
29 

07JEI00085 
1726-2135/1684-8799 

© 2007 ISEIS  
www.iseis.org/jei 

Journal of Environmental Informatics 9(1) 29-40 (2007) 
 
 

Exploring the Variability in Suspended Sediment Yield Using BASINS-HSPF and 
Probabilistic Modeling: Implications for Land Use Planning  

 
D. Mitsova-Boneva and X. Wang* 

 
School of Planning, University of Cincinnati, Cincinnati, OH 45221-0016, USA 

 
ABSTRACT.  The purpose of this study is to examine the use of Monte Carlo simulation method together with BASINS-HSPF, a 
deterministic water quality simulation model to investigate the variability of sediment yield from various land cover types in the East 
Fork Little Miami River watershed, Ohio, USA. The study has two main objectives: first, to obtain interval estimates of suspended 
sediment yield from urban, agricultural and forest land; and second, to generate probability density and cumulative distribution func-
tions for those estimates. As a result, we will know not only the range of possible values of sediment yield in the watershed but also the 
probability with which those values are likely to occur. BASINS (Better Assessment Science Integrating Point and Non-Point Sources), 
a modeling system which provides a Window-based interface for the Hydrologic Simulation Program – Fortran (HSPF), is used in the 
analysis to simulate streamflow and suspended sediment yield. The daily values of suspended sediment yield from various land cover 
types generated by BASINS-HSPF are used as input to the Monte Carlo simulation technique that generates probability density and 
cumulative distribution functions. The distributions are used to draw conclusions about the uncertainty in the hydrologic model predic-
tions in the form of confidence intervals for the predicted sediment yield. The study shows that the width of the confidence interval has 
a critical importance for the evaluation of the model results. 
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1. Introduction  

Simulation has long been used in environmental analysis 
for approximate solutions to physical problems in systems 
that are too complex to be approached analytically (Rubin- 
stein and Melamed, 1998; Law and Kelton, 2000; Crawford- 
Brown, 2001). A simulation model is considered deterministic 
when all logical relationships between its components and pa- 
rameters are controlled by pre-specified algorithms which do 
not involve responses to random conditions (Rubinstein and 
Melamed, 1998; Law and Kelton, 2000). These also are called 
physically-based models. Stochastic or probabilistic simula- 
tions allow for the inclusion of random components in the 
modeling process and the output “is treated as a random va- 
riable” itself (Crawford-Brown, 2001). As such, they are inter- 
preted through probability distributions. Such models are call- 
ed empirical or statistically-based models. 

The proper uses of physically-based versus empirical or 
statistically-based models have been discussed by several re- 
searchers (Chow et al., 1988; Cashman, 1997; Huang, 1999; 
Haan and Skaggs, 2003). Theoretically, distributed or semi- 
distributed watershed models describing the behavior of hy- 
drologic systems based on a set of mathematical equations 
provide the most reliable information on the complex physical, 
chemical and biological processes occurring simultaneously 
in the watershed at different scales of space and time (Chow 
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et al., 1988; Cashman, 1997). 
The practical use of those models, however, raised ques- 

tions about the variation and uncertainty in parameter esti- 
mation and output, as well as possible approaches to address 
them. In addition, physically-based models often produce po- 
int estimates that are fixed for any given set of inputs. Several 
natural processes, however, such as rainfall amount, intensity, 
and duration, abstractions, site drainage and erosion are sto- 
chastic in nature (Haan et al., 1995; Chow et al., 1988; Haan 
and Skaggs, 2003; Cashman, 1997). Hence, a set of given in- 
put parameters can be better understood through probability 
distributions. Daily precipitation, for example, which drives 
many hydrological processes, is often considered a random 
variable which can be reasonably examined through proba- 
bility distributions (Chow et al., 1988; Huang, 1999). Issues 
related to the inherent uncertainty of the modeling process 
also call for a need for probabilistic approaches (Haan and 
Skaggs, 2003; Paul et al., 2004). On the other hand, purely 
statistical methods are useful in making predictions within the 
range of the dataset or establishing correlations between the 
variables of interest but they cannot explain causal relation- 
ship or provide information on the underlying physical pro- 
cesses. Integrating the strengths of deterministic and probabi- 
listic analyses in examining hydrologic processes contributes 
to fuller understanding of the dynamics of watershed condi- 
tions and provides planners, environmental risk assessors, re- 
searchers, and citizens with knowledge on the possible range 
of outcomes of any planned or proposed land-use/land-cover 
changes. 
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Since the 1970s, physically-based hydrologic simulation 
models have increasingly been used to assess the impact of 
various management practices and evaluate short- and long- 
term effects of changing hydrologic conditions on water qua- 
lity. Several such models are currently available. BASINS 
(Better Assessment Science Integrating Point and Non-Point 
Sources) consists of four such models and data management 
tools coupled with a Geographic Information System (GIS) 
interface (USEPA, 1998). The four models are Hydrologic 
Simulation Program – Fortran (HSPF) (Donigian et al., 1984; 
Bicknell et al., 1993; Bicknell et al., 1996), Soil and Water 
Assessment Tool (SWAT) (Arnold et al., 1994; Arnold et al., 
1998), the enhanced stream water quality model QUAL2E 3.2 
(Brown and Barnwell, 1987), and Pollutant Loading Program 
(PLOAD). Borah and Bera (2003) evaluated the mathematical 
structure and parameterization requirements of eleven water- 
shed based hydrologic and pollutant simulation models and 
compared their data requirements and applicability. The inves- 
tigators found that HSPF and SWAT are two of the most wide- 
ly used and reliable hydrologic simulation models. 

