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ABSTRACT.  Regulatory agencies have been investigating a number of alternatives for classifying lakes into hydogeologically and 
ecologically similar assemblages that will facilitate establishment of attainable water quality standards. Concerns over the ability of 
traditional statistical classifiers to effectively classify environmental data have led to increasing interest in machine (predictive) 
learning classification tools such as decision trees. This paper compares the performance (classification strength) of a classification 
tree-based watershed classification model of Nebraska reservoirs to a discriminant analysis (DA)-based watershed classification 
system and reservoir classes derived from Omernik’s Level IV Ecoregions. The performance of classification tree and DA-based 
watershed classification methods were also compared with respect to their cross-validation prediction errors. The results suggest that 
both watershed-based classification approaches (classification tree and DA) were more effective than Omernik’s Level IV ecoregions 
in accounting for observed variations in water quality characteristics of Nebraska reservoirs. Moreover, this study demonstrates the 
utility of a classification tree algorithm, either as a supplement or alternative to DA, in handling the complexities of watershed 
variables and classifying Nebraska reservoirs for the purpose of water quality management. The classification tree also provides water 
resource managers with a useful interpretive classification interface. 
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1. Introduction  

Concerted efforts to improve the quality of U.S. surface 
waters began over 40 years ago. As the U.S. Environmental 
Protection Agency (EPA) continues to develop criteria for 
lake water quality assessment, there is a need to account for 
hydrogeologic and ecological differences among lakes since 
these differences determine the inherent capacities of lakes to 
meet such criteria. A number of investigators have suggested 
that regulatory agencies should group lakes into hydogeologi- 
cally and ecologically similar classes to improve management 
and decision-making processes (Conquest et al., 1994; Haw- 
kins et al., 2000). The rationale is to establish water quality 
standards for lakes in different classes according to a set of 
benchmark conditions unique for each class. 

Bulley et al. (2007) recently demonstrated a GIS-based 
approach to classifying lake watersheds using classification 
trees. Focusing on Nebraska reservoirs, a procedure was deve- 
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loped to determine the optimal number of classes required to 
capture the underlying variability in the watersheds of Ne- 
braska reservoirs (9 classes), and to identify the key water- 
shed characteristics that contributed to the classification (e.g., 
in Nebraska, soil organic matter) (Bulley, 2004; Bulley et al., 
2007). According to Bulley et al. (2007), “the goal was to 
model pre-settlement (potential) conditions for the purpose of 
establishing reference water quality conditions, therefore an- 
thropogenic impacts were assumed to be minimal. This as- 
sumption was necessary in order to address the long term 
water management goal of developing baseline information 
(reference conditions) against which to assess human impacts 
on the reservoirs”. A classification tree predictive model was 
used to describe the reservoir class structure. 

This paper further examines the utility of the classifi- 
cation tree approach to watershed classification (see Bulley, 
2004; Bulley et al., 2007) as a tool for lake water quality ma- 
nagement. To achieve this goal, we compared the aforemen- 
tioned classification tree approach with two other commonly 
used approaches to resource classification: Omernik’s Level 
IV ecoregions (Omernik, 1987; EPA, 2002) and a discrimi- 
nant analysis (DA)-based classification method (Momen and 
Zehr, 1998). The DA method was chosen because it has wide- 
ly been used in ecological classifications despite issues with 
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underlying assumptions that are often not met. Ecoregions, on 
the other hand, have frequently been employed as a frame- 
work for environmental and water resource assessment and 
management despite concerns that higher order ecoregions are 
often not congruent with watersheds (Omernik and Bailey, 
1997; EPA, 2002; Omernik, 2003). 

 

 
 

Notes: Each system develops according to its potential capacity and 
changes in its environment. The environment of the watershed is the 
biogeoclimatic region. The watershed forms the environment of the 
lake. The lake habitat is the environment of the community, the 
community and its habitat together forming the lake as a whole. Each 
state or stage in development of the watershed (a), the lake (b), and 
the community (c) are designated as Wij, LSij, and LHij, respectively, 
where i designates developmental environment and j designates 
developmental state. For example, W11, W12, W13 are three 
consecutive stages of development of the watershed in 
biogeociimatic environmental context (a). If the watershed develops 
in this way, then the lake, influenced by watershed changes, will 
develop through states LS11, LS12, and LS13 (b). Development of 
the lake entails concordant development of the lake habitat (LH11, 
LH12, and LH13) and the co-development, the watershed, the lake, 
and the community exhibit observable performances (p). 
 
