
Journal of 
Environmental 

Informatics 

   
ISEIS  

 
Journal of Environmental Informatics 11(2) 51-61 (2008) 

www.iseis.org/jei         
 

Experimental Results and Neural Prediction of Sequencing Batch Reactor  
Performance under Different Operational Conditions 

 
E. R. Rene, K. S. Joo, and H. S. Park* 

 
Department of Civil and Environmental Engineering, University of Ulsan, San-29 Moogu-2 Dong, 

Nam-Gu, Ulsan, 680-749, South Korea 
 

Received 9 November 2006; revised 21 Feburary 2007; accepted 11 July 2007; published online 30 May 2008 
 

ABSTRACT.  Three lab scale sequencing batch reactors (SBR) were simultaneously operated at different process conditions to 
understand the dynamics of organic and nitrogen removal from a synthetic wastewater source. The SBRs were operated continuously 
for 255 days at different C/N ratio (3 - 6), aeration time (4 - 10 hr) and salt concentrations (0.5 - 2%). The COD removal efficiencies 
under steady state operation were consistently greater than 80%, while nitrogen removal efficiencies (10 - 98%) were inhibited by high 
salt concentrations. Back propagation neural network was applied to model this experimental data using influent COD, influent nitro-
gen, salt concentration, aeration time, MLSS concentration and C/N ratio as the input parameters to predict the performance parameters, 
viz., COD removal efficiency (COD-RE), total nitrogen removal efficiency (T-RE), NH4

+–N, NO3
-–N and NO2

-–N formed. The data 
points were randomized and divided into training (190 × 3) and testing set (65 × 3). The internal network parameters were selected us-
ing the 2k full factorial design of experiments. The appropriate network topology for this system (6-12-5) was selected by estimating 
the best correlation coefficient (R) value (0.8482) achieved during prediction of the testing set. The result from this study showed that a 
neural network based model can be used as an efficient data driven model to predict the performance of a SBR unit. 
 
Keywords: back propagation algorithm, organics and nitrogen removal, performance prediction, salt concentration, sensitivity analysis, 
sequencing batch reactors

 
 

 

1. Introduction  

The concept to use biological treatment processes for si- 
multaneous nitrification and denitrification steps in wastewa- 
ter engineering has increasingly been improved over the re- 
cent years. One such treatment process is the Sequencing Ba- 
tch Reactor (SBR), a well diversified, cost efficient and ecolo- 
gically compactable treatment system for organics and nitro- 
gen removal from wastewaters. The process occurs in a well 
defined sequential steps consisting of fill, react, settle, decant 
and idle. The wastewater is fed into the reactor during the fill 
stage and mixed with a well acclimatized biomass. A series of 
phenomenological reactions including BOD removal, nitrify- 
cation, denitrification and phosphorous release/uptake occurs 
within the same reactor volume, thereby saving space and en- 
ergy. The react step is usually arrayed to offer anaerobic, ano- 
xic and aerobic conditions in certain time sequence and num- 
bers. The microbes are separated during the settle stage and 
clarified water is withdrawn leaving behind the active bio- 
mass to accept the next batch of wastewater to be treated (Lee 
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and Park, 1999). SBRs have been used extensively for COD, 
phosphate and nitrogen removal in both industrial and domes- 
tic wastewaters (Dangcong et al., 2004; Ganesh et al., 2006). 
A large number of studies have also been carried out using 
SBRs to identify the possible mechanisms of organic and ni- 
trogen removal under low/high saline conditions (Dahl et al., 
1997; Kargi and Dincer, 1997; Panswad and Anan, 1999; Din- 
cer and Kargi, 2001; Uygur and Kargi, 2004; Uygur, 2006). 
Several structured models with their own limitations and as- 
sumptions have been proposed in the literature to simulate and 
predict the performance of SBR systems (Stephanopolous and 
San, 1984; Orhon et al., 1986; Artan et al., 1990; Ibrahim and 
Abasaeed, 1995; Furumai et al., 1999). Henze et al., 1987 de- 
veloped a model that was capable of predicting the removal of 
organics, rate of nitrification and denitrification in suspended 
sludge systems. An extension of the same model was applied 
to simulate SBR by the research investigations of Artan et al. 
(1990). However the measurement of certain micro and macro 
kinetic parameters involves elaborate studies, sensitive instru- 
ments and numerous stochiometric equations. This makes the 
application of some of these existing models for SBRs very 
challenging. Additionally, most of the microbial medicated re- 
actions are non linear with complex micro level interactions 
and are more severely affected by environmental conditions. 
Hence the best approach could be to formulate simple models 
that could overcome practical difficulties, yet that can appro- 
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ximate all important events in the system. This is due to the 
inherent feature of black box modeling methodology; simpli- 
city, fault and noise tolerance, plasticity property and versa- 
tility to process changes (Shahaf and Marom, 2001). Recently 
many literatures have been published using Artificial Neural 
Networks (ANN) for modeling biological wastewater treat- 
ment processes (Cote et al., 1995; Lee and Park, 1999; Gon- 
tarski et al., 2000; Cinar et al., 2006). ANNs have also been 
applied successfully for a wide variety of SBR based appli- 
cations; process monitoring and control (Zhao and Kummel, 
1995), soft sensors (Lee and Park, 1999) and online control of 
process variables (Cho et al., 2001). The neural network based 
modeling strategy focuses on ascertaining repeatable patterns 
that can be recognizable and predictable by proper training of 
a given data set. ANNs can map a set of non linear input pat- 
terns after learning a series of previous data without cognizing 
prior knowledge of the actual phenomenological steps invol- 
ved within the process. Lee and Park (1999) created a feed 
forward back propagation network to predict PO4