Van Liew et al. (2003) used SWAT and HSPF to simulate 
streamflow in eight nested watersheds in the Washita River 
Basin in southwestern Oklahoma. The investigators compared 
the error rate between the observed and simulated flow hy- 
drographs using flow duration curves generated by the two 
models. They found that both HSPF and SWAT simulated 
streamflow in ranges close to the monitored values (Van Liew 
et al., 2003). The authors observed that in some applications 
HSPF produced better agreement between predicted and ob- 
served flow which was explained with the use of the Philip’s 
infiltration equation in HSPF versus the use of the SCS runoff 
curve number in SWAT (Van Liew et al., 2003). 

In another application, Saleh and Du (2004) compared 
HSPF and SWAT based on the standard deviation and mean 
error of measured and predicted flow. They used Nash and 
Sutcliffe (1970) equation to compute model efficiency. The 
study, conducted in the Upper North Bosque River watershed 
in central Texas, found higher mean error in SWAT daily flow 
predictions compared to HSPF. The SCS runoff curve number 
method (used in SWAT) which accounted only for the total 
rainfall volumes was considered less accurate than the Philip’s 
infiltration equation applied in HSPF. Saleh and Du (2004) 
also found that both models simulated sediment yield reason- 
ably well, but SWAT produced better results than HSPF in 
estimating nutrient concentrations. The authors concluded that 
HSPF had lower efficiency for nutrient predictions than SW- 
AT due to the fact that it had not been designed to incurpo- 
rate various agricultural management practices (Saleh and Du, 
2004).  

Bosch et al. (2003) examined the hydrologic effects of 
urban development, namely the percent change in estimated 
flood magnitudes for return periods of 10, 5, 2 and less than 
one year, and percent change in infiltration which contributes 
to aquifer recharge. The authors used HSPF to investigate ele- 
ven development scenarios, based on high, medium and low 
density residential development and found that development 

in headwaters has the highest hydrological impact on the wa- 
tershed both in terms of increased runoff and decreased infil- 
tration (Bosch et al., 2003). The investigators did not com- 
ment on the HSPF performance in the study but mentioned 
that the constraints of parameterization need to be considered 
in assessing the validity of results (Bosch et al., 2003). 

Although many studies report on the performance of 
HSPF and other hydrologic and water quality modeling sys- 
tems, only a few of them explicitly address the issues of un- 
certainty and variability in outputs. Usually variability is asso- 
ciated with changes in natural conditions while uncertainty 
stems from the modeling process itself as a result of insuf- 
ficient knowledge and subjective judgment (Cullen and Frey, 
1999; Bates et al., 2003; Paul et al., 2004). Chen et al. (1998) 
observed four major sources of uncertainty in the modeling 
process: (i) data deficiencies; (ii) “limited representativeness 
of point measurements”; (iii) scarcity of on-site data on chan- 
nel morphology; and (iv) errors generated by the modeling 
system.  

Albek et al. (2004) applied HSPF to investigate how an 
increase in the mean annual temperature and changes in land 
cover will affect the discharge rate in the Seydi Suyu water- 
shed in Turkey. The model performance was evaluated using 
three statistical tests: the correlation coefficient, t-test and chi- 
square test (Albek et al., 2004). All tests were statistically sig- 
nificant which indicates good representation of watershed 
conditions by the HSPF-simulated results. The simulated dai- 
ly flows, although showing greater variability, were also thou- 
ght to be adequate (Albek et al., 2004). 

Paul et al. (2004) used first-order approximation to evalu- 
ate the impact of five calibration parameters on the variance 
of HSPF-simulated output in Salado Creek, Texas. The auth- 
ors observed that even a negligible deviation in accuracy wh- 
en calibrating these parameters set out a significant error mar- 
gin in the output (Paul et al., 2004). Im et al. (2004) encoun- 
tered difficulties in matching sampled data with the daily 
mean concentrations simulated by HSPF. The discrepancy 
was attributed to the fact that field data consisted of point 
measurements while the HSPF predictions were daily ave- 
rages, and for this reason the HSPF results were considered 
valid if the field record falled within an interval bounded by 
the lowest and highest simulation over a 3-day period (Im et 
al., 2004). 

