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ABSTRACT.  Many environmental phenomena can be conceptualised as vague and so may be suitable for storage as fuzzy sets and 
analysis by fuzzy logic. Fuzzy sets directly address the vagueness in the information, but many consider that any statement about a 
vague phenomenon must itself be vague. This is known as higher order vagueness, and is handled in fuzzy set theory by type-2 and, by 
extension, type-n fuzzy sets. In this paper we use the recognition of, and change in, a system of coastal sand dunes as an environmental 
example in which to explore the use of type-2 fuzzy sets. The crests and troughs of the dunes are identified as fuzzy sets from geo- 
morphometric analysis of high resolution digital elevation models from two years (1998 and 2000). By varying the parameters of the 
morphometric extraction, multiple instances of type-1 fuzzy sets can be defined, and these can be summarised to yield type-2 fuzzy 
sets. The logic of change analysis is presented, and two alternative approaches to change analysis of type-2 fuzzy sets implemented. In 
one approach changes in the multiple instances of type-1 fuzzy sets are analysed and summarised as type-2 sets. The second approach 
directly examines change in the parameters of type-2 fuzzy sets, viewing the results for the different parameters as separate instances 
of change. All analyses produce satisfactory results which, although they are hard to verify, make sense, yielding a range of possible 
but small degrees of fuzzy change. In a rather sedentary dune system (as is usual in a coastal location in mid-latitudes) this is to be 
expected. Change analysis in most applications of type-2 fuzzy sets, which might be based on expert advice for defining memberships, 
would have to rely on this second approach, and it is therefore interesting to note that this yields the largest range of possible change 
results. 
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1. Introduction  

Fuzzy sets have been widely suggested as a basis for the 
representation of vague phenomena (Klir and Yuan, 1995; 
Kruse et al., 1994; Mendel, 2001; Ross, 2004). The repre- 
sentation of environmental phenomena as fuzzy sets (Fisher, 
2000a, b; Petry et al., 2005; Robinson, 2003) has included 
soils (Burrough, 1989; Lagacherie et al., 1997) vegetation 
(Moraczewski, 1993a, b), geology (Brown et al., 2003; Luo 
and Dimitrakopoulos, 2003), land cover classification from 
remotely sensed data (Foody, 1992, 1996), landform classes 
(Cheng and Molenaar, 1999; MacMillan et al., 2000), and 
been extended to the agent-based modelling of the ecological 
movement of animals (Robinson and Graniero, 2005; Elith et 
al., 2002). Most research has been grounded in the argument 
that many class descriptions for natural resources are in- 
herently vague. Moraczewski (1993a), for example, identified 
the linguistic vagueness in textual descriptions of vegetation 
classes. Similarly, Campbell (1977) showed gradual change in 
soil properties across a mapped boundary between two soil 
types. Fisher et al. (2004) argued that vagueness of class was 
also related to the difference in outcome of analysis with spa- 
tial resolution. Thus in either spatial or attribute dimensions, 
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or at any single resolution of analysis, it is hard or impossible 
to draw a precise boundary around many environmental clas- 
ses. 

While it is argued that fuzzy sets address the problem of 
vagueness in the allocation of objects to classes, most appli- 
cations only work with one expression of that vagueness, also 
known as first order vagueness or type-1 fuzzy sets. A type-1 
fuzzy set represents the degree to which an object belongs to a 
set. Any value of a type-1 set, however, is a precise statement 
about an object that is thought to be vague. Such precise state- 
ments, as a way of describing vague phenomena, are almost 
paradoxical, and are questioned in the philosophical literature 
on vagueness. It has been argued that any statement about a 
vague phenomenon must itself be allowed to be vague (Soren- 
sen, 1985). In philosophy it is an outstanding question whe- 
ther it is necessarily the case that all such statements must be 
vague (Sainsbury, 1991; Varzi, 2003; Wright, 1992; William- 
son, 1994), but the ability to accommodate this higher order 
vagueness is considered necessary for any theory of vague- 
ness to be complete (Keefe and Smith, 1996; Kulik, 2003). 
Within fuzzy set theory, type-2 fuzzy sets are used to accom- 
modate this uncertainty. Instead of the membership of any ob- 
ject in the set being a single value a membership function is 
used to describe the distribution of possible values (Figure 1). 

Most texts in fuzzy set theory have tended to do little 
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more than mention the existence of type-2 fuzzy sets (e.g. Klir 
and Yuan, 1995; Kruse et al., 1994) due to the complexity 
they introduce to any analysis. However, recent work (John, 
1998; Mendel, 2001; Mendel and John, 2002; Mizumuto and 
Tanka, 1976) has led to the acknowledgement of not only the 
importance of the concept but also simplification of the ma- 
thematics. 

Higher order uncertainty has been raised in the geogra- 
phical information literature by Kulik (2003) within the for- 
malism of supervaluation theory (Fine, 1975, Bennett, 2001). 
Type-2 fuzzy sets are mentioned by Verstraete et al. (2005) as 
being possible within their method, although they do not go 
into any detail, while Du and Zhu (2006) give a theoretical 
treatment for type-2 spatial fuzzy sets. On the other hand, pre- 
vious research by Fisher et al. (in press) has directly explored 
methods for populating type-2 fuzzy sets for spatial informa- 

tion. They used multi-scale fuzzy modelling of morphometric 
peaks as a way of determining the spatial extents of the peak- 
ness as fuzzy sets (Fisher et al., 2004; discussed further in sec- 
tion 2). 

