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ABSTRACT.  The performance of an aeration system generally depends upon the geometric and dynamic parameters. The main pur-
pose of doing experiment in the area of surface aeration system is to interpret the laboratory results for the field application that is to 
scale-up the results. This requires a geometrical similarity conditions. Finding geometrical optimal conditions of a surface aeration sys-
tem through experiments involves physical constraints and classically parameters can be optimized by varying one variable at a time 
and keeping others as constants. In the real experimental process, it is not possible to vary all others geometric parameters simulta-
neously. In such a case, the model of the system is built through computer simulation, assuming that the model will result in adequate 
determination of the optimum conditions for the real system. In this paper, two approaches have been used to model the phenomena: i) 
Multiple regression and ii) Neural network. It has been found that neural network approach is showing better predictability compared 
to the multiple regression approach. In process of optimization, the pertinent dynamic parameter is divided into a finite number of seg-
ments over the entire range of observations. For each segment of the dynamic parameter, the neural network model is optimized for the 
geometrical parameters spanning over the entire range of observations. Thus each segment of the dynamic parameter has its set of op-
timal geometrical conditions. Results obtained are having less variation among them and they are very nearer to the experimental op-
timal conditions. Input parameter significance test of neural network model reveals that, in general the blade width of rotor is a major 
geometric parameter to enhance the aeration process. 
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1. Introduction  

Aeration is one of the important processes employed in 
water and wastewater treatment to reduce BOD. The basic 
phenomenon behind the process of aeration is a gas transfer, 
in which the gas molecules are exchanged between the liquid 
and the gas at the gas-liquid interface (Fair et al., 1971). The 
aeration process is also used to either remove the volatile sub- 
stances and gases present in water and wastewater or improve 
the DO content in the water and wastewater or both at the 
same time. The important functions of the surface aerators are 
to enhance oxygen transfer process and liquid phase mixing 
for ensuring the oxygen availability in all parts of the contac- 
tor and suspension of microorganisms. There are many types 
of aerators used in practice, such as cascade, spray nozzles, 
diffused or bubble aerators and surface aerators. Among the 
several types of aerators, surface aerators are more popular 
because of their better efficiency and ease in operation. 

Usually the sizes of treatment plants are much larger than 
the reactors used in the manufacturing processes. A large 
number of impeller designs are used in surface aeration appli- 
cations but most of the information (White et al., 1934; Naga- 
ta et al., 1956; Sano and Usui, 1985; Wu, 1995) is for standard 
configuration of impeller clearance and submergence. Further, 
the mass transfer coefficients have been reported over a nar- 
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row range of design and operating variables (Zlokarnik, 1979; 
Backhurst et al., 1988; Ognean, 1993). Patil et al. (2004) have 
optimized the conditions for the operation of surface aerators 
and put forward the optimized values of geometric parameters. 
But they have not extended their study for developing a ma- 
thematical correlation for prediction of mass transfer coeffi- 
cient and power number, which are expected to be useful for 
the design engineers.  

Aeration process is represented by three different groups 
of parameters, namely geometric, dynamic and physical. Out 
of these physical groups of parameter are invariant in the ana- 
lysis, as they are more or less constant. The objective of doing 
studies on aeration process is to interpret the laboratory result 
into the field installation. This means scaling up of laboratory 
geometric dimensions for the field installation. It requires a 
geometrical similarity condition that is to say that the field in- 
stallation should be built on a definite geometric ratio of the 
laboratory setup. 

 The physical and chemical processes taking place in the 
aeration tank are complex and closely coupled to the underly- 
ing transport processes, in particular the flow field. Therefore, 
a detailed understanding of the hydrodynamics of aeration 
tank (velocity field, turbulence, stress field etc.) is useful for 
optimum design. The geometry is the key to understanding 
mixing. In fact, the geometry is so important that processes 
can be considered "geometry specific". Optimality of the geo- 
metric parameters can be obtained by keeping the one para- 
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meter as a variable at a time and keeping the others constant. 
This approach has some limitations and it is difficult to keep 
the one parameter constant at every possible limits. However 
based on certain intuitions and guess, this approach generally 
gives a working result. It can also be said from the earlier 
studies (Nagata, 1975; Rao, 1999) that aeration process is uni- 
quely described by the dynamic parameters on optimal geo- 
metric conditions. 

