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ABSTRACT.  The effect of missing data can result in errors that exhibit temporal and spatial patterns in climatological and meteo- 
rological research applications. Many climate related tools perform best with a serially complete dataset (SCD). To support the Na- 
tional Agricultural Decision Support System (NADSS), a SCD with no missing data values for daily temperature and precipitation for 
the United States was developed using a self-calibrating data quality control (QC) library. The library performs two primary functions: 
identifies outliers and provides estimates to replace missing data values and outliers. This study presents the development of the SCD 
and the QC library in detail. An in-depth evaluation in terms of root mean square error (RMSE) and mean absolute error (MAE) for the 
SCD for the period of 1975 - 2004 is provided. The study shows an impressively low average RMSE in the range of 2.27 to 3.58°F for 
temperature and 0.07 to 0.23 inch for precipitation for the whole country for 30 years. The goal of this study is to enhance drought risk 
assessment and environmental risk analysis. 
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1. Introduction  

There is a great demand in the climate community and 
federal agencies for serially complete climate datasets (SCD) 
for water management, environmental systems, and natural 
resource modeling (Eischeid et al., 2000). The effect of miss- 
ing data, or data gaps, in the calculation of applications such 
as monthly mean temperature can result in errors that exhibit 
temporal and spatial patterns (Stooksbury et al., 1999). In the 
area of information visualization, missing data usually causes 
visualization failure or provides misleading interpretations of 
data (Eaton et al., 2003). 

Another area in which the missing data has significant 
impact is agricultural decision support systems. Consider, for 
example, the National Agricultural Decision Support System 
(NADSS). The goal of such a project is to develop a support 
system of geospatial analyses for enhancing the drought risk 
assessment and exposure analysis (Goddard et al., 2003). A 
relational climate database is a major component of the data 
layer in NADSS, which retrieves the climate data from the 
National Climate Data Center (NCDC) and regional climate 
centers via the Applied Climate Information System (ACIS). 
In practice, it was found that the data contains many gaps in 
the historical record. For most stations, the missing data gaps 
ranged from a couple days to months, and even to years. The 
NADSS system requires valid data and performs best with a 
SCD because the system includes climate related tools, such 
as the Standardized Precipitation Index (SPI) (McKee et al., 
1993), the Palmer Drought Severity Index (PDSI) (Palmer, 
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1965), and the Self-Calibrating PDSI (SC-PDSI) (Wells et al., 
2004). When there is missing data (e.g. a couple weeks gap), 
the SPI can not be calculated for any interval that includes the 
data gap. The SC-PDSI can be calculated, but it skips the data 
gap (assuming nothing happens for that interval of time), 
which may result in an inaccurate SC-PDSI and may lead to 
incorrect climate related decisions. 

To support the NADSS system with a valid and serially 
complete dataset, a SCD with no missing data values of daily 
temperature and precipitation (PRCP) for the period of 1975 
to 2004 for the United States was built. The SCD was built by 
using two primary functions of a self-calibrating data quality 
control (QC) library: identification of outliers and provision 
of estimates to replace missing data values and outliers. The 
estimation method is a regression-based spatial estimation 
routine from the QC library. 

To prevent error in natural resource monitoring, Eischeid 
and his colleagues made an early attempt to build a serially 
complete dataset for the western United States (Eischeid et al., 
2000). However, their methods have some limitations. For ex- 
ample, to be included in the serialization procedure, a station 
could not have more than 48 missing months of data for the 
entire period of record. In their approaches, a month would be 
marked as missing if it contained more than 14 consecutive 
days of missing temperatures or precipitations. The approach 
presented in this study provides the estimated values for all 
the stations that exist in the period and does not have such a 
limitation. 

The semiautomated quality control procedures have been 
applied to check the validity of climate data from the coopera- 
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tive climatological stations at NCDC since 1982 (Guttman et 
al., 1990). Consistency checks between the daily maximum 
temperature (TMAX) and the daily minimum temperature 
(TMIN) are applied based on the pre-defined general rules 
(Guttman et al., 1990). General testing methods, such as the 
threshold method and the step-change method, were designed 
for reviewing data from a single station to detect the potential 
outliers. Advanced procedures, such as spatial tests, have also 
proven useful (Eischeid et al., 1995; Hubbard, 2001). They 
compare data of a target station against simultaneous data of 
surrounding stations. The spatial tests can be performed based 
on statistical methods, e.g. linear regression and multiple re- 
gression. 

The self-calibrating data QC library used in this study in- 
cludes both single station methods and multiple station techni- 
ques. Unlike other rule-based systems, such as the NCDC sys- 
tem, which uses predefined rules, the self-calibrating data QC 
library approach is based on statistical data of stations stored 
in a relational database. Using the approach, a QC parameter 
database is first generated from the statistical result of a 30- 
year history of data for all stations processed. Based on that 
database, each of the QC routines can be run separately. Fur- 
thermore, the users can apply dynamic parameters to control 
different levels of assurance as desired for the data. Such an 
approach has been found to be accurate and flexible in several 
previous studies (Hubbard and You, 2005; Hubbard et al., 
2005). It is important to be noted that the library consists of  
a newly designed spatial regression test (SRT) method that 
assigns the weights according to the standard error of estimate 
between the target station and each of the surrounding stations. 
A previous study shows that the SRT method outperforms the 
IDW method in estimation (You et al., 2005; Legates and 
Willmott, 1990; Stallings et al., 1992). A comparison between 
the approaches in the self-calibrating data QC library and the 
QC procedures applied by NCDC was previously conducted 
through a seeded errors dataset by You et al. (2005). The re- 
sult determined that the SRT method and other approaches in 
the QC library outperform the procedures applied by NCDC. 

The main objectives of this study were: (a) to create a 
SCD for daily temperature and precipitation for the United 
States for the period of 1975 to 2004; (b) to evaluate the self- 
calibrating data quality control library through the develop- 
ment of the SCD; (c) to introduce the QC library as a frame- 
work for climatological and meteorological research applica- 
tions to enhance drought risk assessment and environmental 
risk analysis. Although the focus of this study is to create the 
30-year SCD from historical data, the approach can also be 
applied in real-time data quality control and real-time SCD 
generation. Examples of previous climatological and meteo- 
rological research using the approach are reported by Hubbard 
and You (2005), Hubbard et al. (2005). 