In the present research we again apply mutli-scale ana- 
lysis of morphometric classes to derive type-1 and type-2 fuz- 
zy sets. Here we use multi-temporal digital elevation models 
of a coastal dunefield in northwest England. As with most 
work with multi-temporal datasets we focus on the possibility 
of doing change analysis, but in the study presented here the 
change analysis is of the vague interpretation of the landscape 
of the dunes modelled as type-1 and type-2 fuzzy sets.  

In section 2 we review the recognition of landform clas- 
ses in elevation models as fuzzy sets. In section 3 we outline 
the general method of analysis, and the relevant fuzzy set the- 
ory. We describe the study area in section 4, and an analysis of 
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Notes: A type-1 fuzzy membership function (using a triangular example, A) can be modeled as a 
type-2 fuzzy set (B), where at any value of measurement a single membership value is not recorded, 
but a distribution of values is recognized; two type-2 fuzzy sets are illustrated along the vertical 
profile indicated in (B): an interval type-2 set (C) and a triangular type-2 set (D), as well as the 
horizontal line (or α-cut of the type-1 set) in (B) in (E) (Fisher et al., in press). 
 

Figure 1. Different types of fuzzy membership functions. 
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type-1 and type-2 fuzzy sets is presented in sections 5 and 6. 
Finally, section 7 presents discussion, conclusions and sugges- 
tions for further work. 

2. Fuzziness of Landform Classes 

Information derived from the Digital Elevation Models 
(DEMs) is widely used in the analysis of terrain. Among the 
simpler outcomes of terrain analysis is the assignment of a 
location to a geomorphometric unit: pit, peak, pass, channel, 
ridge, and plane (Evans, 1979, 1980; Peucker and Douglas, 
1975; Wood, 1996b). However, a number of researchers have 
introduced the idea that terrain objects are fundamentally 
vague (Sainsbury, 1989, 1995; Varzi, 2001; Williamson, 1994), 
being hard to define meaningfully in terms of either their 
elevation or their spatial extent (Usery, 1996; Wood, 1996a, b; 
Fisher and Wood, 1998). Furthermore, it has been suggested 
that they may be appropriate for analysis by fuzzy sets. To ac- 
tually define vague landscape features, researchers have used 
either a number of surface derivatives, such as slope and cur- 
vature, in multivariate fuzzy clustering (Burrough et al., 2000; 
Irvin et al., 1997; MacMillan et al., 2000), or they use eleva- 
tion-based fuzzy membership functions where the degree to 
which any point is similar to the morphometric concept is 
measured only by the elevation at that point as specified in a 
semantic import model (Cheng and Molenaar, 1999; Usery, 
1996). These methods all work at the resolution of the DEM. 

In presenting the change in the fuzzy coastal landforms 
Cheng and Molenaar (1999) show that it is possible to model 
those landforms with fuzzy sets using the semantic import 
model relating fuzzy membership simply to height above the 
datum. They identify beach, foreshore and dune area as fuzzy 
objects, and explore the evolution of those fuzzy objects pro- 
viding greatly enhanced and more realistic results from the 
analyses than might be achieved in a Boolean treatment. Their 
fuzzy set membership functions are parameterised by consul- 
tation with experts as to the height at which different land- 
scape units occur. They show that this approach works in the 
beach environment where the dominant landforms can be mo- 
delled by analysis of the elevation with respect to sea level 
where form and process are dominated by the movement of 
the sea. Among the dunes which are beyond the direct influ- 
ence of the sea, however, the analysis is less useful. Indeed, a 
small area surrounded by dunes is classified as foreshore 
(Cheng and Molenaar, 1999) which is inconsistent with the 
geomorphology. The problem arises because the fuzzy mem- 
bership determination is not designed to recognise either 
dunes or features of a dune field. 

In the work reported here we are concerned to identify 
the coastal dunes based on elevation, and so an approach 
tuned to dune recognition is required. The surface mor- 
phology of dunes is composed of ridges along the crest of the 
dunes, troughs between dunes and planar slopes to both 
windward and leeward of the crest (the windward slope usual- 
ly being steeper) (Pethick, 1984). If dunes are infrequent, the 
inter-dune areas can be more extensive and better described as 
planar (indeed nearly flat) slopes. The six morphometric 
classes identified by Evans (1972) and Wood (1996) can be 

rationalised into elements of dunes. Thus in a dune field the 
morphometric classes ridges and peaks are both part of the 
dune crest and channels and pits are part of the inter-dune 
troughs. Planar slopes are the leeward and windward slopes. 
Only passes are ambiguous since they could be locations on 
the dune crest or they could be between dunes. 

A pixel in a raster grid of elevations can be assigned to a 
morphometric class, ridge, for example, but a number of ques- 
tions remain. No landscape feature definable from the eleva- 
tion at a location captures the full variety of possible causes of 
vagueness of the assignment of the object to the class. In most 
analyses the assignment of a grid cell to a morphometric class, 
as well as the derivation of most of the terrain variables used 
in the fuzzy clustering mentioned, is actually assessed over a 
spatial footprint including at least the grid cell focal to analy- 
sis and its immediate neighbourhood, but no attempt is made 
to assess the landforms at any other resolution, and so they 
only have a meaning specific to the resolution of the measure- 
ment. If the resolution of observation is changed, then the 
morphometric class to which a location is assigned can be ex- 
pected to change for some locations although not for all. 
Those where it does not change can be considered to match 
the central concept of that morphometric class while those 
where it changes can be considered to be in zones of transition 
between two or more morphometric classes. Indeed, many lo- 
cations may be assigned to all six morphometric classes de- 
pending solely on the resolution of measurement. 