3-, NH4
+-N 

and NO3
--N concentration profiles using easily monitored va- 

riables like pH, ORP and DO under aerobic and anaerobic 
phase operations in a SBR. Zhao et al. (1999) modeled the nu- 
trient dynamics (nitrogen and phosphorous) in a SBR using 
activated sludge model No 2 (ASM2) and a hybrid simplified 
process model (SPM) coupled with ANNs. The SPM provided 
preliminary predictions of the system behavior while the neu- 
ral networks were used to capture model prediction errors. 
The input parameters used in their study are influent PO4

3-, 
NH4

+-N, timer control signals (ON and OFF), COD, TKN, TN, 
temperature, pH and MLVSS. 

In this paper we present the performance of three SBR 
units that were operated under different saline conditions (0.5, 
1 and 2% NaCl) for a period of 255 days. The possibility of 
using ANN as a performance predictive tool to indicate the 
performance parameters namely, removal efficiencies of COD 
and total nitrogen, NH4

+-N, NO3
--N and NO2

--N has been ex- 
plored with a statistically significant approximation of the net- 
work parameters. 

2. Experimental: Material and Methods 

The heterogeneous seeding microbial population used in 
this study was obtained from a domestic sewage treatment 
plant near Ulsan, Korea. The nutrient media had the following 

composition: glucose (625 mg·L-1), NH4Cl (191 ~ 382 mg·L-1), 
NaHCO3 (594 ~ 1188 mg·L-1), KH2PO4 (22 mg·L-1), MgSO4· 
7H2O (5 mg·L-1), CaCl2 (0.4 mg·L-1), Na2MoO4·2H2O (1.26 
mg·L-1), and NaCl (5000, 10000 and 20000 mg·L-1). The pH 
of this synthetic wastewater was adjusted to 7 ± 0.2, while the 
temperature was held constant at 23 ± 2oC. All chemicals used 
were of analytical grade, purchased from Daejung Chemical 
and Metals Co. Ltd. 

The schematic of the experimental setup is shown in Fi- 
gure 1. The clarified supernatant (4 liters) was collected from 
the sampling port at the end of every settle and decant step to 
measure the different water quality parameters mentioned in 
this study. The solid retention time was changed during dif- 
ferent phases of operational conditions from 20 to 100 days 
by wasting mixed liquor suspended solids at the end of the ae- 
ration step. The operation of peristaltic pump, stirrer and aera- 
tor were computer controlled using a C++ based program (SBR 
control system, Korea). The different operational conditions 
and time steps used in this study are given in Table 1. These 
conditions were applied in parallel to the three SBR units that 
were operated at a salt concentration of 0.5, 1 and 2% respec- 
tively. Experiments were carried out till steady state removal 
of both organics and nitrogen were achieved. 

 

Air 
Pump

Computer 

Effluent Influent

PumpMixing motorSolenoid valve

 

Figure 1. Schematic of an experimental SBR unit. 