In sum, the literature has raised a number of questions re- 
garding the precision of output results in environmental simu- 
lation modeling. More specifically, uncertainty in the model- 
ing results is influenced by: (1) use of different theories and 
equations; (2) use of different calibration and validation tech- 
niques; (3) often lack of sufficient knowledge of specific wa- 
tershed conditions to allow for accurate model calibration; (4) 
use of relatively small number of point measurements to cali- 
brate simulated average daily values; (5) application of cons- 
tant, empirically estimated coefficients for spatial and tempo- 
ral aggregations; (6) the stochastic nature of some of the in- 
puts; (7) measurement errors; (8) modeling errors; and (9) 
missing data. 
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Given these arguments, it is obvious that uncertainty ana- 
lysis will enhance the validity of the modeling results. Monte 
Carlo simulation (MCS) has been considered an appropriate 
technique for conducting probabilistic analyses in many en- 
vironmental exposure and risk assessment studies. The U.S. 
Environmental Protection Agency (USEPA) has adopted a po- 
licy on the use of Monte Carlo techniques as a means to find 
multi-scenario solutions to environmental risk problems and 
examine the sources of variability and uncertainty (USEPA, 
1997). The use of Monte Carlo techniques has been prompted 
by the recognition that in many cases we do not possess full 
knowledge of the processes underlying an outcome, and even 
when those processes are well represented in algorithms, the 
knowledge of theoretical distribution of an outcome could still 
be rather limited. Even when such knowledge exists, data may 
not satisfy all assumptions built in the statistical theory. Fan et 
al. (2002) found that Monte Carlo simulation is particularly 
relevant in the following situations: (i) the theory does not 
provide an analytical framework for examining the output dis- 
tributions; (ii) “the theory about the statistic of interest is 
weak” (p.12); or (iii) prior knowledge simply does not exist. 
In these and similar cases, the Monte Carlo method allows for 
empirical estimation of the sampling distribution characteris- 
tics without referring to “the theoretical expectations of those 
characteristics” (Fan et al., 2002). 

Haan et al. (1995) used Monte Carlo simulation to gene- 
rate cumulative and probability density functions of simulated 
mean monthly flow. The study investigated the relationship 
between the modeled flow and the Soil Conservation Service 
(SCS) runoff curve number CN. The authors found that MCS 
is a useful technique for estimating uncertainty in inputs and 
outputs of deterministic modeling. In two studies  on hydro- 
logy and the nitrogen cycle, Haan and Skaggs (2003) applied 
Monte Carlo methods in conjunction with sensitivity analysis 
and first-order approximation to investigate the expected nor- 
mal and log-normal distributions for nitrogen loss at the Tide- 

water Research Station in Plymouth, North Carolina. Korre et 
al. (2002) used MCS to examine the probability of exceeden- 
ce of the daily mean concentrations of Pb in the soil substrate 
around Lavrio, Greece. 

Built upon the literature, we use an integrated approach 
based on coupling BASINS-HSPF and Monte Carlo simula- 
tion to study the impact of land cover on sediment yield in the 
East Fork Little Miami River watershed, Ohio. BASINS- 
HSPF is used to simulate the production and removal of sus- 
pended sediment from pervious and impervious urban sur- 
faces, agricultural, and forest land. The simulated values are 
entered as input to the Monte Carlo simulation to generate 
probability density and cumulative distribution functions for 
the output estimates. More specifically, the study examines 
the sediment yield values generated by HSPF in terms of pro- 
bability distributions and derives conclusions about the impact 
of different land cover types on the likelihood that a certain 
level of sediment export may occur. The distributions are used 
to quantify the uncertainty in the model predictions in the 
form of confidence intervals for the predicted sediment yield. 
Since both measured data and predictions from deterministic 
modeling may vary within wide range of values, the method 
suggested in this study is helpful in approaching questions 
such as: Which values of suspended sediment yield are most 
likely to occur? What is the probability that the maximum si- 
mulated value will be observed? What is the range of values 
enfolded between the 0.05 and 0.95 percentiles, or between 
0.01 and 0.99 percentiles? In many cases, such information 
derived from probability density functions is more useful in 
the decision-making than the point estimates obtained through 
a deterministic modeling process. 

2. Background Information 

2.1. Study Area 
The study area is the East Fork Little Miami River 

 

 

Figure 1. Location of the East Fork Little Miami River watershed in Ohio, USA. 
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(EFLMR) watershed, which covers approximately 506 square 
miles (1,313 square kilometers) in the southeastern part of the 
Little Miami River sub-basin (HUC # 05090202) (Figure 1). 
The river originates north of New Vienna at an elevation of 
1,140 feet (348 meters) above the sea level and drops to 492 
feet (150 meters) at its confluence with the Little Miami River 
(CCOEQ, 2000). The average change in longitudinal slope is 
7.6 feet per mile (1.4 meters per kilometer). The confluence of 
the East Fork Little Miami River and the Little Miami River 
occurs 3.5 miles (5.6 kilometers) south of Milford, just east of 
the City of Cincinnati. Topographically, the watershed is sub- 
divided into two sub-watersheds. The eastern part of the East 
Fork Little Miami River watershed is characterized by steeper 
topography and variations in elevation. The western part is 
flatter, consisting mainly of gently rolling hills and wider 
floodplain (CCOEQ, 2000). 

Figure 2 shows the land use and soil association maps of 
the EFLMR watershed. The drainage area of the lower East 
Fork Little Miami River lies almost entirely in Clermont Co- 
unty, OH, and covers an area of 320 square miles (830 square 
kilometers). This part of the watershed is a rapidly urbanizing 
area due to its proximity to Cincinnati. The primary land uses, 
however, are still agricultural, pasture, forest and low-density 
residential with the exception of scattered commercial deve- 
lopment along highways. 

The eastern portion of the watershed is split between 
Brown, Clinton and Highland counties, Ohio. The headwaters 
total drainage area is approximately 195 square miles (506 
square kilometers) of which 29% fall in Brown, 34% in Clin- 
ton and 34% in Highland county (CCOEQ, 2005). Agri- 
cultural and forest land covers around 80% of the headwaters. 
Residential, commercial and industrial development account 
for less than 20% and are clustered around small communities 
such as New Vienna, Lynchburg and Fayetteville (MRLC, 
1992; CCOEQ, 2000). 