Elsewhere we have demonstrated this approach, by sho- 
wing that the frequency of occurrence of the different classes 
can be used to identify the fuzzy membership of the morpho- 
metric class (Fisher et al., 2004, 2005). We showed that by 
analysis of these fuzzy sets of landforms in the English Lake 
District, and the vicnity of Ben Nevis in Scotland a much 
greater amount of information can be extracted from the DEM. 
In essence, it is possible to give a definition of the spatial ex- 
tent of the vague objects and to develop novel analyses as a 
consequence. In this paper, we extend this approach to explo- 
ring the changing morphometry of a coastal sand dunefield. 

3. Theory and Method of Type-2 Multi-Resolution 
Fuzzy Analysis 

3.1. Type-1 Fuzzy Sets From Multi-Resolution 
Morphometry 

The basic method on which this analysis is based was in- 
troduced by Fisher et al. (2004, 2005), and so only the essen- 
tials are recapped here. The morphometric class, L, at a loca- 
tion, x, must belong to the closed set of possible morphome- 
tric landforms classes [ridge, peak, pass, channel, pit, planar], 
which we will indicate by the matrix [A]. Thus: 
 

( ) [ ]L x A=                                             (1) 
 
where for any x [A] contains 6 values. 5 values are equal to 0 
and one to 1, being the memberships of the Boolean sets of 
the six morphometric classes, A (denoted by mA(x)). However, 
the morphometric class is not necessarily stable under repea- 
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ted classification at different resolutions (Wood, 1996a, b). 
Thus [A]s1 is not necessarily equal to [A]s2 or to [A]s3, where 
s1, s2, and s3 indicate different measurement resolutions. In- 
deed, this variability under changes in resolution is one of the 
reasons that the assignment of any location to a morphometric 
class should be considered vague, and is therefore exploited 
as a basis of populating the fuzzy sets for those morphometric 
classes. Specifically, the membership of a particular fuzzy 
morphometric class can be given as: 
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( )

n
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                                        (2) 

 
where µA(x) is the fuzzy membership of morphometric class A 
at x, and n is the number of resolutions of analysis (Note, if an 
a priori reason exists different resolutions of Boolean analysis 
can be associated with alternative weights, but there is no su- 
ch reason here). 

 
3.2. Populating Type-2 Fuzzy Sets By Further 
Dependencies 

The allocation of a pixel to the classes ridge or channel is 
controlled by a threshold value of curvature, c, of the surface. 
The effect of varying this threshold is to identify a particular 
ridge or channel as having a larger or smaller areal extent 
(Wood, 1996b). It is the contention of the research presented 
here that by varying this threshold value, in multi-resolution 
analyses, it is possible to populate type-2 fuzzy sets of ridges 
and channels. The curvature parameter is a dimensionless va- 
lue such that c = ±50 and higher but is commonly in the range 
c = ±5 (Wood, 1996b). Furthermore, it is not necessarily the 
case that all morphometric classes are equal for all valua- 
tions of c, just as with resolution (section 3.1). 

Any one threshold value will yield a particular instance 
of the type-1 fuzzy set in a multiresolution analysis, and mul- 
tiple analyses will yield a range of type-1 sets which can be 
used to define a type-2 set. Thus if µA(x)c is the fuzzy mem- 
bership of a cell in morphometric class A at location x given a 
threshold for curvature c, then the value of µA(x)c1 is not likely 
to be equal to µA(x)c2. Furthermore, if m values of c are used 
(c1, c2, …, cm) a number of different types 1 fuzzy sets are 
determined, which themselves are instances of the type-2 fuz- 
zy set and can be used to describe that type-2 set, indicated by 
µ2A(x). The simplest parameters of the type-2 fuzzy set are the 
minimum and maximum memberships (Equations 3a and 3b) 
which could be seen as equivalent to the bounds of interval 
type-2 fuzzy set. Using the mean of the type-1 fuzzy member- 
ships (Equation 3c) as a parameter of central tendency allows 
the description of a triangular type-2 fuzzy membership func- 
tion (the median or mode could be used) (Fisher et al., in 
press). With sufficient instances of the type-1 fuzzy sets, it 
should be possible to derive the full distribution of the type-2 
fuzzy membership: 
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It should be noted that Equation 3a returns the usual un- 

ion of the m type-1 fuzzy sets, and Equation 3b returns the 
usual intersection of those sets. 

 
3.3. Dune Crests and Dune Troughs 

As noted in Section 2, sand dunes have three key morph- 
ometric components: the crest of the dune, the trough between 
dunes and the planar slopes between the crest to the trough. 
Attention here is focussed on the dune-crest and the dune- 
trough, being respectively the union of the memberships of 
the ridge and the peaks in the dunefield and the union of the 
channels and the pits. 

In fuzzy logic, the union is usually taken as the maximum 
function, but alternative union operators can be defined. Be- 
cause the fuzzy memberships of the different morphometric 
classes at any one location always sum to unity, which is also 
the maximum allowable value of a fuzzy set, it seems more 
appropriate to determine the union from the bounded sum 
(Klir and Yuan, 1995). The union of two sets P and Q is, 
therefore, given by Equation 4; the fuzzy membership of the 
dune crest or crestness (DC), for example, is given when P = 
ridge and Q = peak, and the inter-dune trough or troughness 
(DT) is given when P = channel and Q = pit: 

 
( )( ) min  1,  ( ) ( )P Q P Qx x xµ µ µ= +∪

                   (4) 

 
3.4. Change Analysis 

The logic of spatial change analysis in any context (fuzzy 
or Boolean) is straight forward, although rarely articulated. It 
relies on determination of those locations which at time t1 
belong to class c1 and at time t2 do not. It is a secondary que- 
stion to ask what class is present at that location at time t2. 
This interpretation of fuzzy change has been discussed by 
Deer (1998) and extended by Fisher et al. (2005; Fisher et al., 
2006), and so only relevant parts of the theoretical treatment 
are recapped here. 