2. Building a Serially Complete Dataset 

2.1. Data Source 
The data source of the SCD is based on all of the stations 

(20613 PRCP [precipitation], 13862 TMAX [maximum tem- 
perature], and 13842 TMIN [minimum temperature] stations) 
available from the ACIS of the National Oceanic and Atmos- 
pheric Administration’s (NOAA) Regional Climate Centers, 
which includes the stations of the National Weather Service 
(NWS) Cooperative Observer Program (COOP), the High Pl- 
ains Automated Weather Data Network (AWDN), the Inter- 
national Civil Aviation Organization (ICAO) network and sta- 
tions from the NWS encoded in standard hydrologic exchange 
format (SHEF). The station locations are shown in Figure 1. 
Since some of the stations only exist before 1975 and do not 
have data for the period of 1975 to 2004, the estimation me- 
thod introduced in this study cannot generate high correlation 
coefficients between some of these stations and their sur- 
rounding stations. Thus, the final SCD result includes 8536 
TMAX, 8548 TMIN, and 12377 PRCP stations in the con- 
tinental U.S. 

 
Figure 1. All stations in the U.S. 

 
2.2. The Self-Calibrating Data QC Library 

The QC library contains several tests: threshold test, step 
change test, persistence test, and spatial regression test. The 
first three tests are single station methods. They are tuned to 
the prevailing climate at a station and are used as QC proce- 
dures. The thresholds and limits for these three tests are iden- 
tified by station climatology at the monthly level. Compared 
to previous efforts, which mainly used one set of limits for a 
variable (e.g. TMAX), regardless of the time of year, the me- 
thods presented in this study are more accurate (Shafer et al., 
2000; Hubbard, 2001). The spatial regression test (SRT) is 
both designed as a QC procedure and an estimation method. 

All the tests are based on a QC parameter database. The 
QC parameter database is built using a 30-year history of data 
from all stations to be processed. Self-calibration means that 
the QC parameters are calculated with the historical data from 
the stations and those parameters are applied in the data qua- 
lity control procedures for those stations.  

Please note, in this study, the unit for temperature is Fah- 
renheit (°F) and the unit for precipitation is inch (in.). Missing 
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data is marked with -99. Outliers are defined as missing data 
values or the values that fail a QC test and need to be checked 
manually. 

 
2.2.1. Threshold Test 

The threshold test checks whether a given variable (e.g. 
TMIN) falls in a specific range for the time period in question 
(e.g. a month in the design). The thresholds for a variable x 
are:  

 
x xx f x x fσ σ− ⋅ ≤ ≤ + ⋅                           (1) 

 
where x  is the mean daily value (e.g. mean of TMIN) and σx 
is the standard deviation of the daily values (e.g. the daily 
minimum values) for the month in question. Both σx and x  
are calculated from a 30-year history of data for the given 
station and stored in the QC parameter database. The variable 
x may represent minimum temperature, maximum tempera- 
ture, or precipitation. f is an optional parameter to control 
different levels of accuracy when applying the QC tests. Users 
can dynamically choose different values of f according to the 
requirements of any specific application. That dynamic proce- 
dure allows an informed choice regarding how many data po- 
ints will be flagged in the natural data stream. 

For example, σx for the COOP station 250030 of TMIN 
in January is 13.4, and x  is 7.9. After choosing f as 3.0 (a 
confidence level of 99.73%) and applying Equation (1), any 
TMIN in January for the station that is lower than -32.3 ( x  – 
f·σx) or higher than 48.1 ( x  + f·σx) will be flagged as an 
outlier. 

 
2.2.2. Step Change (SC) Test  

The step change test checks whether the change in cones- 
cutive values of the variable falls within the climatologically 
expected range for the month in question. Here the step (also 
called rate-of-change) is defined as the differentce between 
values on day i and i – 1, e.g. xi = yi – yi-1. The step change test 
checks the step as follows: 

 
s sx f x x fσ σ− ⋅ ≤ ≤ + ⋅                             (2) 

 
where x has the same meaning as xi defined above; x  is the 
mean daily value and σs is the standard deviation of rate-of- 
change. Both σs and x  are calculated from a 30-year history 
of data for the given station and stored in the QC parameter 
database. 

 
2.2.3. Persistence Test 

The persistence test checks the variability of the mea- 
surements. When a sensor fails it may report a constant value, 
thus the standard deviation σ will become smaller. If the sen- 
sor is out of order for an entire reporting period, σ will be zero. 
On the other hand, the instrument may work intermittently 
and produce reasonable values interspersed with zero values, 
thereby greatly increasing the variability for the period. Hence, 
when the variability is too high or too low the data should be 

flagged for further checking. The test first calculates 360 (30 
× 12) monthly standard deviation values σjk for each month j 
and year k of the 30-year record, and then calculates the 12 
monthly mean standard deviation values σj by averaging σjk 
over the 30 years. It then calculates the 12 σσ values, defined 
as the standard deviation of σjk over the 30 years, using the 
monthly mean standard deviation σj. All of these results are 
stored in the QC parameter database. The persistence test 
compares the standard deviation for the time period being 
tested to the limits expected as follows:  

 
j jf fσ σσ σ σ σ σ− ⋅ ≤ ≤ + ⋅                           (3) 

 
The data of the period under consideration passes the per- 

sistence test if the above relation holds for the specified value 
of f. A previous analysis was performed on the data (1971 to 
2000) to determine the relationship between the percentage of 
data passing those single station tests (threshold test, step ch- 
ange test and persistence test) and various values of f. It was 
found that in practice for stations in all conditions, 3.0 and 6.0 
are acceptable values for f for temperature and precipitation, 
respectively (Hubbard et al., 2005). 