The East Fork Little Miami River watershed has temper- 
ate climate characterized by cold dry winters and warm humid 
summer seasons. The average monthly precipitation is 3.5 in- 
ches (9 centimeters) (CCPEQ, 2000). The spring and the sum- 
mer are the wettest seasons with approximately 60% of the 
total annual precipitation. 

The advances and retreats of glaciers during the Illinoi- 
san (130,000 to 300,000 years ago) and Wisconsin (14,000 to 
24,000 years ago) ages shaped the landscape and the drainage 
patterns in the watershed. The parent material below the gla- 
cial till and the soil cover consists mainly of shale substrates 
(CCOEQ, 2000). The dominant soil associations are Clemont- 
Avonburg-Rossmoyne (OH042) and Rossmoyne-Avonburg- 
Bonnell (OH051) which account for 54.27 and 32.12% of the 
soils in the watershed, respectively (71,248 and 42,169 hec- 
tares). Rossmoyne-Eden-Cincinnati association (OH052) and 
Miami-Miamian-Xenia (OH040) cover 3.4% and 3.23% res- 
pecttively. Fincastle-Brookston-Miamian (OH038) constitutes 
1.15% or 1,510 hectares. Stream network and reservoirs cover 
840 hectares or 0.64% of the watershed area. Avonburg series 
are somewhat poorly drained and exhibit seasonal wetness. 
Although Cincinnati and Rossmoyne soils are relatively well 

drained, they contain a fragipan clay layer between loess and 
glacial till that inhibits downward movement of water and 
contributes to the formation of perched water tables above it. 
In sloping landscapes, the lateral subsurface flow that deve- 
lops above the fragipan layer affects the transport of dissolved 
and suspended constituents to surface and groundwater (Cal- 
mon, 1997; CSWCD, 2002). 

 

 
Figure 2. Land use and soil associations maps of the East Fork 
Little Miami River watershed. 

 
2.2. Data 

Data used in the study include three major components: 
topography and stream network; soils and land cover; and me- 
teorological time series. Digital elevation models (DEM) and 
elevation grids were obtained through the BASINS Web 
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Download Tool. In order to be used in hydrological analysis, 
the DEM data sets were converted to ArcView shapefiles and 
re-projected from geographic coordinates to a North American 
Datum of 1983 (NAD83) which uses the Geodetic Reference 
System of 1980 (GRS80). The DEM shapefile was used with 
the BASINS Manual Delineation Tool to create a boundary 
shapefile for the East Fork Little Miami River watershed. The 
elevation grid file and the National Hydrography Dataset 
(05090202NHD), which contains detailed information about 
surface water features, were then used with the BASINS 
Automatic Delineation Tool to derive the land and stream net- 
work segmentation within the watershed. 

The Geographic Information Retrieval Analysis System 
(GIRAS) is a land use data compiled by NASA high-altitude 
missions in the late 1970s (Saunders and Maidment, 1996). 
This data file is available through BASINS Web Data Tool. It 
provides reference to the land use conditions in the 1980s. 
The GIRAS data were not used in the study. More recent land 
use data were obtained from the Multi-Resolution Land Char- 
acteristics Consortium (MRLC) which provides the 1992 Na- 
tional Land Cover Dataset (NLCD) in grid format. The data 
were converted to a shapefile. The soils data were obtained th- 
rough the USEPA website. It is available from the Soil Survey 
Geographic Database (STATSGO) and is based on the soil as- 
sociation classification. The soil and land use shapefiles were 
reclassified using the overlay function within BASINS and a 
soil/land-use grid was created as an input for the HSPF model. 

HSPF requires the detailed meteorological time series at 
hourly time steps to run the simulations. The input time series 
include hourly precipitation, hourly temperature, hourly dew- 
point temperature, cloudiness, wind speed, atmospheric press- 
ure and solar radiation. Potential evapotranspiration is calcu- 
lated using the Penman equation. BASINS provide the user an 
opportunity to select from a set of Watershed Data Manage- 
ment (WDM) files which contain data from various weather 
stations. The WDM file selected for this study contains me- 
teorological data from the Covington WSO Airport Weather 
Station in Northern Kentucky. Recorded stream flow data 
from the USGS gauge station at Perintown were added to the 
project WDM for calibration and validation purposes. 

3. Methodologies 

The study applies a physically-based hydrologic model, 
HSPF, in conjunction with a Monte Carlo random sampling 
technique to examine variability in sediment yield in an urba- 
nizing watershed. The method includes two components: pro- 
cess-oriented physical modeling and probabilistic modeling. It 
is carried out in five consecutive steps: 
(1)     Create the hydrologic response units (HRUs) within the 

EFLMR watershed. HRUs are sub-watershed units that 
have similar hydrological response characteristics based 
on topography, slope, and soil. 

(2) Simulate the hydrologic response of the watershed with 
HSPF assigning values to the input parameters based on 
existing knowledge of the watershed conditions and the 

literature. 
(3) Calibrate and validate the hydrological parameters. 
(4) Simulate sediment yield with HSPF. 
(5) Generate probability density and cumulative distribution 

functions for the sediments yields using Monte Carlo ran- 
dom sampling technique. 
 