Numerical process does not have such limitations. The 
idea of this paper is first to formulate a general model which 
describe the best approximation of the aeration process, then 
by keeping the dynamic parameter constant at one value, opti- 
mize the general model with all the geometric parameter vary- 
ing within the experimental observation limit. The objective 
of this paper is to find an optimal geometric similarity condi- 
tion computationally and compare the result to the experimen- 
tal findings. 

2. Surface Aeration Process 

A typical surface aerator with six flat blades, used in this 
study, is shown in Figure 1. 
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Figure 1. Schematic diagram of a surface aerator. 
 

The main component of these surface aerators is an im- 
peller or rotor, to which the blades are fitted. The rotor is ro- 
tated to create turbulence in the water body so that aeration 
takes place through the interface of atmospheric oxygen and 
the water surface. 

The aeration process generally depends on three types of 
variables namely geometric, physical and dynamic variables 
and they are all explained as follows:  

Geometric variables: Cross-sectional area of the tank (A); 
depth of water in the tank (H); diameter of the rotor (D); leng- 
th of the blades (l); width of the blades (b); the distance be- 
tween the top of the blades and the horizontal floor of the tank 
(h); and the number of blades (n). 

Physical variables: density of air (ρa); density of water 

(ρw); and  kinematic viscosity of water (ν). 
Dynamic variables: rotational speed of the rotor with 

blades (N). 
 The variables, which can influence the oxygen, transfer 

coefficient at 20  

oC (i.e. KLa20) for a given shape of an aeration 
tank are given by 

 
KLa20 = f (A, H, D, l, b, h, n, N, g, ρa, ρw, ν )                          (1) 

 
Equation 1 may be expressed in terms of non-dimen- 

sional parameters as follows: 
 

K = f ( /A D , H/D, l/D, b/D, h/D, n, ρa/ρw, R, F )              (2) 
 

or it can be expressed as (Rao, 1999; Rao et. al., 2004): 
 

K = f ( /A D , H/D, l/D, b/D, h/D, n, ρa/ρw, X )                  (3) 
 

where K = KLa20 / N is the non-dimensional oxygen transfer 
parameter and X = F4/3R1/3 is the parameter governing the 
theoretical power per unit volume. The first six non-dimensio- 
nal parameters represent the "geometric similarity" of the sys- 
tem and the last parameter represents the "dynamic simila- 
rity". 

As A = L2, /A D  can be written as L/D. The number 
of blades, n in the present experiments is constant. Also, the 
parameter ρa/ρw is considered as invariant. Thus, these two 
parameters are omitted in the analysis. Therefore, the func- 
tional relationship of Equation 3 can now be expressed as 

 
K = f (L/D, H/D, l/D, b/D, h/D, X )                                        (4) 

 
2.1. Problem Formulation 

The problem formulation analyzed in this paper is at best 
described by the following steps: 

1) Generalize model for the Equation 4 by different ap- 
proach such as Multiple regression, Neural network etc. 

2) Select the model which gives less prediction error va- 
riance from the model. 

3) Find the most important or sensitive parameters of the 
model. 

4) Now optimize the K, by changing the geometric para- 
meters and keeping the X at certain values.  

5) Repeat the process ‘4’ to the entire experimental range 
of X. 

6) Compare with the experimental results. 
The schematic diagram on whole modeling and optimiza- 

tion process is shown in Figure 2. 

3. Modeling Process 

A commercial Microsoft Windows based Mathematics 
software Matalab® v.7 was used throughout the studies. The 
mathematical representation of the input/output function of a 
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simulation model will be represented (Kleijnen and Sargent, 
2000) as: 

 
Y = g(X)                                        (5) 

 
The X vector for a simulation includes the input variables 

and Y is the output variables. General models are typically de- 
veloped separately for each component of Y, that is, for each 
coordinate function of g. The major issues in modeling inclu- 
de: i) the choice of a functional form for g, ii) the selection of 
a set of X points at which to observe y (run the full model) to 
adjust the fit of g and iii) the assessment of the adequacy of 
the fitted model. To model any process, there are two basic 
approaches; first, extrapolation of model experiments based 
on the principles of similitude (soft modeling or empirical 
modeling) and, second, mathematical analysis of the complete 
(or controlling) mechanism. While the second of these has un- 
limited potential value, it also has serious limitations in prac- 
tice. Often the relationships are too involved to permit rigo- 
rous definition or the resultant mathematical expressions are 
too complex for economical solution, even with computing 
equipment. This leaves us with soft modeling/ empirical mo- 
deling. There are various ways to do empirical modeling of a 
systems viz., multiple regression analysis, neural network, ge- 
netic algorithm etc. Present paper uses the two most common 
approaches to model the process such as multiple regression 
analysis and neural network. 
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Figure 2. Flow diagram of the modeling process. 
 