Figure 1. Conceptual hierarchical interaction among 
co-developing systems of lake watershed environment (a), 
habitat (b), and water quality (c) based on the potential 
capacity of each system (Modified from Lomnicky, 1995). 

Sampled water quality data were used to assess the utility 
of these classification schemes for lake water management. 
This is because watersheds have a high degree of influence on 
biophysical and chemical characteristics of streams and reser- 
voirs (see Figure 1). Furthermore, the GIS-based approach to 
classifying lake watersheds using classification trees proposed 
by Bulley et al. (2007) was intended to address the U.S. EPA’s 
efforts to establish base-line water quality information or nu- 
trient criteria (EPA, 2000), against which the impact of land 
use could be assessed via tools like Total Maximum Daily 
Load (EPA, 2003a; EPA, 2003b). Since the U.S. EPA is con- 
cerned about managing land use in lake watersheds, it seems 
inconsistent to employ water quality data, directly impacted 
by land use activities, as predictor variables in determining 
lake classes. However, we believe sampled water quality vari- 
ables can be used for testing the utility of different lake classi- 
fication schemes for water management (EPA, 2000; Robert- 
son and Saad, 2003). 

2. Background 

2.1. Ecoregions 
Ecoregions are defined as areas that comprise similar 

ecosystems demarcated principally on the basis of landforms, 
climate, potential vegetation and soils (Loveland and Mer- 
chant, 2004; Omernik, 1987; Omernik and Bailey, 1997; EPA, 
2002). Ecoregions have frequently been used as a spatial 
framework for aquatic ecosystem management and assess- 
ment (Omernik 1987; Omernik and Bailey, 1997; EPA, 2002; 
Rohm et al., 2002; Omernik, 2003). Although ecoregions have 
been defined in a number of different ways, the EPA has most 
often employed those developed by Omernik (EPA, 2002). 

Omernik’s ecoregions are defined hierarchically at four 
scales, with Level I being the most general depiction and 
Level IV ecoregions being the most detailed. These products 
have been used extensively, although sometimes inappropri- 
ately, as a framework for sampling, and to assist in assessment 
of fisheries, wildlife communities, lake acidification and in 
other applications. Omernik and Bailey (1997) note that “eco- 
regions are generally useful for structuring the research, asse- 
ssment, and management of all environmental resources, but 
may not be the best framework for any one particular re- 
source.” In the case of water resources, it is important to note 
that the boundaries of ecoregions often do not coincide with 
watershed boundaries, the most important units of analyses in 
evaluating surface water quality. Additionally, previous re- 
search has shown that, although ecoregions such as those 
defined by Omernik, are useful for general ecosystem ma- 
nagement and analyses, they do not adequately account for 
the inherent variations in stream and lake water quality (e.g. 
Van Sickle and Hughes, 2000; Severn et al., 2001; Winter, 
1999; Jenerette et al., 2002; Detenbeck et al., 2003 and 2004; 
Robertson and Saad, 2003). 

 
2.2. Discriminant Analysis 

Supervised, i.e. apriori, classification is most useful 
when one has clear classification objectives (i.e., target clas- 
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ses are known). Discriminant analysis (DA) is multivariate 
statistical approach to classification that has often been used 
in analyzing environmental datasets even though these 
datasets are sometimes problematic. DA uses empirical hypo- 
thesis testing approaches to determine which linear combina- 
tion of input variables discriminate between two or more na- 
turally occurring groups (Dunteman, 1984; Ripley, 1996; Le- 
gendre and Legendre; 1998, McGarigal et al., 2000). The 
discriminant function (δ) of the linear model is computed as a 
series of linear combinations of input vectors (x) that seek to 
maximize the separation between training classes as: 
 

xxxxxy pp
'

332211 ... δδδδδ =+++=                   (1) 
 

The classification problem then reduces to identifying the 
appropriate function (δ) in equation 1. Discussions of the use 
of discriminant analysis as well as applications for environ- 
mental analyses are provided by Legendre and Legendre 
(1998), McGarigal et al. (2000), and Huberty and Olejnik 
(2006). 