3.1. Watershed Delineation, Hydrology and Sediment 
Modeling  

Using BASINS manual and automatic delineation tools, 
eleven hydrologic response units, sufficiently small to res- 
pond uniformly to meteorological conditions and accommo- 
date one value for each physical parameter (slope, elevation, 
soil characteristics, geologic setting, and channel morphology) 
were identified. HSPF contains three basic modules designed 
to simulate hydrologic responses of different types of land 
surfaces: pervious land (PERLND), impervious surface (IMP- 
LND) and in-stream (RCHRES). Table 1 lists the parameters 
and calibration values used to create a hydrological model of 
the EFLMR watershed. The initial parameter values were as- 
signed based on knowledge of the existing physical conditions 
in the watershed. Fifteen parameters were adjustted during the 
calibration process. The calibration period covered June 1992 
through December 1993. 

 
Table 1. HSPF Hydrology Parameters and the Initial Values 

Parameter Initial value Calibrated value 
Overland flow: 
INFILT (mm-h) 
INFEXP 
UZSN (mm) 
INFILD (mm) 
NSUR 

 
4.06 
2.00 
28.65 
2.00 
0.15 

 
10.16 
2.00 
22.86 
2.00 
0.10 

Subsurface flow: 
INTFW 
IRC (day-1) 

 
2.50 
0.50 

 
3.00 
0.65 

Groundwater: 
LZSN (mm) 
DEEPFR 
AGWRC (day-1) 

 
152.4 
0.80 
0.98 

 
254 
0.50 
0.99 

Evapotranspiration:
CEPSC (mm) 
LZETP 
BASETP 
AGWETP 

 
2.54 
0.60 
0.02 
0.00 

 
5.08 
0.65 
0.01 
0.10 

 
Four parameters, INFILT, INTFW, INFEXP and UZSN, 

were calibrated to improve the simulation of streamflow. Ac- 
cording to the USEPA Technical Note 6 (USEPA 2000), 
INFILT determines what proportion of the rainfall abstract- 
tions will be diverted towards surface runoff and what pro- 
portion will be distributed within the soil column. INFILT is 
an index to the average soil infiltration rate, depending pri- 
marily on the soil capacity to absorb moisture. Low values of 
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INFILT result in higher volumes of surface runoff because 
they allow the retention of smaller amounts of water in the 
subsurface storage zone (USEPA, 2000). INFILT is closely 
related to the upper zone storage parameter UZSN which is 
influenced by geomorphology and season (USEPA, 2000). 
Low values of UZSN indicate less storage in the upper sub- 
surface zone, and therefore, increased surface runoff. INFEXP 
specifies the infiltration equation exponent (USEPA, 2000). It 
is set to 2.0 by default and needs to be adjusted only under 
specific watershed conditions. NSUR stands for Manning’s 
roughness coefficient for overland flow on impervious sur- 
faces and measures the friction between the water and land 
surface in terms of hydraulic efficiency (Chow et al., 1988). 
The lower the values of this parameter, the higher the poten- 
tial for increased velocity of flow and larger runoff volumes. 
INTFW, the interflow-inflow coefficient, controls the distri- 
bution of moisture between short-term detention storage and 
interflow. It determines how much water will become inter- 
flow and has no effect on the total volume of runoff, but 
higher INTFW values will lower peak flows (USEPA, 2000). 
The interflow recession coefficient IRC is computed as a ratio 
of the daily interflow volumes in two consecutive days and 
shows the rate at which recession occurs. It determines when 
the peak flow will become a baseflow (USEPA, 2000). In 
HSPF, four parameters determine hydraulic behavior in the 
saturated zone. The lower zone nominal storage (LZSN) is a 
function of rainfall intensity and duration, and permeability 
(USEPA, 2000). It determines the amount of water available 
for aquifer recharge. DEEPFR accounts for abstractions avail- 
able for groundwater storage. The groundwater recession co- 
efficient (AGWRC) is calculated as a ratio of groundwater 
discharge volumes in two consecutive days. Values in the 
range of 0.98 to 0.996 are usually assigned to this parameter 
(Laroche et al., 1996; Saleh and Du, 2004; Albek et al., 2004; 
Van Liew et al., 2003). A value of 0.99 has been used in this 
study. 

Four evapotranspiration parameters were examined and 
calibrated. The interception storage capacity coefficient (CEP 
SC) describes abstractions from rainfall resulting from reten- 
tion by plant leaves. Dense forest cover is capable of retaining 
significant amount of water (USEPA, 2000). Given the land 
cover in the EFLMR watershed is mostly cropland and scat- 
tered forest cover, a value of 0.15 was assigned to this para- 
meter. HSPF also accounts for evapotranspiration in the upper 
and lower storage zones through parameters LZETP and BA 
SETP. Those parameters were adjusted to improve the low 
flow estimation. LZETP was set to 0.65 to account for the 
predominant type of vegetation, mostly raw crops and forest. 
BASETP which indicates the presence of riparian vegetation 
was set to 0.018. The model has been validated for the period 
of September 1994 through December 1995. 

Sediment parameters in HSPF were calibrated based on 
the target loads calculated using RUSLE2 (Revised Universal 
Soil Loss Equation 2) (Yoder et al., 2005). TAUCS and TAU 
CD (the parameters for critical bed shear stress for deposi- 
tion and scour respectively) were calibrated to improve the si- 
mulation of cohesive sediments associated with the predomi- 

nant soil type in the watershed: silt and clay. Non-cohesive 
sediments were not calibrated since the presence of sandy 
soils is negligible. KSER determines the erosion potential for 
different types of land uses. A value of 0.15 was assigned for 
urban land, 0.30 for forest, 0.95 for agriculture, and 0.25 for 
barren land. Default values for KRER (the coefficient in the 
soil detachment equation) and JSER (the exponent of the de- 
tached sediment wash-off equation) were used. Summary of 
sediment calibration is presented in Table 2. 