 
2.2.4. Spatial Regression Test (SRT)  

The spatial regression test (Hubbard et al., 2005) checks 
whether the value of a variable (e.g. TMIN) falls within the 
confidence interval formed from estimates based on N “best 
fit” surrounding stations during a time period of length T (T = 
365 adopted for this study). The surrounding stations are se- 
lected by specifying a radius around the station and finding 
those stations with the closest statistical agreement to the tar- 
get station. Previous research has shown that 80 kilometers 
for a radius is acceptable for most stations in practice (Hub- 
bard and You, 2005). Therefore, in this SCD study, 80 kilo- 
meters was taken for all stations. Additional requirements for 
station selection are that the variable to be tested is one of the 
variables measured at the candidate station and the data for 
that variable spans the time period to be tested. A station that 
otherwise qualifies could be eliminated from consideration if 
more than half of the data is missing for the time period x. 

Some definitions for the SRT method are listed below.  
xt     = the tth day’s value of the target station.  
yit  = the tth day’s value of the ith surrounding station.  
x =     the mean daily value of the target station for the time 

period.  
yi       = the mean daily value of the ith surrounding stations for the 

time period.  

1
( )( )

T

xy t it i
t

S x x y y
=

= − −∑                (4a) 

2

1

( )
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S x x
=

= −∑                (4b) 
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( )

T

yy it i
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S y y
=

= −∑                (4c) 
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For a given station x, the first step of the SRT method is 
to generate estimates from each surrounding station. For the 
ith surrounding stations yi, 1 i N≤ ≤ , let ai be the inter- 
cept and bi be the slope of the linear regression line. An esti- 
mate is formed by Equation (5): 
 

xt i i ite a b y= + ⋅                                    (5) 
 

where 
i i ia y b x= − ⋅  and 

i xy xxb S S= / .  
For the thi  surrounding station, the test calculates T esti- 

mates for the time period of length T. The standard error of 
estimate is  (also known as root mean square error) of the T 
estimates is defined as:  

 
2 1 2

1
[ ( ) ]

T

t xt
t

i

x e
s

T

/

=

−
=

∑
          (6) 

 
It also calculates 2r  to determine if the regression model fits 
the data, 2 ( ) ( )i xy xy xx yyr S S S S= ⋅ / ⋅ .  

Another important issue is how to account for possible 
systematic time shifting of observations. This problem occurs 
when an observer consistently writes the observation down on 
the day before or after the actual date of observation. In this 
study, it shifts the simultaneous data of a surrounding station 
by -1, 0, and 1 day and calculates all the intermediate para- 
meters. The shifting that results in the lowest standard error of 
estimate is  is recorded. All of these intermediate parameters 
(ai, bi, si and 2

ir ) are stored in the QC parameter database. 
Once all the intermediate parameters are calculated, the 

SRT method obtains a weighted estimate x’ by utilizing the 
standard error of estimate si for all the linear regressions in the 
weighting process, as described by Equation (7). The sur- 
rounding stations are ranked according to the magnitude of si 
and the N stations with the lowest si being used in the wei- 
ghting process. 

 
2

2
1 1 2

2
1

( )
 [ ]

1( )

N
xt

i i
N

i i

esign
sx

s

= /

=

| ⋅ |
′ = ±

∑

∑
                          (7) 

 
where sign is defined as 

xt xte e/ | | , the sign of xte . Care must  
be taken to preserve the correct sign on the sum of the top part 
of Equation (7) and x′ . 

The SRT method assigns more weight to the stations that 
have a lower si relation to the target station. The weighted 
standard error of estimate (s’) can be calculated as follows:  

 

2
1

2

1( )
1

N

i is
Ns

==
′

∑
                                    (8) 

Confidence intervals can be calculated on the basis of s′  
and f. The value x of the station can be tested to determine 
whether or not it falls within the confidence intervals. 

 
x f s x x f s′ ′ ′ ′− ⋅ ≤ ≤ + ⋅                             (9) 

 
If the relationship in Equation (9) holds, then the data 

passes the spatial regression test. Unlike distance weighting 
techniques, this method does not assume that the best station 
to compare against is the closest station; instead it looks to the 
relationships among the actual data of stations to determine 
which stations should be used to make the estimates and what 
weights those stations should receive. It was found that the 
spatial regression method can identify and correct most of the 
systematic errors, since the regression function can implicitly 
adjust for measurements between the differences caused by 
topographical effect such as the temperature falls in relation to 
the elevation. 

Tests have shown that the inclusion of more than five 
surrounding stations does not significantly improve the esti- 
mates (You et al., 2005), and the more surrounding stations, 
the more computation time. Hence, N equal to five was cho- 
sen. 

 
2.2.5. QC Parameter Database 

The QC parameter database is an essential part of the 
self-calibrating data QC library. The database provides the 
standard QC statistical parameters for the stations in question. 
Those parameters are the basis on which QC tests are run and 
estimats are computed. The parameters define the operational 
procedures for the quality control of climate variables since it 
is unlikely to have a general rule for all stations. Storing the 
parameters in a database allows modifications and adjust- 
ments to the operational QC process through those parameters 
without changing the basic QC routines. 

In the current QC parameter database, there are seven 
tables: threshold, step, persistence, spatial_reg, dist_weight, 
nearby, and reg_stats tables. For three of the seven tables, 
threshold, step, and persistence table, their parameters are at 
the monthly level and are the same in different years. For 
example, there are twelve monthly σx (the standard deviation 
of the daily values for the threshold test) per station per vari- 
able for all years. The other four tables are designed for spa- 
tial tests and estimations. The spatial_reg and dist_weight ta- 
ble store constant parameters in terms of time and can be cal- 
culated once for all the years. The reg_stats and the nearby 
table store regression parameters and their contents can be ge- 
nerated in different time units. The result will vary over time. 
In this study, a year was chosen as the time unit for the two 
tables. 