According to De’ath and Fabricius (2000), environmental 
data are usually complex (e.g. have unequal variances) and 
values for certain variables may be missing. Such data are 
often characterized by multimodal distributions, and the rela- 
tionships among variables are commonly non-linear and in- 
volve high-order interactions that may render traditional sta- 
tistical techniques ineffective for data exploration, pattern re- 
cognition and modeling. This depiction is true of lake bio- 
physical and chemical water quality parameters (e.g. phos- 
phorus) and watershed characteristics (e.g. watershed area and 
soil organic matter). 

Breiman et al. (1984), James and McCulloch (1990) and 
Quinlan (1993) discussed the limitations of DA. In summary, 
effective use of DA must meet certain distributional assump- 
tions. These include the assumption that all explanatory vari- 
ables follow a multivariate normal distribution for each class 
of response variable, and the variance-covariance matrices for 
each class are equal. Although the assumption of normality is 
critical to DA, this method is usually applied irrespective of 
whether the assumption is true for every explanatory variable 
employed in the analysis. Since the DA classification method 
is mostly suitable for dichotomous predictor variables, cate- 
gorical variables need to be transformed into a series of dum- 
my variables and this can lead to problems of dimensionality. 
Moreover, the DA method may be limited in dealing with 
cases of missing explanatory variables and hence observations 
with missing variables are usually dropped from the analyses. 
This can lead to unintended bias due to elimination of vari- 
ables that might otherwise be critical to developing an appro- 
priate classification rule. 

Some alternatives to the use of DA in resolving classify- 
cation problems include the multinomial logistic regression, 
mixture discrimant analyses and probit models. However, 
these alternatives have some limitations similar to DA since 
they are only suitable for categorical data, and may produce 
biased results when the dataset contains missing variables 

(Ripley, 1996; Hastie et al., 2001; Feldesman, 2002). 
 

2.3. Decision Tree Classifiers 
Concerns over the ability of multivariate statistical classi- 

fiers, such as discriminant analysis (DA), to effectively classi- 
fy environmental datasets have led to increasing interest in 
machine learning classification tools such as neural networks, 
genetic algorithms (or genetic programming), and decision 
tree classifiers (e.g., German et al., 1999; Vayssieres et al., 
2000; Park et al., 2003; Karels et al., 2004; Joy and Death, 
2005; Luoto and Hjort, 2005; Baker et al., 2006; Ghaffari et 
al., 2006; Baker et al., 2006). Machine learning involves the 
application of inductive algorithms to resolve classification 
problems. After an extensive review of machine (predictive) 
learning methods, Friedman (2006) indicated that decision 
trees are the most frequently used predictive learning techni- 
ques. This is partly due to their invariance to monotone trans- 
formations of the predictor variables; resistance to irrelevant 
predictor variables; they do not require a lot of training as 
with artificial neural networks; and the classification rules of 
decision trees are simple and interpretable (e.g., Gahegan and 
West, 1998; Olden and Jackson, 2002; Goel et al., 2003). Our 
previous work focused on evaluating classification trees as 
potential modeling tool for watershed-based reservoir classi- 
fication (see Bulley et al., 2007). Hence, this paper is parti 
ularly concerned with classification trees, a form decision 
trees method. 

Decision tree classifiers are usually implemented as rule- 
based classifiers (Hunt et al., 1966; Breiman et al., 1984; 
Quinlan, 1986 and 1993; Verbyla, 1987; Ripley, 1996; Mit- 
chell, 1997; De’ath and Fabricius, 2000; Rokach and Maimon, 
2005). A simple form of rule-based classifier is a hierarchical 
construction (tree) with various levels (leaves). A more rigo- 
rous form of decision trees employs the recursive partitioning 
non-parametric statistical method, which can account for non- 
linear relationships, higher order interactions and missing va- 
lues in a dataset (Breiman et al., 1984; Verbyla, 1987; De' ath 
and Fabricius, 2000; Feldesman, 2002). There are two types 
of decision tree models: regression trees are appropriate when 
the dependent variable is numeric, whereas classification trees 
are more relevant for instances with categorical dependent 
variables, e.g. lake classes. 