It is possible to model the movement of a dune-crest in 
two separate queries (Fisher et al., 2005): (a) the areas which 
gain dune-crest are given by determining those locations whi- 
ch do not have dune-crest at time t1 but do at time t2; it is the 
membership of both not dune-crest at t1 AND dune-crest at t2; 
and (b) those areas which lose dune-crest can be determined 
as the membership of both dune crest at t1 AND not dune- 
crest at t2. 

Both queries are answered by an intersection of the two 
sets concerned: the occurrence at one time and absence at an- 
other. 
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( ) 1 ( )DC DC
x xµ µ¬= −                              (5) 

 
In terms of logic, absence is determined by the negation 

of the relevant set, and in fuzzy sets negation is given by the 
usual formula (Klir and Yuan, 1995; Equation 5). It is nece- 
ssary, however, to consider alternatives for the fuzzy inter- 
section operation. As Fisher et al (2005; 2006) point out, in a 
context of change detection, the result of the usual minimum 
operation is problematic because a location which has not 
changed still has a membership of the set of changed locations. 
This result is not acceptable, and so an alternative fuzzy inter- 
section operator, the Bounded Difference, is chosen as being a 

more appropriate intersection method. The bounded differen- 
ce between two sets, P and Q, is given in Equation 6: 

 
( )( ) max 0,  ( ) ( ) 1P Q P Qx x xµ µ µ∩ = + −              (6) 

 
Therefore it is possible to determine the gain and the loss 

in dunes crests (DC) and dune troughs (DT) by substituting 
values for P and Q in Equation 6 from Table 1.  

 
3.5. Change in the Type-2 Fuzzy Sets  

 The change in type-2 fuzzy sets is based on the change 

Shaded 

relief 

A (1998) B (2000) 

Difference 

C 

 
 

Notes: A and B show shaded relief maps of the dunefield and beach; areas shown as solid black recorded no 
return to the sensor due to surface wetness; C shows the difference in the two elevation datasets; the grey 
disks in C show those areas which are excluded from later analysis due to no LiDAR return from the focal 
points propagating into the multi-scale analysis; all maps show the same area of the dunes measuring 830 by 
760 meters. 
 

Figure 2. The LiDAR-derived elevation models (Reproduced here with permission from the 
Environment Agency). 
 
Table 1. The Various Intersection Operations for Change in the Dune System (After Fisher et al. 
2005) 

   P  Q 

Crestness Gain  µDC_gain(x) ¬Crestness t1 ∩ Crestness t2 
 Loss µDC_loss(x) Crestness t1 ∩ ¬Crestness t2 
Troughness Gain µDT_gain(x) ¬Troughness t1 ∩ Troughness t2 
 Loss µDT_loss(x) Troughness t1 ∩ ¬Troughness t2 
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in type-1 sets and use of the bounded difference. There are 
two pathways to change analysis, however:  

(a) to determine the change for each instance of type-1 
fuzzy sets generated by different values of curvature, and to 
then summarise those changes as the type-2 fuzzy set of chan- 
ged vague locations by taking the summary values across the 
five type-1 change sets; applying Equation 6 (for crests and 
troughs) to determine change analysis to each type-1 set and 
then summarising those using Equation 3 (a, b and c); 

(b) to work in the reverse order; applying Equation 3 (a, 
b and c) to summaries of the type-1 sets of crestness and trou- 
ghness, and then evaluate the change in those type-2 sets us- 
ing (Equation 6) for gain and loss. 

 Change is evaluated as the total area of fuzzy change 
which is given by the sum of all memberships of the fuzzy set 
in question within the study area (r rows by c columns; Equa- 
tion 7): 

 

( ) ,
1 1

_ ( )
A

c r

x A l k
l k

Fuzzy Area xµ µ
= =

= ∑∑               (7) 

4. The Study Area and Implementation 

The empirical study used to support the theory developed 
above is in northwest England just south of Formby in Lan- 
cashire. The Ainsdale Sands is typical for British coastal sand 
dune fields. It is of considerable environmental importance as 
both a barrier to coastal flooding in a low lying area of coast 
and is a Site of Special Scientific Interest, which is home to a 
number of endangered species of British fauna including the 
natterjack toad and the red squirrel. The area is therefore of 
concern to the Environment Agency (EA) of England and 
Wales and as a result it has been the subject of ongoing re- 
search and monitoring (Brown, 2005) and the datasets used 
here have been part of other research on geographical infor- 
mation processing (Lucieer et al., 2005). 

As part of that monitoring procedure the dunes have been 
the subject of repeated high resolution LiDAR survey with the 
creation of Digital Elevation Models (DEMs). Those collected 
in 1998 and 2000 are used here (Figure 2). The details of the 
pre-processing of these data are not relevant to this discussion, 
but they were made available as 2m resolution DEMs regis- 
tered to the Ordnance Survey National Grid covering a total 
area 2×2 km for each date. LiDAR works by measuring the 
time taken for a beam of infrared light to travel from the sen- 
sor to the ground and back. Infrared light is totally absorbed 
by water, and so there is no reflection and hence no measure- 
ment from areas of very wet soil and water. Such areas can be 
seen in Figure 2C. The lack of a measurement in these areas 
will have an effect on the feature extraction procedures used 
in this research. The possible extent of this effect is indicated 
in Figure 2C, and excluded from subsequent analysis. 

