured by the sensors and thus most likely to carry more ob- 
vious information that is relevant to and significant in AGB 
estimation or even modeling. 

Relating the results in Figure 6 to those in Table 3, it is 
conclusive that the lower the texture energy the higher the 
standard deviation or variance of the texture image and the 
better it is for AGB estimation. This means that the higher 
energy depicts a large amount of disorder existing among the 
pixel values, and the lower standard deviation means that the 
pixel value frequency distribution has less dispersion. The va- 
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Figure 6. Comparison of texture and NIR bands against field estimated AGB results. 
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      Figure 7. Comparison of texture combined with NIR, NIR band and field estimated AGB results.
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riance, texture as an independent variable gave the best or op- 
timal results and least was from homogeneity and second mo- 
ment textures. The biomass-texture estimates were then com- 
bined with the NIR to dependably assess the contribution of 
spatial information in biomass estimation upon combination 
with spectral information in high-resolution imagery. 

 
4.4. Integration of Texture with NIR for AGB Estimation - 
Afromontane Camphor Trees 

Though it is possible to conclude from the results in sec-
tion 4.3 that the variance gave the best results, we continued 
to compare all the textures upon integration with the NIR 
band. The results of the comparisons between NIR alone and 
its combination with the textures are presented in Figure 7. 
Comparing the results in Figures 6 and 7, the immediate and 
obvious conclusion is that spectral information plays a more 
significant role in AGB estimation than texture, if compared 
as independent variables. It is not because NIR has a higher 
regression with actual field measured AGB estimates, but 
because its combination with textures significantly improved 
AGB estimation for all the textures as compared to when they 
were assessed independently. However, we must note that this 
observation does not rule out the possible contribution of tex- 
ture in improving the accuracy with which the AGB is mea- 
sured in another case study. 

The results show that upon combination with the spectral 
(NIR) information, the variance and mean now perform better 
than NIR band alone, by improving the accuracy of biomass 
estimation by approximately 4.82% for the mean and 4.33% 
for the variance. While the AGB estimation is remarkable im- 
proved on the combination of mean texture with the NIR band, 
it was marginally so for the variance texture. It is conclusive 
from these observations that not all textures contribute posi- 
tively towards improving the accuracy with which AGB is es- 
timated from remote sensing data. 

Comparing the regressions between the field AGB, the 
independent variables (bands) and combined variables listed 
in Table 4, it is seen that the NIR band was instrumental in 
improving the AGB estimation for all the textures and most 
significantly so for; homogeneity, dissimilarity, entropy and 
second moment, from nearly zero to about 40%. This made 
the correlation, which was initially as good as the mean to 
become the least estimator among the textures. The results 
(Table 4) show that for this kind of afromontane camphor tree, 
the homogeneity, entropy and second moment arguably gave 
similar results. The same can be applied for the mean and va- 
riance textures. Only the mean and variance had higher re- 
gressions (R2 > 0.76) than NIR band (R2 = 0.72). As depend-
ent variables, all the textures underestimated the AGB on 
combination with NIR. However independently the variance 
and the NIR overestimated AGB. 

From these results, it can be said that there is no direct 
dependency or relationship between the independent texture 
variables and their improvements for the AGB estimation, on 
combination with the NIR band. Instead for each scene, this 
kind of relationship must be derived independently. The inter- 

action between texture and spectral information may not also 
be easily or directly predictable, except to state the amount of 
improvement or decrement for AGB estimation. For example 
while some textures with very low regressions (R2 < 0.50) 
cannot be independently used to estimate AGB, their combi- 
nation with NIR improves AGB estimation by more than 50% 
as the case for homogeneity, entropy and second moment, but 
lowers the performance of the NIR. The results in Table 4 also 
suggest that the independent variables (spectral and spatial) 
do not have sufficiently high regression coefficients to deve- 
lop biomass estimation models. 