In general, decision tree approaches offer several advan- 
tages over multivariate statistical approaches, such as DA, 
when dealing with environmental datasets. For example, cla- 
ssification tree methods are not limited by prior knowledge of 
dataset distributions, since modeling of these distributions is 
not required. Thus, in contrast to Bayesian approximators 
(such as DA) and maximum likelihood classifiers, decision 
tree algorithms can easily handle multimodal distributions and 
they have no restrictions on sample size. Moreover, decision 
tree algorithms have been shown to outperform multivariate 
statistical approaches in accounting for variations in environ- 
mental datasets for classification tasks (e.g., Verbyla, 1987; 
Emmons et al., 1999; German et al., 1999; De' ath and 
Fabricius, 2000; Vayssieres et al., 2000; Feldesman, 2002; 
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Robertson and Saad, 2003; Karels et al., 2004; Luoto and 
Hjort, 2005). 

Previous authors (Breiman et al., 1984; Quinlan, 1986 
and 1993; Ripley, 1996; Mitchell, 1997; De’ath and Fabricius, 
2000) have provided detailed discussions of decision tree pro- 
cedures. Here, only the classification tree method is reviewed 
because it was used to implement one of the watershed-based 
classifications of interest in this paper. Classification tree me- 
thods discriminate the attribute space of a dataset into K dis- 
joint groups, Kr (r = 1, 2, …, k), based on decision rules that 
are parallel or orthogonal to the attribute axis. The classifi- 
cation tree identifies the best possible path (and attributes) to 
partition the feature space and traces a path down the tree 
from the root node (dataset) to leaves (classes). Each node of 
the tree represents a set of rules that progressively refines the 
classification in a top-down hierarchical approach. Classifica- 
tion trees can represent higher levels of complexity or deep 
trees (where the class segregation is difficult) and more simp- 
listic rule sets (short trees) when appropriate.  

The classification tree process involves a binary recursive 
partitioning of the data into successive nodes. The process is 
binary because the parent nodes are always split into exactly 
two subsequent nodes and recursive because the process can 
be repeated by treating each subsequent node as a parent until 
there are no more splits, i.e. terminal nodes (e.g. reservoir 
classes) (Breiman et al., 1984; Quinlan, 1993). The basic com- 
ponents of the classification tree building process include: a 
set of questions; splitting criteria; and rules for assigning a 
class to a terminal node. Attributes that do not seem to con- 
tribute to defining ultimate terminal nodes are usually ex- 
cluded in the final tree structure, leaving only those attributes 

that influence the overall classification process (Breiman et al., 
1984; Quinlan, 1993). 

The foregoing sections provide an overview of the rela- 
tive strengths and limitations of ecoregions and DA as classi- 
fication tools. As mentioned earlier, the primary objective of 
this paper is to compare the performance of a classification 
tree-based watershed classification model of Nebraska reser- 
voirs, to a discriminant analysis (DA)-based watershed classi- 
fication system (Momen and Zehr, 1998) and to reservoir 
watershed classes based on Omernik’s ecoregions (Omernik, 
1987; EPA, 2002). The two watershed-based reservoir classi- 
fication approaches were hypothesized to outperform ecore- 
gions in defining apriori classes of Nebraska reservoirs. Our 
study focuses on reservoir watersheds located in the agricul- 
turally-dominated landscape of Nebraska, a region that is 
representative of mid-latitude states with substantial agricul- 
tural-based economies in the United States. 

3. Methods 

The classification tree-based watershed classification de- 
veloped by Bulley et al. (2007) was compared to Omernick’s 
Level IV ecoregions (Omernik, 1987; EPA, 2002) and discri- 
minant analysis (DA)-based watershed classification methods 
(Momen and Zehr, 1998). The comparison was a two step 
process: first, the watershed-based classifications and Omer- 
nik’s ecoregions were assessed with respect to their abilities to 
account for observed variations in water quality parameters of 
Nebraska reservoirs; second, the classification tree and DA 
approaches to reservoir classification were compared with re- 
gards to their respective prediction errors. Comparing differ- 

 
Notes: Green and light brown areas represent agricultural land use and prairies respectively 

 
Figure 2. Map of Nebraska land cover (Source: CALMIT). 
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ent classification methods can be problematic since there are 
different ways to set up each classifier. Hence, only default 
forms of classification tree (See5® software) and DA (imple- 
mented in SAS software) were used (i.e., without accuracy 
enhancements such as prior probabilities for DA and boosting 
for classification trees). 

It is important to note at this point that sampled lake 
water quality data were used to assess the utility of these cla- 
ssification approaches for lake water management. As men- 
tioned earlier, it is inconsistent to use land cover or water qua- 
lity data that are directly impacted by land use activities, as 
predictor variables in determining lake classes in order to ma- 
nage land use in the lake watersheds. However, the water 
quality variables can be used in testing the utility of lake cla- 
ssification schemes for water quality management (EPA, 200b; 
Robertson and Saad, 2003). 