 
Table 1. Experimental Scheme of SBR Operation 

Process condition C/N ratio Cycle time 
Time of operation (hr) Operation 

time (day) Anoxic Aerobic Anaerobic Settle and decant 

Acclimatization 
A 
B 
C 
D 

6 
6 
6 
6 
3 

12 
24 
24 
12 
12 

2 
3 
2 
2 
2 

4 
10 
6 
4 
4 

4 
9 

14* 

4 
4 

2 36 
2 100 
2 40 
2 36 
2 43 

* with intermittent mixing 
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The effluent quality (treated saline wastewater) from the 
three SBR was monitored regularly for the COD, total nitro- 
gen, NH4

+-N, NO3
--N, NO2

--N and MLSS concentrations. All 
samples were filtered using a 0.45 μm filter prior to analysis. 
Samples collected during week ends were acidified by the ad- 
dition of 0.2 ml concentrated H2SO4 to 100 ml of the sample 
and stored at 4oC in a refrigerator before use. COD, MLSS 
and total nitrogen concentrations were measured according to 
the procedure described in Standard Methods (APHA, 1995). 
A standard kit (Hach, DR 2000) and spectrophotometric me- 
thod was used to determine concentrations of NH4

+-N, NO3
--N 

and NO2
--N at their respective λmax (425, 500 and 507 nm). 

The influent wastewater quality was monitored twice a week 
for both organics and nitrogen content. All analyses were car- 
ried out in duplicate and their arithmetic mean value was used 
for analysis of the results and neural network modeling. The 
variations in these values were found to be less and negligible 
(< 1%). 

3. ANN Modeling 

Artificial neural networks are powerful data driven mo- 
deling tools that has the ability to capture and represent com- 
plex input/output relationships. ANNs consists of a system of 
simple interconnected processing element called neurons. 
This gives the ability to model any non-linear process through 
a set of unidirectional weighted connections. The neuron ac- 
cepts input from single or multiple sources and produces out- 
put by a simple calculating process guarded by a non-linear 
transfer function. A simple three-layered network with an in- 
put layer, hidden layer and output layer is shown in Figure 2. 
The input layer consists of a set of neurons NI, each represent- 
ing an input parameter and propagates the raw information to 
the neuron in the hidden layer (NH), which in turn transmits 
them, to the neurons in the output layer (NO). Each layer con- 
sists of several neurons and the layers are connected by the 
connection weights (Wij

1 and Wij
2). The most commonly used 

transfer function is the sigmoid function as described by 
 

1( )
1

f x xe
= −+

                                   (1) 

 

Input layer Hidden layer Output layer 

Yn

Y1

Wij
2 

Wij
1 X1 

X2 

X3 

X4 

Xm 

 
 

Figure 2. Basic structure of an ANN model. 

This produces output in the range of 0-1 and introduces 
non-linearity into the network, which gives the power to cap- 
ture nonlinear relationships. The back propagation network is 
the most prevalent supervised ANN learning model (Rumel- 
hart et al., 1986). It uses the gradient descent algorithm to cor- 
rect the weights between interconnected neurons (Maier and 
Dandy, 2001). During the learning process of the network, the 
algorithm computes the error between the predicted and speci- 
fied target values at the output layer. The error function at the 
output layer can be defined by: 
 

21 )
2

( d pO OΕ = −∑                               (2) 

 
3.1. Data Pre-processing and Division 

The data points from the three SBR systems, operated at 
salt concentrations of 0.5, 1 and 2% were randomized and 
commingled sequentially to form a combined data set consist- 
ing of 765 values for each parameter considered in this study. 
Randomization was done to obtain a spatial distribution of the 
data, which accounts for both steady state and unsteady state 
operations within the SBR system. The data was also normali- 
zed and scaled (Equation 3) to the range of 0 to 1, so as to suit 
the transfer function in the hidden (sigmoid) and output layer 
(linear). More comprehensible information on different types 
of transfer function, algorithms, and internal parameter used 
for developing ANN models are given by Haykin (1999) and 
Hoskins and Himmelblau (1999): 

 
min

max min

-ˆ
-

X XX
X X

=                                     (3) 

 
This processed data was later divided into two sets: train- 

ing and testing. About 75% (570) of the data points were used 
for training the network, while the remaining 25% (195) were 
used for testing the developed network. 