To judge the quality of the results obtained in multiple 

regression analysis and neural network, two indicators were 
used: 

• The correlation coefficient R between observed and es- 
timated values, or the determination coefficient R2; 

• Prediction error variance (PEV): PEV is a very useful 
way to investigate the predictive capability of the model. It 
gives a measure of the precision of a model's predictions. A 
low PEV (close to zero) means that good predictions of the 
model. 

 
3.1. Data Source: Experimental Work 

Experimental data obtained from our earlier studies (Rao, 

1999) on square surface aerators were used in additions to the 
present the experimental data in order to provide a sufficient 
number of data for the modeling the process. Experimental 
optimal points for different parameters have been published in 
Rao (1999). Three sizes of square surface aeration tanks of c/s 
area (1, 0.5184 and 0.1684 m2) were tested under laboratory 
conditions. Determination of K has been made as follows: 

According to two-film theory (McWhirter et al., 1995), 
the oxygen transfer coefficient at T oC, KLaT may be expressed 
as follows: 

 
KLaT = [ln(Cs – C0) – ln(Cs – Ct)]/t                 (6) 

 
where, ln represents natural logarithm and the concentrations 
Cs, C0 and Ct are dissolved oxygen (DO) concentrations in 
parts per million (ppm), Cs = the saturation DO concentration 
at time tending to very large values, C0 is at t = 0 and Ct is at 
time t = t. The value of KLaT can be obtained as slope of the 
linear plot between ln(Cs – Ct) and time t. The value of KLaT 
can be corrected for a temperature other than the standard 
temperature of 20oC as KLa20, using the Vant- Hoff Arrhenins 
equation (WEF and ASCE, 1988): 

 
KLaT = KLa20  θ

 (T - 20)                               (7) 
 

where θ is the temperature coefficient 1.024 for tap water. 
At first, water in the tank was deoxygenated by adding 

the required amount of cobaltous chloride (CoCl2) and sodium 
sulphite (Na2SO3) (Metcalf & Eddy Inc., 2004) and thorough- 
ly mixing water. The deoxygenated water was re-aerated by 
rotating the rotor at desired speeds and maintaining the vari- 
ables as per data presented in Table 1. When the DO concen- 
tration began to rise, readings were taken at regular intervals 
till DO increased up to about 80% of the DO saturation value. 
Lutron Dissolved Oxygen meter was used to measure the DO 
concentration in water. The DO meter was calibrated with the 
modified Winkler's method (AWWA, 1985). 

 
Table 1. Descriptive Statistics 

Parameters Minm Maxm Mean Std. Dev. 

L/D 1.61 6 3.21 0.752 
l/D 0.048 0.38 0.275 0.0449 
b/D 0.038 0.304 0.22 0.036 
H/D 0.516 2.53 1.08 0.311 
h/D 0.584 2.38 1.02 0.293 
X 0.003137 7.57 0.819 1.16 

 
The known values of DO measurements in terms of Ct at 

regular intervals of time t (including the known value of C0 at 
t = 0) a line is fitted, by linear regression analysis of Equation 
6, between the logarithm of (Cs – Ct) and t, by assuming dif- 
ferent but appropriate values of Cs such that the regression 
that gives the minimum"standard error of estimate" is taken 
and thus the values of KLaT and Cs were obtained simultane- 
ously. The values KLa20 are computed using Equation 7 with θ 



A. R. K. Rao and B. Kumar / Journal of Environmental Informatics 9(2) 108-117 (2007) 

 

111 

= 1.024 as per the standards for clean water (WEF and ASCE, 
1988). Thus the values of KLa20 were determined for different 
rotational rotor speeds N in all of the geometrically similar 
tanks. Thus K has been determined for different values of pa- 
rameters listed in Equation 4. 

 
3.2. Multiple Regression Analysis: MRA 

Multiple regression analysis (MRA) is probably one of 
the most commonly used methods for multivariate data analy- 
sis. It can be used to test hypotheses regarding the relationship 
of one or more predictors to a dependent variable. It also 
lends itself easily to predicting or forecasting the values of the 
dependent variable. 