In the research reported here, a range of resolutions from 
3 × 3 to 41 × 41 were chosen to identify morphometric classes 
from 4m to 80m in planimetric extent. This extent is chosen 
on the basis of an examination of profiles through the digital 

elevation model. The fuzzy memberships are, therefore, each 
based on n = 20 (Equation 2) Boolean instances of landscape 
classification. A limited number (m = 5; Equations 3a, b, c) of 
threshold values of c are used, 0.1, 0.2, 0.3, 0.4 and 0.5. At 
each threshold, a different type-1 fuzzy membership was de- 
termined, and so each type-2 fuzzy set is based on 100 Boo- 
lean instances of morphometric classification. 

The total area can be divided into three zones: the beach, 
and two areas of dunes, one wooded and one dominated by 
scrub. The wooded area is characterised by very erratic eleva- 
tion readings due to the trees, and a patchwork of clearings 
which mean that the multiresolution analysis used here beco- 
mes unreliable, and therefore the work focuses on the scrub- 
dune area (Figure 2).  

Within the study zone, the dominant feature is the major 
foredune oriented from southwest to northeast, which reaches 
to more than 10m above Ordnance Datum (OD), and is 
bounded to the south-east by a series of parallel ridges of what 
are presumed to be previous foredunes (Figure 2). Further in- 
land a series of parabolic dunes fills the remainder of the area 
with extensive bare-sand blow-outs with high dune crests to 
the landward side, reaching occasionally as high as 20m 
above OD at the eastern extremity. The dunes in this area are 
vegetated by a mixture of grasses, heathers and other small 
shrubs (Brown, 2005). 

To execute the multi-resolution analysis we have used the 
method of Wood (1996a, b) as used by Fisher et al. (2004, 
2005), where the land surface is modelled as a quadratic fun- 
ction using the central point and the outer points of an ex- 
panding window. A value of the elevation calculated from that 
surface is then recorded for the central point (Wood, 1996a). 
Morphometric analysis is then performed on the generalised 
surface. We used the Landserf software to execute these ope- 
rations (Wood, 2006). Further processing and visualisation 
was completed with Clark Laboratory’s Idrisi Kilimanjaro 
(Eastman, 2003). 

Figure 2C shows the difference between the two eleva- 
tion models. It seems that the foredune has received a consi- 
derable reduction in height, while some trough areas have 
been subject to accumulation. In addition, a secondary fore- 
dune (seaward of the main dune crest) seems to have deve- 
loped between 1998 and 2000. Overall the dune system would 
appear to be little changed, with some filling of troughs and 
levelling of dunes. The possibility of error in the elevations 
cannot be excluded. The DEMs were produced to the highest 
standards, however, and have passed quality assurance proce- 
dures by both the Environment Agency and the data producers. 
Therefore, for the present analysis we take them both to be 
correct. 

5. Analysis of Type-1 Fuzzy Landforms 

5.1. Type-1 Fuzzy Set Membership 
The distribution of crestness and troughness is shown in 

Figure 3. The columns in the figure show the crestness and 
troughness at the different dates, while the rows show results 
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from the 5 different parameterisations of curvature. The most 
obvious feature is that the larger values of curvature allow a 
more restricted interpretation of what should be distinguished 
as either crest or trough. When c = 0.1 quite a large proportion 
of the study area is classed to a degree as crest or trough, but 
as the value of c increases the degree of crestness or trough- 
ness generally decreases, although in locations with the high- 
est values of fuzzy membership the degree remains much the 
same for different values of curvature. 

The principal feature in all the crestness maps, especially 
those with larger values of curvature is the foredune. Parallel 
to this dune crest is a secondary, landward crest which be- 
comes increasingly obvious as the value of curvature increa- 
ses. Other minor dunes parallel to the foredune are also appa- 

rent forming dashed lines (in effect) between these two major 
dunes. The generally larger values of fuzzy membership asso- 
ciated with the smaller values of curvature mean that some 
other coherent areas of larger values of crestness are also pre- 
sent. Further inland, the crests become more east-west tren- 
ding almost forming closed loops in some cases. This is the 
area of parabolic dunes typical of coast dunefields (Pethick, 
1984). 

In the crestness maps (Figure 3) for both years, when c = 
0.1, a pronounced zone of higher values of crestness is appa- 
rent in the beach area. Beach ridges are characteristic of the 
shore, are caused by tidal activity and vary with tides. The 
ridge could mark the high tide line or the strand line of the 
highest tides in the lunar cycle (Pethick, 1984). 

 Crestness Troughness  
 1998 2000 1998 2000  

0.1 

  

0.2 
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0.5 

  

Figure 3. Crestness and troughness for each curvature parameterisation in 1998 and 2000. 
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Two further columns in Figure 3 show maps of trough- 
ness. Much the same observations can be made as for crest- 
ness in terms of the more restricted extent of troughness with 
increasing values of curvature. A series of parallel areas of 
slightly elevated values of troughness run towards the beach 
from the foredune. Moving inland (to the east) a discontinous 
but prominent zone of large memberships of troughness is ap- 
parent running parallel and just to landward to the foredune. 
The zone is not continuous, however, like the foredune, but 
includes breaks and almost a horseshoe shape (possibly relat- 
ing to a past break in the foredune). Indeed, at one point a pro- 
minent zone of troughness runs through the foredune at both 
dates (although the degree of troughness is definitely reduced 
in the 2000 analysis). Further inland, the parabolic dunes do- 
minate the landscape, and, like the crests, the zones of trough- 
ness are either short linear features tending east-west, or they 
are approximately horseshoe shaped. Most of the general pat- 
terns commented on here are detectable in any of the cur- 
vature parameterisations of crestness or troughness, to some 
degree. 

Finally, Table 2 presents the percentage of the study area 
(as the fuzzy area) which is occupied by the fuzzy dune crests 
and dune troughs in each year. Again it is possible to see the 
reduction in area of the fuzzy dunes with increasing curvature. 
The area of dune troughness is always a little less than the 
area of dune crestness. 