 
3.1. Study Area 

This research focuses on Nebraska, an agriculturally-do- 
minated state that covers a broad range of climatic, physio- 
graphic, land use and water quality conditions (Figure 2). The 
Sand Hills (grass covered sand dunes mostly devoted to graz- 
ing) in western Nebraska occupy about 30 percent of the state. 
Elevations range from 256 meters in the east to 1,654 meters 
in the west, and climate follows a gradient of rainfall and tem- 
perature regimes from east to west. The average annual preci- 
pitation ranges from 36 cm in the northwest to 86 cm in sou- 

theast Nebraska (Johnsgard, 2001; Kuzelka et al., 1993). Ne- 
braska has about 13,500 lakes including natural lakes, reser- 
voirs, and sand pits. The primary cause of water quality im- 
pairment in Nebraska is the transport of soil sediments, agro- 
chemicals and animal wastes through surface runoff from 
farmlands into streams and lakes. 

 
3.2. Dataset Development 

Water quality data for 78 sampled reservoirs were deriv- 
ed from a database of Nebraska lake water quality developed 
through field sampling conducted between 1988 and 2003 in 
the months of May-August. The water quality variables em- 
ployed in this study are chlorophyll-a, Secchi depth, total pho- 
sphorus, total nitrogen and alkalinity of lake waters (EPA, 
2001; Holz, 2002). These variables have been identified as 
candidate reference water quality parameters by the U.S. EPA 
for use in developing lake nutrient criteria (EPA, 2000). Addi- 
tionally, two potential agrochemical herbicide pollutants 
(Atrazine and Alachlor) were included in the analysis because 
the outcome of this study may also have implications on how 
the reservoir classification methods could assist in managing 
non-point source pollution of lake water quality from agro- 
chemical effluents via stream runoff. For each lake, the annual 
mean value was determined for the water quality variables. 

Environmental characteristics for each reservoir water- 
shed were extracted from a variety of sources (Table 1, Fi- 
gures 3 and 4) (Bulley et al., 2007). These characteristics in- 

Table 1. Environmental Datasets Used in Nebraska Reservoir Classification 

Dataset Abbreviation Units Source 
Climate data (annual means) 
Maximum temperature 
Minimum temperature 
Total precipitation 
Precipitation intensity 
Humidity 
Growing degree days 

 
Temp_max 
Temp_min 
Ppt_tot 
Ppt_intns 
Humidity 
GDD(base 10oC) 

 

oC 
oC 
mm 
mm 
mmHg 
degrees 

 
DAYMET  (Thornton et al., 1997)  
DAYMET  (Thornton et al., 1997)   
DAYMET (Thornton et al., 1997)  
DAYMET (Thornton et al., 1997)  
DAYMET (Thornton et al., 1997)  
DAYMET (Thornton et al., 1997)  

Terrain data:    
Lake Area 
Watershed area 
Lake area : watershed area 
Mean watershed slope 
Mean watershed elevation  
Watershed relief 
Total drainage length  
Drainage density 

LA 
WA 
LA:WA 
Slope 
Relief 
Elevation 
Drn_T  
Drn_D 

ha 
ha 
unitless 
degrees 
degrees 
m 
m 
mm-2 

Updated Nebraska lakes map 
EDNA DEM-derived watersheds 
 
EDNA DEM (edna.usgs.gov)  
EDNA DEM (edna.usgs.gov)  
EDNA DEM (edna.usgs.gov)  
EDNA streams (edna.usgs.gov) 
EDNA streams (edna.usgs.gov) 

Soils biophysical data:    
Erodibility 
Clay content 
Permeability 
Infiltration rate 
Organic matter content 

Kfact 
Clay 
Perm 
Infilt 
OM 

unitless 
% weight 
inhr-1 
inhr-1 
% weight 

STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 

Soils chemistry data:    
 Salinity  
 Soil reaction 
 Cation exchange capacity 
 Soil carbonate 