The concept of regression analysis lies in the idea to pre- 
dict the scores of one dependent variable Y from the scores of 
one or several independent variables X1, X2,…, Xm in an opti- 
mal way. Standard multiple regression can only accurately es- 

timate the relationship between dependent and independent 
variables if the relationships are linear in nature. If the rela- 
tionship between independent variables and the dependent va- 
riable is not linear, the results of the regression analysis will 
underestimate the true relationship. The descriptive statistics 
of the parameters are given in the Table1. Total experimental 
runs are 400. The regression equation of the process is given 
as: 

 

2
2

 0.7538 0.0016 0.0006 0.5903 0.0017

 0.255 0.008 0.0118 0.004 0.0087

 0.0014 0.0093 0.004 0.1987 0.003

b H L lK X
D D D D

b L L l H L HX X X
D D D D D D D

b l b L l LX X
D D D D D D

= − + + + +

+ − + + −

⎛ ⎞− + − − −⎜ ⎟
⎝ ⎠

    

(8) 

 
Equation 8 gives the correlation coefficient R2 = 0.9262. 

Although the correlation coefficient of the model is reasonab- 
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Figure 3. PEVs of multiple regression models a), b) and c). 
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ly good, but the model prediction error is very high compared 
to the next model as shown in the following Figures 3a to 3c. 

 
3.3. Artificial Neural Network: ANN 

Artificial neural networks (ANNs) provide a useful and 
effective tool for modeling the complex and poorly under- 
stood processes that occur in nature, as they are able to extract 
functional relationships between model inputs and outputs 
from data without requiring explicit consideration of the ac- 
tual data generating process (Hayken, 1994). ANNs are non- 
linear mapping structures based on the function of the human 
brain. They are considered universal and highly flexible ap- 
proximators for any data. 

In ANN, the computational or processing elements are 
called neurons. Like a natural neuron, they have many inputs 
but only a single output, which can stimulate other neurons in 
the network. Neurons from one layer are connected to all neu- 
rons in the adjacent layer(s). The number of input and output 
units depends on the representations of the input and the out- 
put objects, respectively. Training the network consists of us- 
ing a training data set to adjust the connection weights in or- 
der to minimize the error between observed and predicted va- 
lues. The units in neighboring layers are fully interconnected 
with links corresponding to synapses. The strengths of con- 
nections between two units are called "weights". In each hid- 
den layer and output layer the processing unit sums its input 
from the previous layer and then applies the “tansigmoid” 
function to compute its output to the following layer accor- 
ding to the following equations: 

 

jyjy

jyjy

j

iijj

ee
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where Wij is the weight of the connection between unit j in the 
current layer to unit i in the previous layer and Xi is the output 
value from the previous layer. f(Yj) is conducted to the follow- 
ing layer as an output value. ANN learns an approximate non- 
linear relationship by a procedure called "training", which in- 
volves varying weight values. Training is defined as a search 
process for the optimized set of weight values (Weight plot is 
given in the appendix, Figure 9) which can minimize the squ- 
ared error between the estimation and experimental data of 
units in the output layer. A back-propagation method with the 
Levenberg-Marqudatt (LM) algorithm has been widely app- 
lied for training ANN. The LM algorithm is widely applied to 
many different domains and is faster and produces better re- 
sults than other training methods (Hagan and Menhaj, 1994; 
Tan and van Cauwenberghe, 1999). To update weights and 
biases, the LM algorithm uses an approximation to the Hes- 
sian matrix. Learning rate has been set to 0.01 and learning 
cycle to 5000. 

The optimal number of neurons in the hidden layer of the 
network has been determined by running the program code 

(MATLAB® Platform V. 7) several times with different net- 
works and chooses the number that produced the greatest net- 
work performance. The best architecture of the neural model 
has been shown in Figure 4 and results of the training and 
testing for the best model in Figure 5. 
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Figure 4. Best configurations of artificial neural network. 
 
It can be clearly seen from Figure 5 that the linear coeffi- 

cient of correlation is very high between observed experimen- 
tal data and values predicted through neural nets and it is 
0.964 in training and 0.958 in testing for square surface aera- 
tors. This shows the learning and generalization performance 
of the network is good. Prediction Error Variance (PEV) is a 
very useful way to investigate the predictive capability of 
model. It gives a measure of the precision of a model's predic- 
tions. Figures 6a to 6c show how well the present model 
predicts over the design region, when compared to the PEV of 
multiple regression model of Figures 3a to 3c. 