 
3.2. Model Inputs and Outputs 

The input vectors to the network were the easily monitor- 
ed parameters, namely input COD concentration (X1), inlet 
total nitrogen (X2), C/N ratio (X3), aeration time (X4), MLSS 
concentration (X5) and salt concentration (X6). The outputs to 
the ANN model were COD removal efficiency (Y1), nitrogen 
removal efficiency (Y2), NH4-N (Y3), NO3-N (Y4), and NO2-N 
(Y5), respectively. The range of these parameter values used 
for network training (NTr) and testing (NTe) is shown in Table 
2. This modeling work was carried out using the shareware 
version of the neural network and multivariable statistical mo- 
deling software, NNMODEL (Version 1.4, Neural Fusion, 
NY). The experimental data were pre-processed by using the 
“randomize rows” function in the software (NeuroSolutions 
for Excel, Version 4.3). 

 
3.3. Internal Network Parameters 

A good network architecture requires proper selection of 
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sensitive parameters like: number of hidden layers, the num- 
ber of neurons in the hidden layer (NH), the activation func- 
tion f(x), the learning rate of the network (η), epoch size (ε), 
momentum term (α) and training cycles (TC). The network ar- 
chitecture has to be optimized to reduce computer processing, 
achieve good predictability and avoid overfitting. 

 
Table 2. Ranges of Values of Input and Output Parameters 
Used for Training and Testing the Network 

 
The learning rate (η) and momentum (α) can play an im- 

portant role in the convergence of the network. The value of η 
of a network affects the size of steps taken in the weight space 
(Maier and Dandy, 1998). If η is too small, the algorithm 
would take more time to converge. The momentum term (α) 
accelerates the convergence of the error during the learning 
process by adding a fraction to the precious weight update. 
The values of η and α varies between 0 and 1, and is normally 
estimated by trial and error (Maier and Dandy, 1998). Initially, 
network training based on a trail and error approach was used 
to identify the best suitable range of these parameters that can 
be used in factorial design simulations. The specifications of 
network parameters used for training is shown in Table 3. The 
time required for the networks training was in the range of 1 
to 4 min. A detailed study on the effect of internal network pa- 
rameter on the performance of BPNN and the procedure in- 
volved in selecting the best network topology has been des- 
cribed elsewhere (Maier and Dandy, 1998). 

 
3.4. Selecting the Best Model Architecture Using Factorial 
Design 

Factorial design of the network parameter was chosen to 
replace the conventional trial and error approach in determin- 
ing the optimal or best values during network training. Facto- 
rial designs are widely used where several factors are invol- 
ved to understand the main and interactions effect on the final 

response. In factorial experiments, a number of independent 
variables are altered within a single run/simulation. The 2-le- 
vel full factorial design, which is most popular, includes all 
possible factor combinations at two levels, low and high, for 
each of the factors. It is a powerful tool for understanding the 
complex processes whose detailed mechanisms are unknown 
and for describing factor interactions in multi factor systems. 
The effect of a factor is defined to be the change in response 
produced by a change in the level of the factor. This is fre- 
quently called a main effect because it refers to the primary 
factors of interest in the experiment (Montgomery, 1991). 
Moreover, full factorial design allows the effects of a factor to 
be estimated at several levels of other factors, yielding con- 
clusions that are valid over a range of experimental conditions. 
In this study, the four parameters (k = 4) namely NH, TC, η, 
and α were chosen between their minimum and maximum le- 
vels as described earlier. The response was the correlation co- 
efficient (R), which substantially determines the closeness of 
prediction between the desired and predicted output from the 
network. This is given by: 

 

2 2
2 2

-

( ) ( )
( )(

X Y
XY

NR
X Y

X Y
N N

=

− − )

∑ ∑∑
∑ ∑∑ ∑

               (4) 

 
where X is the experimental value, Y is the predicted value 
from the model and N is the total number of observations. Si- 
mulations were also done at the center point of the network 
parameters, which was used for calculating the errors. Fur- 
thermore, for the testing data set, the total mean squared error 
(RMSE) was computed according to the formulae given by 
Elias et al. (2006). The effects of the main variable and their 
mutual interactions were analyzed using the F (Fisher’s F val- 
ue), P (Probability value) and T (Student ‘t’ test) values. Table 
4 shows the 24 factorial design carried out for estimating the 
best network topology along with the observed R value in 
each runs. A total of 17 runs were performed to arrive at the 
best predictive network. This statistically significant experi- 
mental procedure reduces the number of trials and provides 
more information on the effects of individual factors through 
the main effects plot (Box et al., 1978; Montgomery, 1991). 
Factorial design analysis and plots were obtained from the sta- 
tistical software MINITAB (Version 12.2, PA, USA). 
 