Sal 
pH 
CEC 
CaCO3 

mmhoss-1 
unitless 
unitless 
% CaCO3 

STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993) 
STATSGO (Soil Survey Staff, 1993)  
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clude watershed area, watershed slope and relief, soil erodibi- 
lity, soil infiltration rate, soil organic matter, soil reaction (pH), 
soil cation exchange capacity, soil carbonate, soil clay content, 

soil water holding capacity, soil permeability, and climate 
(precipitation, temperature and humidity). An important con- 
sideration in selecting data was the potential to obtain data  
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Figure 3. Map of revised reservoir watershed classes: (a) 13 preliminary classes, and (b) 9 optimal classes 
(Source: Bulley et al., 2007). 
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Table 2. Nebraska Reservoir Classes Derived from Watershed-Based Classification Tree Method  

9 classes 13 classes  No. of reservoirs Characteristics of Class  
R1 1 30 Located in southeastern Nebraska. Most of the reservoir watersheds in this group are small on 

average; characterized by high organic matter content and relatively low erodibility.  
Adjacent to R9, but these watersheds have higher erosion potential (steeper slopes) than the 
R9 watersheds.   

R2 2 8 Located in northeastern Nebraska and average reservoir size is in the lower 25th percentile of 
the data. Watersheds are generally small and characterized by low relief, high soil erodibility 
and organic matter content. 

R3 3 & 4 3 Located in northwestern and north central Nebraska. This group is characterized by both large 
and medium watersheds, relatively low soil organic matter content and high relief. 

R4 7 6 Watersheds aligned diagonally between central and southwestern Nebraska. Watershed 
conditions are similar to those of R8 and R6 watersheds, except that the R4 watersheds have 
lower relief and pH than the R8 and R6 watersheds, respectively.  

R5 8 & 11 3 Watersheds aligned between southwest and northwestern Nebraska. Watersheds in this group 
are characterized by high relief, and alkaline soils with low soil organic matter content. 

R6 9 7 Located in northwestern Nebraska and characterized by high buffering capacity. This is 
indicative of the soil and vegetation of the Niobrara shrub land. 

R7 10 2 Located in northwestern Nebraska and adjacent to R5 watersheds. However, R7 watersheds 
are relatively smaller and characterized by lower relief and highly alkaline soils as compared 
to R5 watersheds  

R8 5 &12 5 Located in low relief areas along the Platte river valley in central Nebraska and characterized 
by small sized watersheds, low soil organic matter content.  

R9 6 & 13 14 Located in southeastern part of Nebraska and adjacent to R1 watersheds. Watersheds in this 
group are characterized by relatively lower erosion potential and soil organic matter content 
than R1 watersheds.  

 

 
Notes: Terminal nodes (classes) are represented by rectangular boxes, while oval boxes represent non-terminal nodes that required 
additional splitting. The number in parenthesis indicates the node number. 

Figure 4. Classification tree model for Nebraska reservoir classes (Source: Bulley et al., 2007). 
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nationally in GIS-compatible format (Bulley et al., 2007). 
ArcGIS software was used to append the annual mean water 
quality data to the 9 and 13 reservoir classes as defined by 
Bulley et al. (2007) (Table 2). 

Ecoregions of Nebraska were extracted from a dataset of 
Omernik Level IV ecoregions of the conterminous United 
States (Omernik, 1987; EPA, 2002; http://www.epa.gov/wed/ 
pages/ecoregions.htm). The United States ecoregions dataset 
was clipped to a GIS coverage of Nebraska using ArcGIS 
software. A GIS “point” coverage of the sampled reservoir lo- 
cations was overlaid on Omernik’s Level IV ecoregions of 
Nebraska in order to identify those ecoregions that included 
sampled reservoirs. The annual mean values of growing sea- 
son index period data for each water quality variable were 
computed and summarized for the ecoregions. 

The U.S. Geological Survey Elevation Derivatives for 
National Applications (EDNA) dataset was used for delineat- 
ing the reservoir watersheds. The foundation for EDNA is a 
seamless 30-meter resolution digital elevation model (DEM) 
for the conterminous United States (Verdin and Verdin, 1999; 
Gesch et al., 2002; USGS, 2003). Therefore, the comparison 
between watershed-based classifications and ecoregions deri- 
ved reservoir classes has potential national applications. 