There are several reasons why the calculation of the 
regression parameters is performed year by year. First, some 
stations may be closed and some new stations may be added, 
therefore the surrounding stations relative to the target station 
may be different from year to year. More importantly, the 
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correlation coefficient may be different between two stations 
in different years, different seasons. It has been shown that the 
quality of the estimates is strongly affected by seasonality 
(Eischeid et al., 2000). However, it is very costly to calculate 
all the correlation coefficients seasonally or monthly between 
a target station and each of its surrounding stations. In this 
study, a Sun server (Sun-Fire-880) was used, and the average 
time to retrieve data from the ACIS system and perform the 
calculations to generate the yearly regression parameters is 
about 5 minutes per station. Even calculated yearly, it took 20 
days on the Sun server to generate the parameter database for 
the whole country and another 15 days to build the SCD. It 
will take several times more to do that seasonally and ten 
times more to do that monthly. Since the research objective is 
to build the SCD for the whole country with more than 10,000 
stations, a trade-off was made between accuracy and compu- 
tation time by generating the nearby and reg_stats tables with 
an entry for each variable per station per year. For applica- 
tions with only a small number of stations or a short time pe- 
riod involved, it might be feasible to compute the regression 
parameters monthly.  

 
2.3. Methodology 
2.3.1. Building a Serially Complete Dataset 

The building of the SCD dataset is a multi-step process 
as depicted in Figure 2. Step 1, the QC parameter database for 
all the stations processed was built. Step 2, once the QC para 
meter database is available, the QC tests are applied on the 
original data using the database. Any outlier will be flagged, 
including missing data or data identified by the QC tests that 
need to be checked manually. Step 3, the QC estimation me- 

thod SRT was chosen to generate estimates based on the QC 
parameter database. Step 4, the original values that are not 
flagged as outliers or the estimates will be selected and inte- 
grated into the final SCD output depending on the result from 
Step 2. 

(1) Building the QC Parameter Database. The QC para- 
meter database is the essential part of the SCD building pro- 
cess, as shown in Figure 2. The QC parameters are stored in a 
relational database with an entry for each variable (e.g. TM- 
AX) per station. For example, one entry in the threshold table 
will give all parameters necessary to run the threshold test on 
a station for one variable. A lack of entries in any QC para- 
meter table indicates that no parameters have been calculated. 
In that case, a decision was made to either adopt a default 
parameter or use certain methods to interpolate a replacement 
from the information in the database.  

The reg_stats table is at the core of the estimation method; 
hence it is explained in detail. The content of the reg_stats ta- 
ble is shown in Table 1. The column target_station is for the 
station in question. For example, 250030 is a station in the 
COOP network; KAIA is a station in the ICAO network and 
a254669 is a station in AWDN network. Column sur_station 
stores the information to identify the surrounding stations. var 
encodes the variable processed. In the ACIS system, 1 means 
TMAX, 2 means TMIN, and 4 means PRCP. distance stores 
the physical distance in kilometers between two stations. The 
correlation coefficients are represented by a, b, s and 2r . a 
and b are the parameters in Equation (7). The s is the standard 
error of estimate between two stations. (Although these are 
determined on an annual basis in this study, they can be cal- 
culated and applied in other time periods depending on the 
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Figure 2. The building process for the SCD. 
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application). The smaller s, the higher the correlation coeffici- 
ent is. The r2 is a standard metric for interpreting model fit. 
The r2 is always between 0 and 1. The 0 means the regression 
model does not fit the data at all; while 1 means the regression 
model fits the data perfectly. To account for possible syste- 
matic time shifting of observations, lag is used to record the 
shifting that results in the lowest s. Finally, year identifies the 
year of the entry.  

A typical station has approximately 18 surrounding sta- 
tions for temperature and more for precipitation. Hence the 
reg_stats table has approximately 1600 (18 × 30 × 3 variables) 
entries per station for 30 years for TMAX, TMIN and PRCP. 
Each entry needs to be calculated with the data of the target 
station and that of its surrounding stations for the same time 
period. This is partly why the SCD process is so computa- 
tionally intensive. Another computationally intensive part is 
doing the estimation. 

(2) Running QC Tests to Identify Outliers. Once the QC 
parameter database is ready, the next step is to apply QC tests 
on observed data to identify outliers. Three single station 
based QC tests were chosen: threshold test, step change test, 
and persistence test. If any test identifies a daily value as an 
outlier, it needs to be replaced with an estimate generated with 
the method described below. The SRT test can be used to 
identify more outliers. However, the SRT estimation method 
will be applied in the next step to provide the estimated values. 
Hence it would be duplicated in this step. 

There are two types of dynamic mechanisms here. First, 
users can choose what kind of tests and how many tests to 
apply to the data. Second, for each test, users can choose 
different values of the optional parameter f. Both of these 
choices are solely dependent on the level of accuracy required 
by the application. In the SCD application, for f, 3.0 and 6.0 
for temperature and precipitation are chosen, respectively. 

(3) Generating Daily Estimates Using SRT Method. As 
illustrated in Figure 2, the creation of a serially complete 
dataset includes the replacement of daily outliers. To find a 
replacement for the daily value, the SRT method is used to 
calculate an estimate based on the QC parameter database by 

using the simultaneous daily values at surrounding stations. 
Since the correlation coefficients between stations in the 
database are calculated and stored yearly, the estimation for 
daily values is also done year by year. For a given station in 
any year, the surrounding stations are first sorted by the 
yearly standard error of estimate s (defined in Section 2.3.1) 
in ascending order and the first five surrounding stations are 
chosen that have the lowest s. That step turns out to be 
critical and has significantly improved the accuracy over 
sorting stations by distance. This pre-selection of surround- 
ing stations, based on the correlation coefficients, is a nece- 
ssary and important step. Once the surrounding stations are 
chosen, The SRT method is applied to do the estimation us- 
ing the parameters in the database. 

If some of the first five stations do not qualify, the other 
surrounding stations that follow will be chosen as a backup. 
There are several reasons why a station may not qualify. For 
example, the correlation coefficient may not be calculated in a 
particular year because of missing data. 

(4) Generating Serially Complete Daily Values. Once the 
estimation is done, the serially complete estimated daily val- 
ues for the target stations from 1975 to 2004 are generated. 
The next step is to replace the outlier daily values with the es- 
timates. A sample of the SCD output for TMAX at the station 
250030 is depicted in Table 2. 