 
Table 2. HSPF Sediment Parameters, Initial and Calibrated 
Values 

Parameter Initial value Calibrated value 

KRER 
KSER 
AFFIX 
COVER 
KEIM 
TAUCS 
TAUCD 

0.14 
0.10 
0.10 
0.00 
0.10 
0.10 
0.50 

0.35 
2.50 – 50 
0.002 – 0.008 
0.50 – 0.97 
2.50 
0.15 
0.80 

 
A comparison between the HSPF-estimated annual sedi- 

ment yield from agricultural, forest, and urban land and the 
RUSLE2-predicted erosion rates indicated that HSPF per- 
formed satisfactorily in estimating sediment yield. RUSLE2 is 
an empirical model developed by the U.S. Department of 
Agriculture – Agricultural Research Service which predicts 
net annual erosion based on soils, erodibility, slope, and vege- 
tation (Yoder et al., 2005). It is not designed to simulate sedi- 
ment transport, and therefore can only provide rough esti- 
mates of the expected sediment yield from various land cover 
categories. Tables 3 and 4 show acceptable agreement betwe- 
en annual expected erosion rates as calculated with RUSLE2 
and the HSPF-simulated values (Table 3). Results show that 
HSPF slightly overestimated the erosion rates for forest land 
cover. 

 
Table 3. HSPF-estimated Annual Sediment Yield from 
Various Land Cover Types (ton/ac) 

Year Forest Pervious 
Urban 

Agricultural Impervious 
Urban 

1992 0.254 0.459 0.905 0.0907 
1993 0.356 0.356 0.803 0.0943 
1994 0.257 0.447 0.997 0.103 
1995 0.222 0.485 1.000 0.109 

 
3.2. Monte Carlo Simulation 

Two SAS functions (RANNOR and RANTBL) were 
used for the random samplings. RANNOR draws random 
numbers from a log-normal distribution. RANTBL is applied 
when there is no prior knowledge of the theoretical distri- 
bution of the variable “but a stepwise approximation of it is 
available” (Fan et al., 2002). Both functions were applied to 
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determine the probability density and cumulative distribution 
functions of the HSPF-simulated values. A probability density 
function (PDF) is a graphical expression of “the likelihood 
with which values of an input may be obtained” (Cullen and 
Frey, 1999). A cumulative distribution function (CDF) dis- 
plays the values of the random variable that are associated 
with any given percentile of interest, F(x) = Prob (X ≤ x) 
(USEPA, 1997). CDF results from summation across the PDF. 
The x-axis displays the values of the parameter of interest and 
the y-axis reveal the range within which those values are 
contained (Cullen and Frey, 1999). The SAS code for the 
Monte Carlo simulations was adapted from Fan et al. (2002)1. 
 
Table 4. RUSLE2-calculated Annual Sediment Target Loads 
for Various Land Cover Types (ton/ac). 

Type of land cover Target loads 

Forest 0.203 
Urban 0.542 
Agricultural 1.172 

 
In Monte Carlo simulation (MCS) the desired parameter 

θ  with a probability distribution U(x) and an integral fun- 
ction g(x) is denoted in the form of (Yakovitz et al. 1978, Law 
and Kelton 2000): 

 

∫= )()( xdUxgθ                                    (1) 

 
Using random sampling technique, U-distributed random 

samples X1, X2, X3, …, Xn are generated where X is a contin- 
uous random variable. The parameter of interest (θ ) is then 
approximated by: 
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If Y is a random variable c·g(x), its expected value E(Y) = 

θ  will then be estimated by: 
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Yakowitz et al. (1978) showed that if the variance Var(Y) 

is finite, then: 
 

nYVarE n /)(])[( 2 =−θθ                             (4) 
 
Therefore, E(Y) is an unbiased estimator of θ  for suffi- 

                                                        
1 Fan et al. (2002) developed the SAS program for Monte Carlo 
analysis of bond prices on financial markets. 

ciently large n (Yakowitz et al., 1978; Law and Kelton, 2000). 

4. Results and Discussions 

Recorded streamflow data from the nearest USGS station 
(site # 03247500) at Perintown, OH, were compared to the 
flow modeled with BASINS-HSPF over 18-month calibration 
period - from June 1, 1992 through April 30, 1993. The model 
was validated over a 16-month period  from September 1, 
1994 through December 31, 1995. The initial simulation of 
flow underestimated the yearly outflow by -23.8% for 1992, 
and -18.74% for 1993. After calibration, the error was around 
15%. For the validation period the simulated annual discharge 
was 3.2% below the monitored yearly discharge for 1994 and 
7.8% below the monitored value for 1995. Figures 3 and 4 
present the results of the hydrologic modeling. 

The time series describing the contribution of different 
land cover types to simulated sediment yield, generated by 
HSPF, exhibited significant variation. In all four years inclu- 
ded in the analysis, values for sediment yield from forest land 
during the months of January and February were between 
0.05 and 21.5 kilograms per acre per day. For agricultural land 
sediment export during the same period varied from 0.5 to 92 
kilograms per acre per day. Low values for sediment export 
from the watershed were also observed during the month of 
October. They also coincide with the lowest observed daily 
precipitation. 