Table 3. Neural Network Parameters Used during Training 

Parameter Value 
Hidden neurons (NH) 6 – 12 
Training cycles, Tc 20000 – 50000 
Learning rate, η 0.1 – 0.9 

Momentum, α 0.1 – 0.9 

Epoch size, ε 100 
Confidence interval 95% 
Error tolerance 0.0001 

Parameters 
Training data,  

NTr = 570 
Testing data,  

NTe = 195 
Min Max Min Max 

Input:     
COD concentration, mg/L 41.12 300 41.12 300 
Inlet total nitrogen, mg/L 11 100 11 100 
C/N ratio  3 6 3 6 
Aeration time, hr 4 10 4 10 
MLSS concentration, 
mg/L 1647.7 9432.4 1746.7 9279.4 

Salt concentration, % 0.5 2 0.5 2 
Output:     
COD removal  
efficiency, % 72.2 100 83.2 100 

Nitrogen removal 
efficiency, % 9 98.9 9.56 98.6 

NH4
+

 – N, mg/L 0.02 18.38 0.05 20.13 

NO3
-
 – N, mg/L 0.4 29 0.4 28 

NO2
-
 – N, mg/L 0.0004 20.42 0.0014 20.25 
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4. Results and Discussions 

4.1. Experimental 
The regular experimentation with the SBR systems was 

investigated for a period of 255 days at three different salt 
concentrations, viz., 0.5, 1 and 2%. The time course profiles 
of influent COD and nitrogen concentration together with the 
COD and nitrogen removal efficiencies, NH4

+-N, NO3
--N and 

NO2
--N concentrations are shown in Figures 3 and 4 for the 

SBR system operated at a salt concentration of 0.5%. Similar 
profiles were obtained for the other two reactors. During the 
initial 36 days, the reactors were subjected to low salt concen- 
trations (0.5%) operated at low COD (< 100 mg/L) and nitro- 
gen concentrations with a cycle time of 12 hours. It could be 
seen that the performance of the systems in terms of the COD 
and total nitrogen removal increased in small fluctuating time 
steps and varied between 70 and 100%, and 50 and 80%, res- 
pectively. From Figure 4, it is also clearly evident that the ni- 
trification and denitrification steps occurred quickly within 
these three reactors. The SRT during different operational con- 
ditions were maintained between 20 to 100 days by sludge 
wasting after the aeration step. On the 37th day, experiments 
were carried out under the condition A (aeration time = 10 
hours), which corresponds to influent COD and nitrogen con- 
centrations of 300 and 50 mg/L, respectively. From this time, 
the NO3

--N concentration in the effluent also gradually in- 
creased peaking at about 25 mg/L on the 75th day. However 
the nitrogen removal profile under this condition varied widely 
in the three reactors depending on the inhibition effects caused 
by saline conditions. The nitrogen removal efficiencies varied 
between, 28 and 80%, 30 and 85% and 10 and 80% in three 
reactors. It was also observed that nitrate in the wastewater 
was utilized quickly the denitrifying microbial community wi- 

thin the reactor. Due to depletion of carbon source, a decline 
in the denitrification rate was observed. During this phase, the 
COD removal pattern was nearly similar in the three reactors, 
and was above 95% irrespective of the salt concentrations. In 
this study, it was observed that the MLSS concentration gra- 
dually decreased in all the reactors, when the SRT was 40 and 
20 days (data not shown). This invariably affected the perfor- 
mance of the reactors after 100 days of continuous operation. 
Moussa et al. (2005) operated two laboratory scale SBR sys- 
tems at a solids retention time (SRT) of 30 and 100 days, hav- 
ing a 6 hr cycle length to calibrate and validate a model for 
nitrification, heterotrophic growth and predation in activated 
sludge. Their results showed that increasing the SRT increases 
the biomass concentration, while the volumetric ammonia and 
nitrite oxidation rate followed a saturation curve after 40 days 
SRT. 