In Table 2, the column Date records the date of the daily 
value. Original stores the original observed value and Esti- 
mated is for the estimated daily value. Final stores the final 
daily SCD output. Diff keeps the difference between the ori- 
ginal daily value and the estimated; it will be empty if either 
the original or the estimated value is missing. The T_Flag, 
S_Flag, and P_Flag are the flags of the three QC tests (thres- 
hold test, step change test, and persistence test, respectively). 
The 1 means the daily value does not pass the test while the 0 
means pass. The -1 means missing daily value (marked -99 in 
the original value). If any of the three flags is not 0, the col- 
umn Flag will be set as 1 and the estimated daily value will 
replace the original observed value in the final SCD output. 

Because of the systematic time shifting of observations 

Table 1. The Content of Reg_stats Table 

Target_station  Sur_station  Var  Distance a  b  r2 s  Lag  Year   

250030  253615  2  31.52  0.92  -0.96  0.86  5.81 0 1975  
250030  253015 2  34.70  0.71  3.22  0.75  8.32 0 1975  
250030  484920 2  52.04  1.02  -2.40  0.92  4.50 0 1975  
...  ...  ...  ...  ...  ...  ...  ... ... ...  
250030  a256489 2  54.66  0.98  -4.78  0.91  5.57 0 1984  
...  ...  ...  ...  ...  ...  ...  ... ... ...  
KAIA  a250148 2 9.92 1.02  -1.86 0.97 3.75  1  2003  
KAIA  250130 1 17.00 1.06  -3.60 0.97 3.04  0  2004  
...  ...  ...  ...  ...  ...  ...  ... ... ...  
a254669  251450  2  8.48  0.99  1.58  0.94 4.43 1 2004  
…   
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(-1 and 1 day), the result does not include the estimates for the 
first day (1975-1-1) and the last day (2004-12-31). 

 
2.3.2. Evaluation Measures 

Several measures are suitable for experimentally com- 
paring the accuracy of estimation methods. Mean-absolute- 
error (MAE) and root-mean-square-error (RMSE) are used in 
this research to evaluate the errors between the observed and 
estimated data. The lower MAE and RMSE are, the more 
accurate the method is: 
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Equation (10) computes MAE and RMSE, where Fi is the 

estimated value, as shown in the Estimated column in Table 2; 
Ai is the observed value, as shown in the Original column in 
Table 2; N is number of data. 

In the calculation of MAE and RMSE for a station, only 
those original observed daily values that pass all three QC 
tests, that is to say, the Diff in Table 2 is not empty, are con- 
sidered. 

To evaluate the result for stations, the yearly MAE and 
yearly RMSE (1975 to 2004) for all the stations processed are 
first calculated. Hence for any station, there will be 30 yearly 
MAE/RMSE. The yearly MAE and yearly RMSE are aver- 
aged over 30 years to calculate the average_MAE and ave- 
rage_RMSE of a station. A sample evaluation result for the 
station 250030 of TMAX is shown in Table 3. 

3. Results and Discussion 

The evaluation of the overall accuracy in the US is con- 
ducted at several levels for each variable. At the station level, 
the average_MAE and average_RMSE of a station are calcu- 
lated as depicted in Table 3. The results of all the stations pro- 
cessed over the whole country are then analyzed. To gain dif- 
ferent levels of view of the accuracy of the SRT estimation 
method, the county layer, the climate division layer, and the 
state layer are added to the evaluation based on the results at 
the station level. At the county level, the average_MAE and 
average_RMSE for all the stations are summarized to calcu- 
late the county-wide average MAE and RMSE. At the climate 
division level, the average MAE and RMSE for all the 
stations are summarized to calculate the climate-division-wide 
average MAE and RMSE. At the state level, the average MAE 
and RMSE for all the stations are summarized to calculate the 
statewide average MAE and RMSE. 

 
3.1. TMAX 

As noted below, the result shows that the best accuracy is 
in the southeastern plains regions, followed by the coastal 
areas (the eastern coast is better than the western coast). The 
poorest accuracy areas are the western mountainous regions. 

There are several possible reasons for the relatively poor 
estimates in the western mountainous regions. The topogra- 
phical diversity of the surrounding stations leads to a degra- 
dation of spatial coherence among stations, which results in 
higher MAE and RMSE. Another possible reason is the sta- 
tion density. Recall from Figure 1 that the station density in 
the East is much higher than that in the West. The areas with 
the most sparsely distributed stations are the western moun- 
tainous regions. Analysis indicates that, the higher the density 
of the stations is, the better temperature estimates can be ach- 
ieved using the SRT method. This result is consistent with re- 

 
Table 2. A Sample SCD Output for Station 250030 of TMAX 

Date  Original  Estimated  Final  Flag  Diff  T_Flag  S_Flag  P_Flag  
1975-1-1  -99  -99  -99  1   -1  -1  -1  
1975-1-2  -99 31.38  31.38  1   -1  -1  -1  
1975-1-3  -99 35.18  35.18  1   -1  -1  -1  

...  ...  ...  ...  ...  ...  ...  ... ...  
2003-8-30  62 62.65  62.65  1  1 1 0  

...  ...  ...  ...  ...  ...  ...  ... ...  

2004-12-25  47 46.89  47  0 -0.11  0 0 0  

2004-12-26  49 51.03  49  0 2.03  0 0 0  

2004-12-27  48 39.59  48  0 -8.41  0 0 0  
2004-12-28  53 54.43  53  0 1.43  0 0 0  

2004-12-29  53 47.76  53  0 -5.24  0 0 0  

2004-12-30  49 50.42  49  0 1.42  0 0 0  
2004-12-31  49 -99  49  0  0 0 0  
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search reported in (You et al., 2005). 
 