 
Table 2. The Percent of the Study Area in the Type-1 Fuzzy 
Class Dune Crest and Dune Trough in Each Year for the 
Different Parameterisations of Curvature 

 Crestness Troughness 

 1998 2000 1998 2000 
0.1 26.41 26.01 25.20 24.66 
0.2 18.25 17.75 16.14 15.77 
0.3 11.98 11.51 9.65 9.33 
0.4 7.82 7.43 5.79 5.52 
0.5 5.22 4.86 3.50 3.27 

 
5.2. Change Analysis of Type-1 Sets 

Applying the logic of change discussed in section 3 to the 
individual curvature instances of type-1 fuzzy sets of crest- 
ness and troughness, gives rise to maps of fuzzy change. 
These are presented as Figures 4 and 5. Relatively speaking 
the amount of change is never large (note different legends 
between Figures 3, 4 and 5), but some change occurs in all 
curvatures in both crestness and troughness. 

The amount of change in crestness is to the extreme nor- 
theast of the study area in the vicinity of an area of no return 
of signal and is likely to be related to edge effects of this area. 
The second most prominent change in both gain and loss of 
crestness is in the crest area to seaward of the foredune in the 
analysis when c = 0.1, noted in section 5.1. The effect is most 
likely to be related to the very dynamic beach area, and pos- 
sibly to the state of the tide within the lunar cycle on the dif- 

ferent dates of LiDAR flights. The next most obvious fea- 
tures are the linear zones of crestness gain and loss associated 
with the foredune. Some further zones of irregular shape cha- 
racterised by larger memberships of both gain and loss are 
noticeable inland of this. Further areas of change (both gain 
and loss are noticeable as coherent areas (not isolated small 
patches) arranged longitudinally running east to west, parallel 
to the crests of the parabolic dunes. 

 
Gain Loss  

0.1

0.2

0.3

0.4

0.5

Figure 4. Change of Crestness for each curvature 
parameterization. 

 
The change in troughness is somewhat similar. The tidal 

changes are expressed as a zone of loss of troughness, and 
there is a zone of large membership of loss of troughness, 
when c = 0.1, associated with the foredune in the same broad 
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area as that where crest gain was noted. This is due to smooth- 
ing of the seaward side of the foredune. The only other zone 
of large memberships is in the area of irregular changes of 
crestness immediately landward of the foredune. 
 

 Gain Loss  

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

Figure 5. Change of troughness for each curvature 
parameterization. 
 

 From the analysis of change in type-1 fuzzy sets for any 
curvature, the overall picture of change shows some seaward 
gain and landward loss in the foredune crest as well as deve- 
lopment of a new trough on the seaward side of the foredune. 
Otherwise there is a picture of minor re-arrangement of sand 
(leading to changes in crestness and troughness) in the para- 
bolic dunes, with an area of larger re-arrangement of the crest 
and loss of trough immediately landward of the foredunes. 

 The minor amount of change in the dunes is evidenced 
also in the percent of fuzzy areal change reported in Table 3. 
All figures are low (but as is reflected in the maps) the values 
associated with larger values of curvature are smaller. Overall 
there is a slightly larger loss than gain in both dune-elements 
given all parameterisations of curvature. This imbalance in 
gain and loss is reflected in the reduction in the area of both 
dune and trough which can be observed in the area of the 
fuzzy crest and fuzzy trough between 1998 and 2000 (Table 
2). 

 
Table 3. The Percent of the Study Area in the Type-1 Fuzzy 
Change Class Gain and Loss of Dune Crest qnd Dune Trough 
for the Different Parameterisations of Curvature 

 Crest Trough 
 Gain Loss Gain Loss 
0.1 2.235 2.636 2.174 2.713 
0.2 1.449 1.955 1.541 1.904 
0.3 1.108 1.578 1.124 1.447 
0.4 0.850 1.243 0.797 1.071 
0.5 0.639 1.003 0.552 0.773 

 
5.3.  Summary 

 The change analysis of type-1 fuzzy sets of crestness 
and troughness show a consistent picture of the slight events 
in the dune area. Changes are occurring, but none are drama- 
tic, and overall, the morphological components are reducing 
in their spatial extent. This is likely to relate to a smoothing of 
the field (filling of the troughs and erosion of the crests) in the 
two year period. If this persists it may be a concern for the 
Environment Agency, because the wind- and wave-break ef- 
fect of the dunes is lowered with this smoothing. The exact 
effects are hard to quantify. It is reassuring, however, that los- 
ses in morphological components are matched by gains (only 
a little less in spatial extent than the losses) elsewhere in those 
same components. 

 If only a type-1 analysis were being performed any of 
the 5 different results could be reported as a correct repre- 
sentation of the fuzzy change of the dunes. There might only 
have been an arbitrary reason for choosing the curvature value 
(Fisher et al., 2005), but the result would be treated as a defi- 
nite statement. The inclusion of the different results here is a 
result of wishing to extent to a type-2 analysis.  

6. Analysis of Type-2 Fuzzy Landforms 

6.1. Type-2 Fuzzy Set Membership 
As noted in Section 3.2, the type-2 fuzzy membership 

function is generated by summarising the distribution of the 
five different type-1 fuzzy memberships. The summary is in 
the form of at least two different values, the minimum and 
maximum membership (Equations 3a and 3b), with the mean 
(Equation 3c) defining a triangular type-2 function for the 
boundary condition of areas of crestness and troughness, whi- 
ch might be interpreted as generous, typical and core inter- 
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pretations of crestness and troughness. 
Maps of these type-2 crestness and troughness para- 

meters are shown in Figure 6. For the minimum and maxi- 
mum values the general patterns are the same as in the 0.5 and 
0.1 curvature maps shown in Figure 3. The details are not 
however the same, but strongly related (correlation coefficient 
= 0.96). It is not necessarily the case that the minimum value 
at a location is the value from the 0.5 curvature analysis; 
rather it is the least membership in any of the different curva- 
ture values. Thus it is occasionally the case that the smallest 
membership value for a location is not in the 0.5 curvature 
mapping, and similarly, the largest value at a location is not 
the 0.1 mapping. 