The removal efficiencies for COD and nitrogen were 
nearly 80 and 50% respectively. Hence from the 137th day 
(conditions B-D), sludge wasting was avoided to increase the 
concentration of biomass within the reactors and SRT thus 
maintained at 100 days. When experiments were conducted at 
the condition C, that corresponds to 2/4/4/2 hours of time se- 
quenced steps at a C/N ratio of 6, the performance of the reac- 
tors were consistently higher than the previous stages of ope- 
ration. The COD and nitrogen removal efficiencies were grea- 
ter than 95%. Similar results have been demonstrated for trea- 
ting piggery wastewaters with high COD, nitrogen and phos- 
phorous removals (> 98%) (Tilche et al., 1999). The C/N ratio 
and the aeration times are very important parameter for suc- 
cessful operation of any SBR system. During the next 43 days 
of operation (condition D) the C/N ratio was decreased to 3 
holding the aeration time at 4 hours. The responses in the re- 
actors were a sudden drop in the nitrogen removal profiles.

Table 4. Network Internal Parameters and Corresponding Correlation Coefficients after Model Testing 

Run No. Nh Tc η α 
Correlation coefficient (R) 

COD-RE 
(X1) 

N-RE 
(X2) 

NH4
+

 – N 
(X3) 

NO3
-
 – N 

(X4) 
NO2

-
 – N 

(X5) 
Average 

1 
2 
3 
4 
5 

6 
12 
6 
12 
6 
12 
6 
12 
6 
12 
6 
12 
6 
12 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 6 
16 
17 

12 
9 

20000 
20000 
50000 
50000 
20000 
20000 
50000 
50000 
20000 
20000 
50000 
50000 
20000 
20000 
50000 
50000 
35000 

0.1 
0.1 
0.1 
0.1 
0.9 
0.9 
0.9 
0.9 
0.1 
0.1 
0.1 
0.1 
0.9 
0.9 
0.9 
0.9 
0.5 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.5 

0.7457 
0.8159 
0.7469 
0.7129 
0.5546 
0.6532 
0.4698 
0.6529 
0.7349 
0.8197 
0.6845 
0.6974 
0.3411 
0.531 
0.3327 
0.494 
0.3761 

0.7565 
0.7909 
0.7565 
0.9074 
0.7329 
0.7558 
0.7358 
0.7599 
0.7909 
0.7740 
0.7696 
0.8033 
0.664 

0.7515 
0.6626 
0.744 

0.7759 

0.6855 
0.7196 
0.6843 
0.8179 
0.6058 
0.5940 
0.6191 
0.5866 
0.6648 
0.7278 
0.7161 
0.6998 
0.7406 
0.7227 
0.7446 
0.7291 
0.7535 

0.7697 
0.7984 
0.7697 
0.9014 
0.7702 
0.7647 
0.7683 
0.7690 
0.8118 
0.777 
0.791 

0.8337 
0.7848 
0.7884 
0.7885 
0.7967 
0.789 

0.7848 
0.8123 
0.7849 
0.9012 
0.8026 
0.7734 
0.799 
0.7746 
0.8543 
0.7836 
0.8346 
0.8760 
0.7462 
0.8157 
0.7587 
0.8152 
0.8059 

0.7484 
0.7874 
0.7484 
0.8482 
0.6932 
0.7082 
0.6784 
0.7086 
0.7713 
0.7764 
0.7591 
0.7820 
0.6553 
0.7218 
0.6574 
0.7158 
0.7000 
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Figure 3. Time course profiles of COD and total nitrogen removal in SBR system operated at a salt 
concentration of 0.5% (RE – Removal efficiency; A, B, C, D – Experimental phases of SBR operation).  
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Figure 4. Time course profiles of NH4
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--N in SBR system operated at a salt 

concentration of 0.5% (A, B, C, D – Experimental phases of SBR operation).
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The removal efficiency dropped to as low as 20% in the third 
reactor. The peaking of NO2

--N was observed in two reactors 
(NaCl: 1 and 2%) due to nitrite accumulations under oxygen 
limiting conditions. The overall results suggest that, the COD 
removal efficiencies remained largely unaffected due to the 
changes in operational conditions, especially the SRT varia- 
tions between 20 and 100 days, while nitrogen removal effi- 
ciencies varied depending on the initial salt concentrations. 
 