Table 3. A Sample Evaluation Output for Station  
250030 of TMAX 

Year  MAE  RMSE  
1975  2.23  3.33  
1976  2.41 3.30  
1977  2.71 3.91  
...  ...  ...  
1990  1.99 2.63  
...  ...  ...  
2003  2.06 2.85  
2004  2.04 2.76  
Average  2.48 3.49  
Highest  3.27 4.93  
Lowest  1.99 2.63  

 

3.1.1. TMAX at County Level 
The distribution of accuracy at the county level is illus- 

trated in Figures 3a and 3b. The difference between the West 
and the East is very significant. In Figure 3a, for most coun- 
ties in the East, the average MAE is between 0.92 and 2.38, 
highlighted with distributed white blocks, where the average 
MAE is less than 1.62. For most counties in the West, the ave- 
rage MAE is between 1.99 and 4.28, highlighted with some 
distributed dark-black blocks in the mountainous regions, 
where the average MAE is above 2.98. The distribution of the 
average RMSE in Figure 3b is almost the same as the average 
MAE in Figure 3a. 

 
3.1.2. TMAX at Climate Division Level 

The accuracy at the climate division level is illustrated in 
Figures 3c and 3d. The result is similar to that at the county 
level. In Figure 3c, for most climate divisions in the East, the 
average MAE is between 1.36 and 2.44, highlighted with 
distributed white blocks, where the average MAE is less than 
1.74. For most climate divisions in the West, the average 
MAE is between 2.07 and 4.90, highlighted with some distri- 
buted dark-black blocks in the mountainous regions, where 
the average MAE is above 2.98. The distribution of the aver- 
age RMSE in Figure 3d is almost the same as the average 
MAE in Figure 3c. 

 
3.1.3. TMAX at State Level 

The result is similar to that of other levels. It can be seen 
from Figure 3e that for most states, the statewide average 
MAE is very good, between 1.33 and 2.52. The states with the 
best estimates are in the Southeast. The states with the poorest 
estimates are Colorado, Wyoming, Montana, and Nevada, 
where the MAE is between 2.53 and 3.15.  

Figure 3f depicts the accuracy distribution of RMSE at 
the state level. It is similar to the MAE in Figure 3e. For most 
states, the statewide average RMSE is between 2.27 and 3.58. 

The states with the lowest RMSE are in the Southeast and the 
states with the highest RMSE are also in the mountainous 
regions. The statewide average RMSE over the 48 states are 
also averaged, the resulting RMSE for the whole country is 
2.74.  

In comparison to the previous effort by Eischeid et al. 
(2000), the RMSE of that study is between 2.12 and 3.96 for 
the twelve months and 2,034 stations. The median RMSE of 
that study is between 2.44 and 3.32. For most states, the 
RMSE of this study ranges from 2.27 to 3.58, with the nation- 
wide average of 2.74. However, a direct comparison is diffi- 
cult for several reasons. First, the calculation method of 
RMSE is not the same. Actually, it is unclear how the RMSE 
was calculated in that study. Second, the results of that study 
only cover the Western US. Third, and more importantly, most 
of the stations selected in that study are COOP stations. Many 
of the COOP stations have a long history and have more than 
50 years of data (some COOP stations have even 100 years of 
data), as documented in the metadata for each station. As 
analyzed in Subsection 3.4, the more data a station has, the 
more accurate the estimation method will be. If applied only 
to COOP stations in this study, the estimation accuracy using 
the SRT method can be improved. An experiment for seven 
states shows that the accuracy can be improved by 1% to 4%. 
Generally, we believe the approach of this study yields more 
accurate results.  

The average RMSE of this study seems a little bit higher 
than that calculated with the SRT method from a previous 
study (You et al., 2005). There are three reasons for it. First, 
the RMSE of the previous study is for the dataset of 2002, but 
the RMSE reported here in this study is the average of 30 
years, from 1975 to 2004. The RMSE of this study for year 
2002 only is about 10% lower than the 30-year average. 
Second, the previous study only applied to COOP stations. 
Third, to make a trade-off between computation time and 
accuracy as explained in Section 2.2.5, T is 365 in this study, 
but the previous study used T = 60. Not withstanding these 
factors, the results of these two studies are similar. 

 
3.2. TMIN 

As discussed below, the result is similar to that of TMAX. 
The best accuracy is in the southeastern plains regions, fo- 
llowed by the coastal areas (the eastern coast is better than the 
western coast). The poorest accuracy areas are the western 
mountainous regions. Notice that the accuracy of TMAX is 
significantly better than that of TMIN over the whole country. 

 
3.2.1. TMIN at County Level 

The distribution of accuracy at the county level is illus- 
trated in Figures 4a and 4b. The result is similar to that of 
TMAX. The difference between the West and the East is very 
significant. In Figure 4a, for most counties in the East, the 
average MAE is between 0.95 and 2.75, highlighted with 
distributed white blocks, where the average MAE is less than 
1.91. For most counties in the West, the average MAE is 
between 2.31 and 5.23, highlighted with some distributed 
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dark-black blocks in the mountainous regions, where the 
average MAE is above 3.37. The distribution of the average 
RMSE in Figure 4b is almost the same as the average MAE in 
Figure 4a. 

 
3.2.2. TMIN at Climate Division Level 

The distribution of accuracy at the climate division level 
is illustrated in Figures 4c and 4d. The result is similar to that 
at the county level. In Figure 4c, for most climate divisions in 
the East, the average MAE is between 1.46 and 2.48, high- 
lighted with distributed white blocks, where the average MAE 

is less than 2.15. For most climate divisions in the West, the 
average MAE is between 2.87 and 4.56, highlighted with 
some distributed dark-black blocks in the mountainous re- 
gions, where the average MAE is above 3.38. The distribution 
of the average RMSE in Figure 4d is almost the same as the 
average MAE in Figure 4c. 

 
3.2.3. TMIN at State Level 

The result is similar to that of TMAX at the state level. It 
can be seen from Figure 4e that for most states the statewide 
average MAE is between 1.80 and 3.11. The states with the 

 
Figure 3. (a) average MAE of TMAX for counties; (b) average RMSE of TMAX for counties; (c) average 
MAE of TMAX for climate divisions; (d) average RMSE of TMAX for climate divisions; (e) average MAE of 
TMAX for states; (f) average RMSE of TMAX for states. 
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best estimates are in the Southeast. The states with the poorest 
estimates are in the West. 