 
Table 4. The Percent of the Study Area in the Type-2 Fuzzy 
Change Class Gain and Loss of Dune Crest and Dune Trough 
Based on the Multiple Parameterisations of Curvature 

 Crest Trough 

 1998 2000 1998 2000 
Min (core) 4.77 4.40 3.13 2.91 
Mean (typical) 13.94 13.51 12.05 11.71 
Max (generous) 28.07 27.65 26.85 26.27 

 
The difference between the type-2 and the type-1 fuzzy 

sets from separate curvature analyses is also apparent when 
Tables 2 and 4 are compared. The fuzzy areas of the type-2 set 
maxima are all larger than the percent of the study area in the 
0.1 curvature areas and the minima are all smaller than the 0.5 
curvature values. Thus the minimum of the type-2 set should 
be seen as the most restricted estimate of the extent of crest- 
ness and troughness (the core areas) in the dune area, just as 
the maximum is the largest extent (most generous). The mean 
might therefore be interpreted as a more typical interpretation 
of the areas of the crest or trough than either of the others. 

Between them, the minimum, mean and maximum define 
the triangular membership of the boundary condition of the 
type-2 fuzzy sets of crestness and troughness; the range and 
distribution of possible values of the membership function 
exemplified by the mappings of the 5 curvature values. 

 
6.2. Change Analysis 

In Section 3.5 two different approaches to the analysis of 
change in type-2 fuzzy sets were introduced. Here they are 
discussed in separate subsections. 

 
6.2.1. Summarising Type-1 Fuzzy Change  

The first approach is to take the summary parameters of 
the triangular fuzzy function from the memberships of the 
type-1 change sets for multiple values of curvature (Figures 4 
and 5). These are presented in Figures 7 and 8 for crestness 
and troughness, respectively, and the areas are summarised in 
Table 5. 

Perhaps not surprisingly the patterns are much as in the 
type-1 analysis, but as observed in section 6.1 the detailed 

values are different. The percent of the study area which has 
the maximum value of any change is larger than the 0.1 
curvature values by more than half as much again, and the 
minimum is smaller than the 0.5 by as much as one quarter 
(compare Tables 3 and 5). Unlike the maps of type-1 change 
in crestness where both gain and loss of the foredune is ap- 
parent in all maps as a linear feature cutting across the whole 
study area, in the minimum membership of type-2 change in 
crestness images (Figure 7), the change in the foredune is 
intermittent to say the best and hardly visible in the loss map. 
In the mean gain map it is hard to seem, but it is more ap- 
parent in the loss image. It is only clear in the maximum 
membership mapping. 

 
Table 5. The Percent of the Study Area in the Type-2 Fuzzy 
Change Gain and Loss of Dune Crest and Dune Trough Based 
on the Multiple Instances of Curvature 

 Crest Trough 

 Gain Loss Gain Loss 
Min 0.159 0.349 0.152 0.229 
Mean 1.256 1.683 1.238 1.582 
Max 3.588 4.301 3.479 4.308 

 
6.2.2. Change in Type-2 Sets 

The alternative method of analysis is to apply the change 
logic (Equation 6) to the parameters of the type-2 sets of 
crestness and troughness (Figure 6). The results of this analy- 
sis are presented in Figures 9 and 10. 

An examination of individual locations reveals unexpect- 
ed results. At many locations the membership of change of the 
type-2 minimum membership is actually larger than member- 
ship of change of the type-2 mean or even the maximum 
membership. This issue can be observed most clearly in a set 
of profiles through these maps of change of the type-2 fuzzy 
set memberships (Figure 11). There are many locations in all 
profiles where the largest fuzzy membership values are 
actually of the change in the mean or minimum rather than of 
the maximum. 

One view of this result is that, at some locations, the 
change in the type-2 set has created a concave set, rather than 
a convex one which is axiomatic for fuzzy sets (Zadeh, 1965; 
Klir and Yuan, 1995; Kruse et al., 1994). In still more extreme 
instances the order of the membership values of maximum, 
mean and minimum is reversed, and so it seems that the set is 
actually inverted. This observation is, however, completely 
reasonable and logical; there is no reason at all that the change 
in the minimum values of the type-2 fuzzy sets of the crest 
and trough should necessarily be the smallest type-2 change 
set at all locations. Instead of considering these results as des- 
cribing the triangular membership function at a point, they 
can be more usefully viewed as further instances of the chan- 
ge of the fuzzy dunes, just as the different values of curvature 
were treated, and so summarised by taking the minimum and 
maximum memberships at any location. Here, only the mini- 
mum and maximum is reported since being derived from three 
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values it was considered that the mean would be relatively 
meaningless. The fuzzy areas in the minimum and maximum 
values of the changes of the type-2 sets are smaller and larger, 
respectively, than any previous change analysis (compare Ta- 
bles 3 and 5 with Table 6). 