 
3.4. Discussion between MRA and ANN Model 

In order to assess the usefulness and the main limitations 
of ANNs, it is interesting to have an overview of alternative 
tools often applied in multivariate calibration. The most popu- 
lar method is MRA. The attraction of MRA lies in the ease of 
model interpretation since the estimated parameters relate the 
parameter of interest to a set of original variables. MRA may 
be viewed as a special case ANN model that uses linear trans- 
fer functions and no hidden layers. If the linear model per- 
forms as well as a more complex ANN, then using the non- 
linear ANN may not be justified; thus, linear models are use- 
ful as a basis for comparison. In our analysis, both the me- 
thods show a high R2 (0.93 for MRA and 0.96 for ANN), but 
the predictability of the MRA method is very poor as shown 
by its high value of prediction error variance. Their ability to 
learn and derive X–Y relationships from the presentation of a 
set of training samples, ANN avoids the time-consuming and 



A. R. K. Rao and B. Kumar / Journal of Environmental Informatics 9(2) 108-117 (2007) 

 

113 

possibly expensive task of hard model identification. In addi- 
tion, the fundamental principle of distributing information 
among several weights and nodes renders the ANN model ro- 
bust with respect to random noise in the input data. 
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Figure 5. Neural network result. 
 

If one is not careful, however, a drawback of the flexi- 
bility of ANNs is their tendency to overfit calibration data and 
the resulting lack of generalization ability, that is, the capa- 
bility of a model to produce a valid estimate of the correct 
output when a new input is presented to the NN. Also, the fle- 
xibility of ANNs can lead to unreliable results in situations of 
extrapolation. 

 
3.5. Input Significance Testing 

 Geometric parameters do have effects on surface aera- 
tion system; it is a well known fact. The purpose of doing in- 

put significant analysis is to find out that which parameter is 
having more influence on mass transfer process. As, it is nece- 
ssary to know the impact of the input variables, some authors 
have proposed methods allowing determination of the impact 
of the input variables on outputs such as connection weight, 
Garson’s algorithm etc. In the present paper, four such me- 
thods have been applied to know the importance of the input 
variables on output. 

Connection weights: Calculates the product of the raw 
input-hidden and hidden-output connection weights between 
each input neuron and output neuron and sums the products 
across all hidden neurons (Olden and Jackson, 2002). In the 
neural network, the connection weights between neurons are 
the links between the inputs and the outputs, and therefore are 
the links between the problem and the solution. The relative 
contributions of the independent variables to the predictive 
output of the neural network depend primarily on the magni- 
tude and direction of the connection weights. Input variables 
with larger connection weights represent greater intensities of 
signal transfer, and therefore are more important in the predi- 
ction process compared to variables with smaller weights. 

Garson’s algorithm: Garson (1991) proposed a method 
for partitioning the neural network connection weights in or- 
der to determine the relative importance of each input vari- 
able in the network. The methodology for this algorithm is as 
follows: 

(a) For each hidden neuron h, divide the absolute value of 
the input-hidden layer connection weight by the sum of the 
absolute value of the input-hidden layer connection weight of 
all input neurons, i.e. 

For h =/1 to nh, For i =/1 to ni, 
 

∑
=

= ni

i
ih

ih
ih

W

W
O

1

                                   (10) 

 
(b) For each input neuron i, divide the sum of the Qih for 

each hidden neuron by the sum for each hidden neuron of the 
sum for each input neuron of Qih, multiply by 100. The rela- 
tive importance of all output weights attributable to the given 
input variable is then obtained. 

For i: 1 to ni 
 

1

1 1
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Sensitivity analysis: A number of investigators have used 

sensitivity analysis to determine the spectrum of input vari- 
able contributions in neural networks. For example, the Sen- 
so-nets approach includes an additional weight in the network 
for each input variable representing the variable’s sensitivity 
(Schleiter et al., 1999). Scardi and Harding (1999) added a 
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white noise to each input variable and examined the resulting 
changes in the mean square error of the output. Traditional 
sensitivity analysis involves varying each input variable ac- 
ross its entire range while holding all other input variables 
constant; so that the individual contributions of each variable 
are assessed. This approach is somewhat cumbersome, how- 
ever, because there may be an overwhelming number of vari- 
able combinations to examine (Lek et al., 1996). As a result, it 
is common first to calculate a series of summary measures for 
each of the input variables (e.g. minimum, maximum, quar- 
tiles, percentiles), and then vary each input variable from its 
minimum to maximum value, in turn, while all other variables 
are held constant at each of these measures (e.g. Ozesmi and 
Ozesmi, 1999). Relationships between each input variable and 
the response can be examined for each summary measure, or 
the calculated response can be averaged across the summary 
measures. 