Figure 4f depicts the accuracy distribution of RMSE at 
the state level. It is similar to the MAE in Figure 4e. For most 
states, the statewide average RMSE is between 2.43 and 4.09. 
The states with the lowest RMSE are in the Southeast. The 
states with the highest RMSE are also in the western moun- 
tainous regions. The statewide average RMSE over the 48 
states are also averaged, the resulting RMSE for the whole 
country is 3.17.  

In comparison to the previous effort by Eischeid et al. 
(2000), the RMSE of that study is between 2.22 and 4.58 for 
the twelve months and 2035 stations. The median RMSE of 

that study is between 2.68 and 3.62. For most states, the 
RMSE of this study ranges from 2.43 to 4.09, with the nation- 
wide average of 3.17. However, like TMAX, A direct compa- 
rison between the results of this study with that one is not 
meaningful. 

 
3.3. PRCP 

How the result for precipitation differs from the result for 
TMIN or TMAX are specified below. In most areas including 
the mountainous regions, the accuracy is good but the poorest 
estimates are found in the southeastern coastal areas. 

There are several possible reasons for the poorest esti- 
mates of precipitation in the southeastern coastal areas. Those 

 
Figure 4. (a) average MAE of TMIN for counties; (b) average RMSE of TMIN for counties; (c) average MAE 
of TMIN for climate divisions; (d) average RMSE of TMIN for climate divisions; (e) average MAE of TMIN 
for states; (f) average RMSE of TMIN for states. 
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areas are in tropic or near tropic climate and are strongly af- 
fected by the Gulf of Mexico, the Atlantic Ocean and the 
Caribbean Sea. The climates in those areas are typical tropical 
oceanic climate. Hurricanes and other small types of storms 
usually produce significant rainfall in some particular areas 
seasonally and may not have similar effects in surrounding 
areas. Furthermore, since the approach calculates the correla- 
tion coefficients among stations yearly, it may not work very 
well in areas like those having strongly seasonal precipitation. 

Recall from Figure 1 that the station density in the East is 
much higher than that in the West. The areas with the most 
sparsely distributed stations are the western mountainous 
regions. However, unlike the results of temperature, the high- 
er the density of the stations does not lead to the better accu- 

racy. 
 

3.3.1. PRCP at County Level 
The distribution of accuracy at the county level is illus- 

trated in Figures 5a and 5b. The difference between the West 
and the East is very significant, but unlike the results of 
TMAX or TMIN, the accuracy in the West is much better than 
that of the East. In Figure 5a, for most counties in the East, 
the average MAE is between 0.08 and 0.29, highlighted with 
some dark-black blocks in the southeastern coastal areas, 
where the average MAE is above 0.13. For most counties in 
the West, the average MAE is between 0.01 and 0.07, high- 
lighted with several continued white areas, where the average 
MAE is less than 0.05. The distribution of the average RMSE 

 
Figure 5. (a) average MAE of PRCP for counties; (b) average RMSE of PRCP for counties; (c) average MAE 
of PRCP for climate divisions; (d) average RMSE of PRCP for climate divisions; (e) average MAE of PRCP for 
states; (f) average RMSE of PRCP for states. 
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in Figure 5b is almost the same as the average MAE in Figure 
5a. 

 
3.3.2. PRCP at Climate Division Level 

The distribution of accuracy at the climate division level 
is illustrated in Figures 5c and 5d. The result is similar to that 
at the county level. In Figure 5c, for most climate divisions in 
the East, the average MAE is between 0.08 and 0.17, high- 
lighted with some dark-black blocks in the southeastern coas- 
tal areas, where the average MAE is above 0.13. For most 
climate divisions in the West, the average MAE is between 
0.01 and 0.07, highlighted with several continued white areas, 
where the average MAE is less than 0.05. The distribution of 
the average RMSE in Figure 5d is almost the same as the 
average MAE in Figure 5c. 

 
3.3.3. PRCP at State Level 

The result is different from TMIN or TMAX. It can be 
seen from Figure 5e that for most states, the statewide aver- 
age MAE is between 0.03 and 0.11. In contrast with tempera- 
tures, the states with the best estimates are in the West and 
Midwest. The states with the poorest estimates are in the 
Southeast, especially the southeastern coastal areas like Flori- 
da, Alabama and Louisiana. The average MAE of those states 
is between 0.12 and 0.14, about twice higher than the average 
values in other states. Areas in the Northeast have the average 
accuracy with the MAE between 0.06 and 0.09. 

Figure 5f depicts accuracy distribution of RMSE at the 
state level. It is almost the same as the MAE in Figure 5e. For 
most states, the statewide average RMSE is between 0.07 and 
0.23. The states with the lowest RMSE are in the West and 
Midwest. The states with the highest RMSE are in the south- 
eastern coastal areas.  

In comparison to the previous effort by Eischeid et al. 
(2000), the RMSE of that study is between 0.62 and 0.92 for 
the twelve months and 2,692 stations in the Western US. The 
median RMSE of that study is between 0.72 and 0.88. For 
most states, the RMSE of this study ranges from 0.07 to 0.23. 
However, it is difficult to do a direct comparison for reasons 
similar to TMAX. Moreover, the results of that study do not 
include the southeastern coastal areas where it is relatively 
difficult to do accurate estimations. Generally, we believe the 
approach of this study yields more accurate results. 

 
3.4. Stations With and Without 30 Years of Observed Data 

Approximately 40% of the stations have original obser- 
ved data from 1975 to 2004. The remaining 60% of the sta- 
tions, especially those of the AWDN network (typically star 
-ted in the 1980s), have less than 30 years of observed data. 
Even for those 40% of the stations, missing data gaps ranged 
from a couple days to months, and even to years. The accu- 
racy of the SRT method between the stations with 30 years 
(1975 to 2004) of original observed data and all the stations in 
Nebraska are compared. Although this evaluation is conduc- 

ted in Nebraska, similar results are expected for the rest of the 
US. For the tables and figures in this subsection, S30 repre- 
sents the stations with 30 years of original observed data and 
Sall represents all the stations in the state.  