 
Table 6. The Percent of the Study Area in the Change of 
Type-2 Fuzzy Classes of Dune Crest and Dune Trough, Based 
on Summarising Change of the Type-2 Sets 

 Crest Trough 

 Gain Loss Gain Loss 
Min 0.240 0.464 0.228 0.323 
Max 2.669 3.251 2.518 3.243 

7. Conclusions  

The treatment of environmental phenomena with fuzzy 
sets has largely been done in two ways (Robinson, 1988): by 
clustering and related numerical classification methods in the 
Similarity Relation Model, and by user specification in the 
Semantic Import Model. This paper uses multiple instances in 
an example of the approach which is referred to by Fisher 
(2000b) as the Experimental Model, and is similar to Kulik’s 
(2003) supervaluation approach. The approach uses multiple 
instances (or precisifications) of an algorithm or algorithms 
which may be expected to produce different results. In the 
current study the difference is created by varying the scale (or 
resolution) of analysis (following Fisher et al., 2004, 2005), in 

what is an inherently geographical method for populating 
type-1 fuzzy sets. The curvature is then varied to generate 
multiple instances of the type-1 sets which can be summarised 
to yield type-2 sets. 

Change analysis of fuzzy sets of vague landscape phe- 
nomena is not widespread, because, at least in part, the appro- 
priate logic of change analysis has only recently been deve- 
loped. Some studies have been done in remote sensing, but 
these have tended to avoid specifying any logical analysis, 
unless on objects (Tang et al., 2005). This paper is intended to 
contribute to that literature. Following Deer (1998) and Fisher 
et al. (2005, 2006), the logic of fuzzy change analysis is arti- 
culated and the results of such change analysis explored. 

Over the time period for which data is available, little 
change has occurred in the study area, and that is typical of 
the coastal sand dunes in Britain. Change in this environment 
occurs slowly, due to the wind blowing sand from the beach 
onto the dunes, and rainfall causing the erosion of that sand. 
Vegetation of the dunes, as has occurred in the Ainsdale sands, 
partially stabilises the dunes. Even in protected areas pressure 
from human walkers can cause degradation, but the dunes 
examined here are far enough from car parks and hotels that 
only the more determined walkers will affect the dunes. Cata- 
strophic events such as extreme storms can cause dramatic 
changes, but no such events occurred in this area between 
1998 and 2000. Therefore the small scale or slight changes 
apparent in the fuzzy analysis are therefore consistent with ex- 
pectations. 

 Crestness Troughness  
 1998 2000 1998 2000  

Max 

Mean 

Min 

 
Figure 6. Type-2 set of crestness and troughness, being summaries of the fuzzy memberships shown in Figure 5.
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 Gain Loss  
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Figure 7. Type-2 set of change of Crestness 
summarizing the multiple curvature change values. 
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Figure 8. Type-2 set of change of troughness 
summarizing the multiple curvature change values. 
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Figure 9. Change of the summaries of the type-2 set 
Crestness shown as profiles along the line indicated to 
the lower left of each image in Figure 11. 

Gain Loss  
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Figure 10. Change of the summaries of the type-2 set 
Troughness shown as profiles along the line indicated to 
the lower left of each image in Figure 11. 
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The analysis of type-2 fuzzy sets and of higher order va- 
gueness in general is also not widespread in the environ- 
mental informatics literature. In this paper, an empirical study 
of the properties of type-2 sets is presented. By varying the 
curvature threshold in the allocation of locations to the chan- 
nels and ridges, it is possible to generate multiple instances of 
type-1 fuzzy sets of crestness and troughness, and to then use 
the variation in those sets to determine the distribution of the 
type-2 sets (Table 5). This gives the most restricted parame- 
ters for the type-2 fuzzy sets, and the estimates of the fuzzy 
areal extent of change of the type-2 sets of crestness and trou- 
ghness show larger and smaller areas of change (Table 6). In- 
deed the minimum estimates are lowered and the maximum 
estimates raised in the type-2 analysis, and this difference is 
extended in summarising the change in the type-2 sets of trou- 
ghness and crestness. 

In this paper the method uses instances of type-1 sets and 
so it is possible to parameterise change in all type-1 sets and 
summarise those as type-2 sets, which yields the most restric- 
ted version of the type-2 sets. If the Semantic Import Model 
were to be used to populate the type-1 and type-2 fuzzy sets 
from the expert’s opinion of the range of values for the mem- 
bership function, as is much more common, then only the se- 
cond type of analysis presented here will be possible, per- 
forming change analysis on the parameters of the type-2 sets. 
Therefore it seems reasonable to conclude that the range of 
possible change which might be detected would be greater 
than seems to actually be the case. This is a warning for those 
working with type-2 fuzzy sets where the Semantic Import 
Model is usual; the consequence of logical analysis of the 
type-2 sets may over estimate the range of possible member- 
ship values. 
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Figure 11. Profiles through the change in type-2 sets of crestness by A) gain and B) loss, and troughness by C) 
gain and D) loss (the position of the profile is shown by a straight line in Figure 2C, and all other map views). 
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In conclusion, the memberships of type-1 fuzzy sets have 
been estimated from instances of differently parameterised 
morphometric landform classifications. From these fuzzy 
morphometric elements of sand dunes have been distingui- 
shed and memberships determined. Changes in these type-1 
sets have been explored yielding varied but small changes in 
the morphometric elements of the dunes in the Ainsdale Sands 
dunefield. Type-2 fuzzy sets have also been estimated for both 
the morphometric elements and for the change in those ele- 
ments. These type-2 change sets show more varied possible 
change than the type-1 sets which may be a warning for others 
applying logical analysis to type-2 fuzzy sets. The analysis of 
multiple instances of type-1 fuzzy sets and of type-2 fuzzy 
sets are equally useful. Both yield ranges of values for pos- 
sible events for vague phenomena, supporting the basic con- 
tention that these phenomena are themselves vague, or at least 
that as an output from analysis they are vague. 
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