 
3.3. DA-based Reservoir Classification 

Discriminant analysis (DA) was performed on watershed 
characteristics of 78 sampled reservoirs that were previously 
used in a classification tree-based watershed classification 
(Bulley, 2004; Bulley et al., 2007). This was done in order to 
compare the effectiveness of DA, ecoregions and classifica- 
tion tree approaches in grouping Nebraska reservoirs for wa- 
ter quality management. Since DA is a parametric method, its 
distributional assumptions may limit the validity of the pre- 
diction error, since we are especially interested in comparing 
DA to the classification tree non-parametric method. 

Resampling approaches (jackknifing, bootstrapping and 
cross-validation) offer non-parametric means to perform sta- 
tistical significance tests of DA (Stone, 1974; Breiman et al., 
1984; Efron and Tibshirani, 1993; Ronchetti et al., 1997; Ef- 
ron, 2003). The jackknife approach involves resampling wi- 
thout replacement, while bootstrapping involves resampling 
with replacement. Cross-validation is fundamentally different 
from jackknife and bootstrapping in that the latter are used to 
compute estimates of bias and variances whereas cross-valida- 
tion is used for model selection. For this reason the DA ap- 
proach in this study employed the cross-validation resampling 
option. 

The DA was implemented in SAS® software using a 
“Discrim” procedure with a cross-validation option (SAS In- 
stitute, 2000). The output of the cluster analysis of watershed 
characteristics datasets based on 13 and 9 classes respectively 
was employed (see Figure 3) (Bulley et al., 2007). This was 
done to explore the effectiveness with which the DA handles 
the more complicated 13-class dataset (involving 13 classes 
and single object classes) as compared to the less complicated 
9-class dataset (no single object classes). Cross-validation 

prediction errors were determined for both 13 and 9 class 
datasets respectively. The predicted reservoir class member- 
ships for 13 and 9 classes, derived from the DA-based water- 
shed classification, were extracted. ArcGIS was then used to 
append the class membership information to a watershed cha- 
racteristics dataset that included predicted reservoir classes for 
classification tree-based watershed classification (13 and 9 
classes) and ecoregions. This dataset was then used to com- 
pare DA to the other two classification schemes. 

 
3.4. Comparison of Classification Methods 

The watershed-based classification tree and DA classify- 
cations methods were compared to ecoregions regarding their 
abilities to account for variations in observed water quality 
parameters of Nebraska reservoirs. This was done using the 
concept of classification strength, which measures how strong- 
ly different landscape classification approaches can separate 
water quality water conditions (Van Sickle and Hughes, 2000). 
A modified version of classification strength (CS) was es- 
timated as the extent to which average within-class water 
quality variations exceeded the average variations between re- 
servoir classes. The CS is defined as a function of within-class 
heterogeneity and between-class separation (modified from 
Van Sickle and Hughes, 2000) as: 

 

β
ϖ

=CS                               (2) 

 
where β  is variability in water quality conditions between 
classes; and ϖ  is the variability in water quality conditions 
within classes. 

The variance in mean annual water quality is given as:  
 

∑ −
−

=
1

)( 2
2

n
Xxs i , i = 1, 2 … n reservoirs             (3) 

 
where x is annual mean value of water quality (e.g. chloro- 
phyll-a) for each reservoir; X is sample mean; and n is the 
number of reservoirs in each class. 

The CS was computed for each water quality parameter 
and the results were summarized into three categories as fo- 
llows: 
1) Biophysical water quality (chlorophyll-a and Secchi depth); 
2) Chemical nutrient water quality (total phosphorus, total ni- 
trogen and alkalinity); 
3) Agrochemical herbicide effluents (Atrazine and Alachlor). 

Since the aim of this study was to identify the Nebraska 
reservoir classes that could be used to establish water quality 
and nutrient criteria, it was expected that a decrease in CS va- 
lue would represent an increase in interclass heterogeneity or 
increase in within-class homogeneity. Consequently, the cla- 
ssification method with the lowest CS value in each of the 3 
water quality categories was considered to be most effective. 
Finally, the performance of classification tree and DA me- 
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thods were compared based on their cross-validation predic- 
tion errors. 

4. Results and Discussions 

A map of the sampled reservoirs overlaid on Omernik’s 
Level IV ecoregions of Nebraska is shown in Figure 5. Al- 
though 20 out of the 27 Nebraska Level IV ecoregions con- 
tained sampled reservoirs, only 9 of these ecoregions had su- 
fficient water quality data or contained more than one reser- 
voir. Consequently, 9 Omernik Level IV ecoregions of Ne- 
braska were used in evaluating the effectiveness of the two 
watershed-based classification methods. 