The results discussed below show that for both tempera- 
ture and precipitation, the accuracy of S30 is always signifi- 
cantly better than that of Sall. That is, the more data a station 
has, the more accurate the estimation method will be. In both 
situations, since there are more surrounding stations, the accu- 
racy of the SRT method for temperatures is improving after 
1990. This confirms the conclusion from previous research 
(You et al., 2005), that the SRT method was found to perform 
relatively poor when the weather stations are sparsely distri- 
buted. However, it is interesting to note that, for precipitation, 
more surrounding stations do not improve the accuracy. 

 
3.4.1. Daily Maximum Temperature 

As shown in Table 4, Figures 6a and 6b, the accuracy in 
terms of MAE or RMSE of S30 is always better than those of 
Sall for TMAX. The average MAE and RMSE of S30 of the 
30 years are both 11.2% lower than those of Sall. Similar 
relations exist for the lowest/highest yearly average MAE/ 
RMSE in the 30 years between S30 and Sall. Figure 6a also 
depicts that both S30 and Sall have similar trends from 1975 
to 2004. Both of the two lines start from 1975 with appro- 
ximate average values and reach the peak in 1979. The accu- 
racy is getting better in the 1980s. After 1992, the accuracy is 
quite impressive (MAE of S30 is around 1.5°F). The lines of 
RMSE in Figure 6b confirm the similar trends in Figure 6a. 

 
Table 4. Comparison between Stations with and without 
Observed 30-year Data 

TMIN TMAX PRCP  

S30    Sall S30    Sall S30    Sall 
Number of 
Stations 

124  271 123  271  183 421  

Ave-MAE 
-all  

1.918 2.215  1.719  1.936 0.041 0.048  

Lowest Ave- 
MAE-year 

1.676 1.950 1.491 1.661 0.031 0.034  

Highest Ave- 
MAE-year 

2.283 2.481  2.047  2.263 0.054 0.062  

Ave-RMSE 
-all 

2.603 2.992  2.452 2.761 0.089 0.120 

Lowest Ave- 
RMSE-year 

2.274 2.635  2.129 2.361 0.073 0.090  

Highest Ave- 
RMSE-year 

3.114 3.362  2.891  3.187 0.105 0.157 

 
3.4.2. Daily Minimum Temperature 

As shown in Table 4, Figures 6c and 6d, although the 
difference between S30 and Sall is more significant than that 
of TMAX, there are very similar results for TMIN. The two 
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lines (MAE and RMSE) of S30 are totally under those of Sall. 
Thus the accuracy in terms of the MAE or RMSE of S30 is 
always significantly better than that of Sall. The average 
MAE of S30 for the 30 years is 13.4% lower than that of Sall. 
The same relations exist for the lowest and highest average 
MAE in the 30 years between S30 and Sall. Figure 6c also 
depicts that both S30 and Sall have similar trends from 1975 
to 2004. The two lines start from 1975, with a little bit higher 
MAE in the 1970s, become better but fluctuate in the 1980s. 
In the 1990s, they provide the best accuracy and have appro- 
ximately average accuracy after 2000. The average RMSE of 
S30 of the 30 years is 13.0% lower than that of Sall. Like 
MAE, the lowest and highest average RMSE of S30 are about 

10% lower than those of Sall. The trends for RMSE in Figure 
6d are similar to that of MAE. 

 
3.4.3. Daily Precipitation 

As shown in Table 4 and Figures 6e and 6f, like the 
relations in temperature, the accuracy in terms of MAE or 
RMSE of S30 is always better than that of Sall for PRCP. The 
average MAE and RMSE of S30 of the 30 years are 14.6% 
and 25.8% lower than those of Sall, respectively. The same 
relations exist for the lowest/highest average MAE/RMSE in 
the 30 years between S30 and Sall. Figure 6e depicts that both 
S30 and Sall have similar trends from 1975 to 2004. However, 
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unlike TMIN or TMAX, the lines fluctuate. There is no best 
accuracy time period as there was for the temperatures. The 
trends for RMSE in Figure 6f are like MAE of Figure 6e, but 
the difference between S30 and Sall is more significant. 

4. Conclusions 

This study developed a serially complete daily tempera- 
ture and precipitation dataset for the United States using the 
self-calibrating data quality control library. With the SCD, 
many climate related tools (e.g. SPI, SC-PDSI) are enabled 
and the NADSS can provide more accurate results, which will 
lead to the improvement of drought risk assessment and en- 
vironmental risk analysis. 

The SCD estimation result is accurate. First, the preselec- 
tion of surrounding stations and the calculation of the esti- 
mates are based on the correlation coefficients among stations, 
which improved the accuracy over the selection and calcu- 
lation based on distance. Second, the approach can account 
for falling temperature in relation to elevation. Third, the cho- 
ice of yearly correlation coefficients among stations is a trade- 
off between computation time and accuracy. The results show 
that the choice is reasonable and it improves the quality of the 
estimation that is strongly affected by seasonality. Fourth, the 
time shifting feature of the SRT estimation method reduces 
the affect of stations with different times of observation. All 
of these features allow the estimation to have impressively 
low systematic errors.  

Because the topographical diversity of the surrounding 
stations in the mountainous regions leads to a degradation of 
spatial coherence among stations, the estimates for stations in 
the plains regions are relatively better than stations in the 
mountainous regions. Besides that, the accuracy of the estima- 
tion is affected by several other factors. Estimation is affected 
by the density of stations. Estimation errors for temperature 
increase as the stations become sparser. Estimation is also 
affected by the data completeness. The more data a station has, 
the more accurate the estimation method will be.  

In areas where the complexity of terrain dominates, such 
as the coastal areas and the mountainous regions, further in- 
vestigation of the new estimation techniques is needed. The 
current estimation method may be improved by combining it 
with temporal estimation techniques (within the historical re- 
cord for a station) and a terrain regression. 

The approach of the self-calibrating data QC library is 
flexible. The QC parameter database and the dynamic pro- 
cedures of using various values of the optional parameter f all- 
ow an informed choice regarding how many data points will 
be flagged in the natural data stream. Users can make choices 
dynamically, depending solely on the requirements of any par- 
ticular application. The modifications and adjustments to the 
operational QC process can be achieved through those para- 
meters in the database or the optional parameter values (f) 
without changing the basic QC routines. 
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