 
Table 4. Regression between the Field AGB, Independent 
Variables and Combined Variables 

Regression (R2) 
Variable 

Single variable      Texture + NIR 
Mean 0.388 0.768 
Variance 0.623 0.763 
Homogeneity 0.000 0.597 
Contrast 0.506 0.676 
Dissimilarity 0.053 0.607 
Entropy 0.011 0.597 
Second Moment 0.000 0.597 
Correlation 0.328 0.560 
NIR 0.720 N/A 

 
It can be conclusive that the roles of suitable texture mea- 

sures in AGB estimation is valuable and significant since ap- 
propriate texture may offer and effective method for improv-
ing model performance. Therefore it is necessary to seek two 
or more independent variables, such as in this study, to com- 
bine texture and NIR in order to improve the relationships be- 
tween biomass and remotely sensed data. Figure 8 summa- 
rizes the best results that were obtained with mean and vari- 
ance in this study. The slight difference between the mean and 
variance can be related to fact that the mean-NIR combination 
closely replicated the spectral and spatial structure of the tree 
than the variance-NIR combination (compare Figure 8 and 
Table 4). 

In a summary from the above results, the difference be-
tween the textures upon integration with spectral information 
from the NIR has a lower disparity compared to when the tex- 
tures are analyzed independently. It is worth noting that a care 
must be taken while using the GLCM for biomass estimation. 
This is because random selection of texture may lead to poor 
results as demonstrated by the results of this study. It may be 
said that a texture method that greatly “deforms” the original 
spectral pattern may not be suitable in this particular case of 
afromontane trees, which could be reason why the mean-tex- 
ture gave overall best results on combination with NIR band. 

 
4.5. AGB Estimation-Tea, Young and Old Planted Trees 

The results for comparison between the AGB estimates 
from NIR, the texture bands and a combination of the two ag- 
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ainst the field measured AGB for tea, young and old pine trees 
are presented in Figure 9. The field estimated AGB biomass 
for these land cover over the test area are 6.502 kg for tea, 
7.505 kg for young pine trees (3.5 years old) and 9.779 kg for 
the older pine trees (6 years old). These AGB estimates are far 
less than those of the natural fully grown camphor trees as 
may be expected. 

For the case of tea, Figure 9a, the NIR gave the best re-
sults are independent spectral variable while with texture, var- 
iance correlation and contrast gave very close and comparably 
the best results. All the textures grossly underestimated AGB 
as compared to the field-estimates. The lowest close zero esti- 
mates were obtained from the homogeneity, entropy and se- 
cond moment. Upon combination with spectral (NIR) infor- 
mation, all the textures overestimated the AGB by slightly 
more than 30% in each case. The best estimates whose errors 
were also comparable to that of NIR alone were the least as 
independent variables (homogeneity, entropy and second mo- 
ment). In overall for tea, the GLCM texture information did 
not seem to be quite significant in biomass estimation. Instead 
all of the textures upon combination with NIR gave nearly the 
same results are NIR in itself. This may be attributed to the 
fact that probably the textures tested are not suitable for this 
kind of vegetation or to be more specific planted and well 
structured vegetation like tree. 

Looking at the older planted pine trees results in Figure 
9b, the independent variables contrast outperformed all the 
textures and also the spectral (NIR) band. NIR was the second 
best and overestimated AGB as compared to all the textures 
that underestimated the AGB except the variance texture. The 
underestimation errors in the cases of homogeneity, dissimi- 
larity, entropy and second moment were more than 95%, im- 
plying that they were unsuitable for the estimation of AGB for 
this particular vegetation type. On the contrary, when the sp- 
ectral and spatial information are combined, all the combi- 
nations gave nearly a same error range of approximately 32%, 
except for the variance (67.25%), the contrast (56.79%) and 
the mean (42.19%). The results from NIR as an independent 

variable and when combined with homogeneity and second 
moment gave the same and best results with error of 32.11%. 
This implies that whether these two textures are included or 
not the optimal results would still be obtained from the spec- 
tral information alone. Contrast texture is seen in this case to 
give the best results (R2 = 0.753) in this case as independent 
variable, yet upon combination with spectral the regression 
drops to (R2 = 0.432). 

In Figure 9c, the results for the young planted pine trees 
are presented. As the case for the older pine trees, it is ob-
served that the correlation, variance and contrast, in that order, 
gave the best results are independent variables. Spectral (NIR) 
information was fourth though with very large error of more 
than 75%, like the reminder of the textures. Upon combina-
tion between the textures and NIR band, the results are drama- 
tically worsened. All the bands present very poor results (R2 < 
0.25), with similar results to NIR band alone from homoge-
neity, dissimilarity, entropy and second moment. The worst 
results among the combination came from variance. In case of 
younger pine trees, correlation, variance and contrast texture 
seemed a play a much more significant role in AGB estima- 
tion as independent variables than spectral information, either 
as independent or combined variable. 