The peaks in sediment yield from agricultural and forest 
land were found in the months of April and July in all four 
years. The maximum simulated values were 87 kilograms per 
acre per day for forest land and 234 kilograms per acre per 
day for agricultural land. The extreme values occurred after 
major storm events. The simulated values for impervious ur- 
ban surfaces exhibit less seasonal variation. Maximum sedi- 
ment daily yield from urban surfaces (pervious and imper- 
vious) was approximately 170 kilograms per acre per day. Se- 
diment was also produced between storms on agricultural land 
during the growing season which coincides with the irriga- 
tion practices. 

Results indicated that HSPF-simulated sediment yield va- 
lues for any given land cover type vary significantly. By sim- 
ply examining the time series and the descriptive statistics of 
the simulated results it was not possible to draw conclusions 
about the nature of this variation. For this purpose, probability 
density and cumulative distribution functions of the HSPF es- 
timates were generated using Monte Carlo simulation. The 
SAS program for the probabilistic analysis first read the HSPF 
generated values and performed normality test. Since the nor- 
mal probability plots and both the Shapiro-Wilk and Kolmo- 
gorov-Smirnov tests showed departure from normality, the 
program was required to compute the logarithm of each obser- 
vation, and to perform normality tests again. 

The fit of the theoretical and the Monte Carlo generated 
distribution functions was also examined with Kolmogorov- 
Smirnov goodness-of-fit test (Table 5). The results indicated 
approximate agreement with the log-normality assumption. 
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Figures 5, 7 and 9 indicate that the theoretical PDF fits 
reasonably the randomly generated probability density func- 
tions of sediment yield from agricultural and forest land, and 
and urban (pervious and impervious) surfaces. Fundamental 
requirement for the Monte Carlo simulation is that the ran- 
domly generated sample follows some type of theoretical dis- 
tribution (Haan and Skaggs, 2003; Fan et al., 2002). Log-nor- 
mal distributions are commonly used in engineering and na- 
tural sciences because they represent physical properties and 
processes reasonably well (Cullen and Frey, 1999). Log-nor- 
mal distributions are useful in examining concentrations data 
because they are based on (0, ∞), or “non-negative values”, fit 
rate-based processes acceptably and allow scientific reasoning 
with regard to “large asymmetric uncertainties” (Cullen and 
Frey, 1999). 

Random numbers with a theoretical log-normal distribu- 
tion were generated using as an input the log mean and the log 
standard deviation of the HSPF-simulated values for each 
land use type. Numerical stability for the PDF was achieved at 
5,000 simulations. However, to ensure constant values 10,000 

simulations were run. For the CDF, numerical stability was 
achieved at 2,000 simulations. Nevertheless, 5,000 simula- 
tions were run for the analysis. The input data for the Monte 
Carlo simulation are summarized in Table 6. 

 
Table 5. Results of the Kolmogorov-Smitnov Goodness-of-fit 
Test. 

Land use type Test-statistic  
D 

Critical D 
α = 0.05 

Critical D  
α = 0.01 

Agricultural 0.093 0.035 0.042 

Forest 0.056 0.035 0.042 

Impervious 0.039 0.035 0.042 

 
Figures 5 through 10 display the probability density and 

cumulative distribution functions generated with the Monte 
Carlo technique for the three land use types investigated in the 
study. The distributions are used to quantify the uncertainty in 
the model predictions in the form of confidence intervals for 

 
Figure 3. Precipitation, recorded and HSPF simulated flow at the East Fork Little Miami River watershed, OH 
for the calibration period – June 1992 through December 1995. 
 

 
Figure 4. Precipitation, recorded and HSPF simulated flow at the East Fork Little Miami River Watershed, 
OH, for the validation period – September 1994 through December 1995. 
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the predicted sediment loads to the watershed. The width of 
the confidence has a critical importance for the evaluation of 
the model results. It is assumed that a wide confidence inter- 
val usually indicates a higher level of uncertainty about the 
true value of the parameter of interest (Haan and Skaggs, 
2003). It is also argued that narrowing the interval will de- 
crease the uncertainty but the likelihood that the model will 
accurately predict exceedence values also decreases. Intervals 
that are too narrow, however, may not contain the true value 
of the parameter of interest (Haan and Skaggs, 2003). 

 
Table 6. Input Data for the Monte Carlo Simulation 

Land use type Log mean Log standard deviation 

Agricultural 4.2112 0.8676 

Forest 4.1098 0.8239 

Urban impervious  3.1128 0.6770 

Urban pervious 3.6345 0.7654 

 
Figures 5, 7 and 9 show the probability density functions 

of the HSPF-simulated values for sediment yield from various 
land cover types. They provide indication on the likelihood 
that a particular HSPF-simulated value will occur. Figures 6, 8 
and 10 which display the cumulative distribution functions for 
sediment yield from forest, agricultural and urban land allows 
to determine the percentile associated with that particular 
value. For forest land, for example, we can assume with 95% 
confidence by visually examining graphs 5 and 6 that values 
in the range of 2 to 25 kilograms per acre per day are most 
likely to occur. Therefore, for forest land the likelihood that 
values above 40 kilograms per acre per day will occur is very 
low (Figure 6). 

 

 
Figure 5. Probability density function for simulated sediment 
yield from forest land (kg ac-1day-1). 