Table 5. Analysis of Variance and Effect of Factors on the R 
Values Observed after Model Testing 

Source Statistical coefficients 
F P 

Analysis of variance:   

Main effects 
2-way interactions 
3-way interactions 
4-way interactions 

4000.00 
677.43 
3000 
92.78 

0.004 
0.029 
0.013 
0.066 

Factor: T P 
Nh 
Tc 
η 
α 

165.38 
17.59 

-335.20 
-40.06 

0.004 
0.036 
0.002 
0.016 

 
4.2. ANN Modeling 
4.2.1. Network Architecture 

The ANN based model was trained and tested adequately 
with the experimental data (255 × 3) and evaluated by their 
correlation coefficient, R between the experimentally obser- 
ved and predicted outputs from the network. The best network 
was chosen based on high averaged R values observed for a 
particular parameter setting during model testing. It is quite 
evident from Table 4 that parameter setting at run 4 gave high 
R value than other runs specified by the factorial design. Sta- 
tistical analysis in the form of analysis of variance (ANOVA) 
was performed on the network parameters and their corres- 
ponding F, P and T values were obtained (Table 5). As indi- 
cated by the high F and low P values (4000, 0.004), the main 
effects of the variables was found to be highly significant than 
the interaction effects. Among the linear effects, the number 
of neurons in the hidden layer (Nh) and the learning rate (η) 
had a strong positive (T: 165.38, F: 0.004) and negative (T: 
-335.2, F: 0.002) influence on the R values, in comparison to 
the other internal network parameters. This main effects plot 
is shown in Figure 5. Increasing the number of neurons in the 
hidden layer from low to high levels (6 to 12) in the hidden 
layer increased the training capability of the network in the 
positive direction (high R value), while the reverse occurred 
when the learning rate was increased from 0.1 to 0.9. On the 
other hand, both the training count and momentum term did 
not show any significant influence in improving the training 
performance. Among the interaction effects, the combinations 
of number of neurons in the hidden layer, leaning rate and 
momentum term showed satisfactory levels of positive per- 
formance as compared to the other combinations (T: 93.52, F: 

0.007). The best network architecture is 6-12-5 as indicated 
by run 4 in the ANN modeling runs. The R values observed 
for difference performance parameters during network train- 
ing and testing is shown in Table 6. The results from this 
study indicate that low learning rate (0.1), low momentum 
term (0.1) and a training count of 50000 with 12 neurons in 
the hidden layer are favorable values of the internal network 
parameters. 

 
Table 6. Correlation Coefficient, R and RMSE Values during 
Network Training and Testing 

Parameters R value during 
training 

R value during 
testing 

RMSE value 
during testing 

COD-RE 0.7363 0.7129 2.303 
N-RE 0.8989 0.9074 128.201 
NH4

+-N 0.8601 0.8179 30.118 

NO3
--N 0.8919 0.9014 38.959 

NO2
--N 0.8777 0.9012 34.105 

 

 
Figure 5. The main effects plot of internal network parameters 
on the R value during training of model. 

 
4.2.2. Predictive Capability and Sensitivity Analysis of the 
Developed Model 

The performance indices namely removal efficiencies of 
COD and nitrogen together with NH4

+-N, NO3
--N and NO2

--N 
were predicted directly from the model input variables. A 
comparison of the experimental and model predicted values of 
these variables are shown in Figure 6 for the trained network 
(190 × 3). These figures collectively exhibit good learning ca- 
pability of the trained network. Furthermore the network was 
able to map the low and high peaks of the randomized data 
points with a high degree of success as evident from their R 
values. However, some of the data points (COD RE < 85%, 
NH4

+-N >15 mg/L, NO3
--N > 22 mg/L and NO2

--N > 15 mg/L) 
were not mapped properly by the network. Corroborating this 
behavior are low nitrogen removal efficiencies at a salt con- 
centration of 1 and 2%, nitrate accumulation and NO2

--N for- 
mation under low DO concentrations. Nitrite accumulation 
has shown to cause a toxic effect linked to pH effects on bio- 
mass, specifically ammonia oxidizers (Antoniou et al., 1990; 
Moussa et al., 2003). This decreased nitrogen removal profiles 
have caused a significant impact on the networks generaliza- 
tion pattern while mapping these variables. Once the network 
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was trained adequately, the test data (65 × 3) was used to eva- 
luate the performance of the model. These results are shown 
in Figure 7. The data points are representative of the three re- 
actors operated under different saline concentrations. Com- 
pared to the training data, the test one showed high correlation 
with the experimentally observed values. 