This research indicates that texture information is a very 
important factor in improving biomass estimation and might 
also be significant in estimation model performance especially 
in tropical rainforests. It must however be pointed out that it is 
a difficult task to find the appropriate texture measure(s) that 
that are strongly related to biomass because only some texture 
measures with a specific window size and from specific image 
spectral channels can effectively extract biomass information. 
Another point is that for some vegetation types, texture may 
not always perform well independently and thus its combina-
tion with the appropriate band(s) may greatly improve its sig- 
nificance or better the accuracy of the results. On other cases, 
the texture alone or spectral information alone are sufficient. 
However this must be tested and we anticipate that results can 
differ in different study areas. Further research on integrating 

   
Spectral (NIR) AGB Estimate     = (R2 = 0.720)

Variance + Spectral AGB Estimate = (R2 = 0.768)

Spectral (NIR) AGB Estimate     = (R2 = 0.720) 

Variance + Spectral AGB Estimate = (R2 = 0.763) 

   Figure 8. Summary statistics of the mean and variance results for AGB estimation. 
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and comparing the results of this study with vegetation indices 
is necessary in future. 

From above results, it was observed that for AGB esti-
mation in high spatial resolution data, texture plays a crucial 
role that can best be understood through comparing different: 
texture types, optimal window sizes, vegetation species and 
combination with spectral information. Different conclusions 
on the role of texture are inferred for different tree or vegeta- 
tion types meaning that generalization may not be application. 
Compared to the natural camphor trees, these three vegetation 

types are far younger in age and size. Since they are planted in 
patterned rows, they exhibit a specific texture structure com- 
pared to the natural trees. This type of texture structuring may 
not be captured accurately or fully by the GLCM methods, in 
the case of planned trees. For this reason, the GLCM textures 
performed much more poorly in estimated AGB for these th- 
ree vegetation types than for the natural camphor trees. We 
may conclude here that the performance of GLCM texture de- 
pends on the tree species and the inherent structural arrange- 
ment of that particular species. We suggest here that a more 
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Figure 9. AGB estimate comparisons for tea, old and young pine trees. 
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direction based texture method may be more appropriate for 
planned forested environments than for natural forest environ- 
ments. 

5. Conclusions 

Image spatial information, texture, has been suggested as 
one of the clues towards improving the extraction of biophysi-
cal parameters like biomass from high-resolution imagery. A 
wide variety of texture feature extraction methods have been 
proposed for texture based image classification and segmenta-
tion. These methods are typically evaluated over windows of 
the same size, the latter being usually chosen for each particu-
lar method on an experimental basis. However for biomass 
extraction, little has been achieved. The proposed texture opti- 
mization approach in this study can be useful for estimating 
the above ground biomass on integration with spectral infor- 
mation for specific scene and specific vegetation type. The 
approach is useful for selecting appropriate textural signature- 
(s) and window(s) for combination with spectral information, 
and offers the possibility for suitable AGB estimation model 
formulation. The effectiveness of texture measure can be arg- 
ued to be strongly dependent on the vegetation species and the 
corresponding biophysical characteristics. The particular find- 
ing that an estimation comprising of spectral and textural sig- 
natures provides better accuracy deepening on the selected 
feature, is valuable in the local biosphere-atmosphere experi- 
mentations within forest ecosystems. In the moist tropical for- 
ests like Mt. Kenya, there is difficulty in gathering sufficient 
ground-truth data representative over a large area. Thus such 
optimization models are cost-effective and suitable for simu- 
lating and estimating the biomass distribution information and 
biomass statistical data in a timely and accurate manner. 

We concluded that the role of texture type and optimal 
window in AGB estimation depends on the: size (height), age, 
species, inherent spatial structure (natural or planted) and cr- 
own size of the vegetation species. Further work will consist 
of the combination or integration different texture methods for 
the same task of AGB estimation, in a much wider geographic 
area. Finally, to improve on the regression between the field 
and estimates from remote sensing data, we suggest that alter- 
native sensors based on LiDAR and InSAR ought be com- 
pared and integrated with optical sensors, as they provide de- 
tails on the vertical (3D) spectral and spatial details of vegeta-
tion. 
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