Forward stepwise addition: This method consists of add- 
ing or rejecting step by step one input variable and noting the 
effect on the output result. Based on the changes in MSE, the 

input variables can be ranked according to their importance in 
several different ways depending on different arguments. For 
instance the largest changes in MSE due to input deletions can 
allow these inputs to be classified by order of significance. In 
another approach the largest decrease in MSE can identify the 
most important variables, i.e. the most relevant to the con- 
struction of a network with a small MSE (Gevrey et al., 2003). 
First, ten models were generated, each using only one of the 
available variables input. Then, nine models were generated, 
combining the variable that resulted in the smallest error (for 
a single input variable) with each of the remaining variables, 
this procedure was repeated using models with three input 
variables, and more till all the variables were added (Maier et 
al., 1998). The order of integration of the input variables in 
the network is the order of the importance of their contribu- 
tions. 

Results of the above approaches have been shown in Fig- 
ure 7 and calculations of all approaches are tabulated in Table 
2. The mass transfer phenomena are strongly affected by the 
geometrical parameters; it is ascertained from Figure 7. Ex- 
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Figure 6. PEVs of ANN models a), b) and c). 
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cept one approach, all approaches have shown the most sig- 
nificant parameter is b/D.  
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Figure 7. Importance of the input variables. 
 

Table 2. Input Significance Test 

Variables 1 2 3 4 
L/D 0.074144 0.083591 0.076639 0.081647
l/D 0.611251 0.291974 0.234083 0.24071 
b/D 0.178425 0.314447 0.363145 0.36329 
H/D 0.081081 0.112561 0.124286 0.058283
h/D 0.061244 0.12515 0.109836 0.1922 
X 0.003355 0.072278 0.091976 0.058283

*1-Connection weight, 2-Grarson algorithm, 3-Sensitivity analysis 
and 4-Forward stepwise addition. 

4. Optimal Conditions of Geometric Parameters 

In general, the optimization problems can be viewed in 
terms of minimization (or maximization) of the objective fun- 
ction, F(X), under the following inequality and/or equality 
constraints: 

 

⎭
⎬
⎫

≥
≥

0)(
0)(

XH
XG

i

i                                     (12) 

 
where Gi(X) is the inequality constraint and Hi(X) is the equa- 
lity constraint. In the case of a fully-trained ANN, F(X) cor- 
responds to the predicted value of response variable adopted 
as the unit in the output layer and X is a set of causal factors 
used as the units in the input layer. 

Optimization problem has been dealt as a Point by Point 
problem. In a point-by-point problem, a single optimization 
run can determine optimal control parameter values at a single 
operating point. To optimize control parameters over a set of 
operating points, an optimization can be run for each point. 
Calibration generation and optimization toolboxes provided in 
the MATLAB® have been used in the analysis. The steps in- 

volved in this procedure are as follows: 
(1) At particular value of X, Maximize K = K(L/D, b/D, 

H/D, h/D, l/D, X) 
(2) Subjected to constraints:  
 

Min value < L/D < Max value 
Min value < b/D < Max value 
Min value < H/D < Max value 
Min value < h/D < Max value 
Min value < l/D < Max value 

 
At first, a deterministic optimization of the best general 

model has been done by keeping the X at lower range. After 
one set of analysis, the value of X has been altered to another 
one. One set of analysis at X = 4.1 is shown in Figure 8. The 
entire range of X has been divided into 10 parts. “foptcon” 
function provided by the MATLAB® environment has been 
used to optimize the neural model. “foptcon” is a single- 
objecttive optimization subject to the constraints - “foptcon” 
attempts to find a constrained minimum of a scalar function of 
several variables starting at an initial estimate. Table 3 shows 
the optimal value of geomtric parameters at every X. The vari- 
ation in optimal points is about 1%, when compared to ex- 
treme lower and upper ranges. 

 

 
Figure 8. Optimal conditions of geometrical parameters. 

 

5. Conclusions 

1) Neural network model gives a best prediction of the 
aeration phenomena comprising of geometric and dynamic 
variables. 

2) Blade width is the most significant geometrical para- 
meter affecting the re-aeration process. 

3) Experimental optimization has physical constraints 
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while optimizing the geometric parameters of a surface aera- 
tion system, whereas numerically the parameters can be va- 
ried without such limitations. 

4) The results obtained by the numerical optimization are 
very nearer to the optimal points obtained by the experiments. 
 

 
 

Figure 9. Weight plot. 
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