 
Figures 7 and 8 indicate that there is 95% chance that the 

true value of the daily average sediment yield from agricul- 
tural land will be between 20 and 180 kilograms per acre per 

day. The median value is 78.5 kilograms per acre per day. The 
analysis indicates that values as high as 234 kilograms per 
acre per day as obtained with HSPF can be considered ex- 
treme events. For urban pervious and impervious surfaces, the 
PDF and the CDF (Figures 9 and 10) show with 95% con- 
fidence that the true value of the average daily sediment yield 
falls between 2 and 120 kilograms per acre per day. Probabi- 
lity distributions are also very useful in examining various 
scenarios. For example, if one needs to know the probability 
that urban surfaces will produce on average 80 kilograms of 
sediments per acre per day, the CDF on Figure 10 shows that 
this likelihood is approximately 75%. The probability that the 
same amount of sediment will be produced by agricultural 
land is 90%. 

 

 
Figure 6. Cumulative distribution function for simulated 
sediment yield from forest land (kg ac-1day-1). 

 
In order to validate the results, the Delta method for con- 

fidence interval estimation for lognormal distributions was 
used to estimate the confidence intervals for the Monte Carlo 
simulated values. The formula for the η-th quantile estimation 
of lognormal distribution is given as: 

 
))(exp( ηη σµ ar +=                                 (5) 

 
where )(1 ηφη

−=a  and )(1 ηφ − is the inverse function of the 
standard normal CDF (Hahn and Meeker, 1991; Meeker and 
Escobar, 1998). Table 9 summarizes the confidence intervals 
for the values simulated with the Monte Carlo technique. 

It is useful to examine those probability distributions in 
terms of whether the observed values are enclosed within the 
boundaries of the stated intervals as well. It is assumed that if 
the observed values are bound by the stated interval, then we 
can claim, for example, that the model is valid in terms of 
estimating the true value of the parameter of interest with 
95% confidence. This assumption, however, has two limita- 
tions. First, monitored values are point measurements taken 
“at a specific point in space and time” while the values gene- 
rated by HSPF are daily averages (Im et al., 2004). Second, 
we could not obtain observed values of suspended sediment 



D. Mitsova-Boneva and X.Wang / Journal of Environmental Informatics 9(1) 29-40 (2007) 

 

38 

by land use type in order to compare them with our results. 
Theoretically, where there is no available data and the true pa- 
rameter value is unknown, probability and cumulative density 
functions can still be very helpful in estimating a set of pos- 
sible outcomes. It should be kept in mind, however, that con- 
fidence intervals that are statistically satisfactory may still 
“render the model predictions too uncertain for the desired 
application” (Haan et al., 1995). Haan and Skaggs (2003) ar- 
gue that the uncertainty analysis is not intended to replicate 
field results; it is rather a process of approximation which al- 
lows evaluation of validity of predictions. 

 

 
Figure 7. Probability density function for simulated sediment 
yield from agricultural land (kg ac-1day-1).  
 

 
Figure 8. Cumulative distribution function for simulated 
sediment yield from agricultural land (kg ac-1day-1). 

4. Conclusions 

The study shows that integrating deterministic modeling 
and probabilistic approaches in examining the relationship be- 
tween land use and water quality is beneficial and can im- 
prove our understanding of the watershed responses to various 
conditions. BASINS-HSPF was efficient in creating a hydro- 

logic model of the East Fork Little Miami River watershed. 
The Monte Carlo technique was helpful in examining the HS 
PF results in terms of uncertainty and variability. It helped to 
determine the probability that the true value of the parameter 
of interest would be within a certain range of HSPF simulated 
values. More specifically, the study focused on estimating 
confidence intervals of sediment yield predictions from var- 
ious land cover types using Monte Carlo simulation. It has 
been found that the log-transformation of the HSPF-simu- 
lated data yields confidence intervals that are too narrow for 
useful applications. The Monte Carlo simulation yielded wi- 
der confidence intervals which, given the variation in the da- 
tasets, increased the confidence that the true values lies within 
the stated bounds. 

 

 
Figure 9. Probability density function of wash-off of soil and 
solids from urban surfaces (pervious and impervious) (kg 
ac-1day-1). 
 

 
Figure 10. Cumulative distribution function of wash-off of soil 
and solids from urban surfaces (pervious and impervious) (kg 
ac-1day-1). 

 
The probability density and cumulative distribution func- 

tions of simulated values obtained through HSPF and other 
hydrologic models can play significant roles in decision-ma- 
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king concerning future land uses. The integrated approach 
presented here provides planners and watershed managers 
with a tool to combine hydrologic and statistical modeling to 
investigate issues of concern in land use planning at water- 
shed level. 

 
Table 7. Estimating Confidence Intervals for Monte Carlo 
Simulated Values 

Land 
use 
type 

η 
quantile 

αη for 
lognormal 

distribution 

Confidence 
interval 

kg ac-1day-1   

Median 
kg 

ac-1day-1  

Agri. η = 0.10 
η = 0.01 

-1.282 
-2.362 

21.71 – 88.11 
 14.46 – 103.75 

56.71 
 

Forest η = 0.10 
η = 0.01 

-1.282 
-2.362 

7.85 - 45.42 
4.71 - 62.76 

28.62 

Urban η = 0.10 
η = 0.01 

-1.282 
-2.362 

8.06 - 69.27 
5.62 - 83.80 

43.40 
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