Anew to this, by estimating the Absolute Average Sen- 
sitivity (AAS), a sensitivity analysis was carried out using the 
software NNMODEL to identify the most influential para- 
meter that affects the reactors performance. The sensitivity is 
calculated by summing the changes in the output variables 

caused by moving the input variables by a small amount over 
the entire training set (Zurada et al., 1994). The absolute value 
average sensitivity matrix S ki,abs is defined as: 
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The result from sensitivity analysis is shown in Figure 8. 

It could be seen that MLVSS concentration plays a major role 
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Figure 6. Predictive capability of the ANN model during network training. 

N
H

4+ -N
 fo

rm
ed

, m
g/

L 

Number of observations 

Number of observations 

Number of observations 

N
O

3- -N
 fo

rm
ed

, m
g/

L 

Number of observations 

N
O

2- -N
 fo

rm
ed

, m
g/

L 

Number of observations 

58 



E. R. Rene et al. / Journal of Environmental Informatics 11(2) 51-61 (2008) 

 

in influencing nitrogen removal and in formation of NH4
+-N, 

NO3
--N and NO2

--N while aeration time influences the COD 
removal efficiency. It is well known that, under aerobic condi- 
tion, the NH4

+-N trend is more relevant than that of NO3
--N for 

nitrogen removal process control (Luccarini et al., 2002). In 
this study, salt concentration appears to be less significant and 
sensitive in affecting the COD removal efficiency, because the 
microbes were well acclimatized over a period of few months 
under high saline conditions prior to the experimental invest- 
tigation. However based on experimental values it was found 
that the removal efficiencies of nitrogen were lowered under 

increasing salt concentrations in the reactor. This could be fur- 
ther attributed to depletion of carbon source that made com- 
plete denitrification impossible. The strong influence of the 
values of MLSS was due to the variation of MLSS with ope- 
rating time. The salt concentration had its strongest effect on 
NO2

--N (0.1546), while the aeration time (0.2477) had high 
in- fluence on the COD removal. Furthermore, based on this 
data driven modeling approach and sensitivity analysis it can 
be concluded that the most critical factors affecting the perfor- 
mance of the reactors under saline conditions are MLSS con- 
centration followed by aeration time and influent COD con- 
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Figure 7. Predictive capability of the ANN model during network testing. 
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Figure 8. Sensitivity analysis of input parameters. 

5. Conclusions 

The following conclusions are based on the results of the 
data collected from three simultaneously operated SBRs and 
their performance modeling using neural networks: 
1. The four step (anoxic/aerobic/anaerobic/oxic) SBR process 

showed high steady state organic removal efficiencies (> 
80%), while the nitrogen removal efficiencies varied largely 
(NaCl-0.5%: 25 ~ 99%, NaCl-1%: 25 ~ 98% and NaCl-2%: 
10 ~ 98%) with salt concentrations. The decrease in perfor- 
mance can be attributed to continual stress of the sludge mi- 
crobes induced under saline environments. 

2. The results from ANN based data driven modeling shows 
that the SBR performance (total nitrogen removal efficiency, 
COD removal efficiency NH4

+-N, NO3
--N and NO2

--N) can 
be predicted with high confidence interval (95%) using 
simple input design and operational parameters (influent 
COD, nitrogen concentrations, salt, MLSS concentrations, 
aeration time and C/N ratio). The model was adequately 
trained with the lab scale SBR data and tested with a se- 
parate data set. 

3. The suitable network architecture of the model was deter- 
mined through statistically designed factorial design of ex- 
periment simulations. The computed correlation coeffici- 
ent (R) and root mean squared error (RMSE) values for the 
test data set show high correlation between the predicted 
and measured performance values. The best network topo- 
logy was found to be 6-12-5, achieved at low learning rate 
(0.1), low momentum (0.1) and a training count of 50000. 

The robustness of the ANN was further explored with a 
sensitivity analysis of the input parameters which showed that 
MLSS concentration and aeration time were the most critical 
factors affecting long term reactor performance. The results 
from this study could be used a supportive database to assess, 
monitor and design control strategies for SBR operation under 
saline conditions. 
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