 
4.1. Classification Comparison 

 Classification strength (CS) was used to assess the uti- 
lity of the three classification methods as potential tools for 
lake water quality management. The CS of ecoregions, discri- 
minant analysis (DA) and classification tree-based reservoir 
classifications are shown in table 3. These results were sum- 
marized with respect to three water quality categories; namely, 
biophysical, chemical nutrients and agrochemical herbicide 
effluents. For each category, the classification method with 
lowest CS value was considered to be most effective. Overall, 
both watershed-based classification approaches (classification 
trees and DA) were more effective than ecoregions in ac- 

counting for the variations in water quality characteristics of 
Nebraska reservoirs. This is not surprising since reservoirs are 
highly impacted by their watersheds, and ecoregions are gene- 
rally not congruent with watershed boundaries. 

The DA method was most effective in separating biophy- 
sical water quality parameters. Also, the classification tree ap- 
proach was most effective in accounting for variations in both 
nutrients and herbicide water quality parameters. Although 
ecoregions seem to have lower CS values than both water- 
shed-based classification methods with respect to total nitro- 
gen and total phosphorus (Table 3), the relatively high CS va- 
lue for alkalinity lessens any potential usefulness of ecore- 
gions as water quality assessment tool. This is particularly im- 
portant because the alkalinity of lake waters determines their 
natural buffering capacity; thus alkalinity helps to regulate pH 
changes and photosynthetic uptake of plant nutrients like pho- 
sphorus and nitrogen (Wetzel and Likens, 2000). 

The above results are in agreement with previous find- 
ings that ecoregions do not adequately account for variations 
in lake water quality parameters (Van Sickle and Hughes, 
2000; Severn et al., 2001; Jenerette et al., 2002; Detenbeck et 
al., 2003 and 2004). For example, Jenerette et al. (2002) test- 
ed the hypothesis that Omernik’s ecoregions will allow for 
discriminating lakes of different water quality and suggested 
that the spatial distribution of lake ecosystems is more com- 
plicated than the biophysical characteristics represented by 
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Figure 5. Sampled reservoirs sites overlaid on Omernik’s Level IV Ecoregions of Nebraska. 



H. N. N. Bulley et al. / Journal of Environmental Informatics 11(2) 90-102 (2008) 

 

99 

ecoregions. The use of classification strength in assessing the 
effectiveness of classification methods is dependent on sam- 
pled water quality data. Hence, the classification strength 
comparison is to some extent affected by limitations of sam- 
pling lake water quality parameters. These limitations include 
the need for extensive and frequent sampling of lakes in a 
given region which can be costly in terms of manpower and 
equipment. 

Subsequent comparison of classification tree and DA ap- 
proaches to reservoir watershed classification was based on 
their respective cross-validation prediction errors (Table 4). 
Cross-validation prediction error or accuracy evaluations 
often tend to be conservative compared to other accuracy eva- 
luation methods, and that may explain the relatively high error 
values in Table 4. For the 13-class dataset, the percent cross- 
validation prediction error of classification tree and DA are 
26.33 and 40.59 respectively. This suggests that the classify- 
cation tree did a better job than DA in segregating the 13-class 
dataset which consisted of single-member classes. On the 
hand, these single-member classes were reassigned to the 
closest class in the 9-class dataset (Table 2 and Figure 3b). 
Consequently, the percent cross-validation prediction error of 
classification tree and DA are 16.84 and 10.29 respectively for 
the 9-class dataset. That, the DA performed better than the 
classification tree with regards to the 9-class dataset supports 
previous suggestions that DA is still useful when we have 
complete datasets devoid of any complexities such as missing 
values or in this case, single-member classes. However, the 
considerable change in prediction error from the 40.59 (13- 
class dataset) to 10.29 (9-class dataset) is indicative of how 
perturbations or complexities (such as single-member classes) 
in a dataset can reduce the predictive effectiveness of the DA 
method (Breiman et al., 1984; Quinlan, 1993; De'ath and 
Fabricius, 2000; Vayssieres et al., 2000; Feldesman, 2002; 
Karels et al., 2004; Luoto and Hjort, 2005). 

 
Table 4. Comparison of the Performance (Prediction Strength) 
for Watershed-Based Reservoir Classification Methods 

 Prediction Strength (percent 
cross-validation error) 

Number of classes 13-classes 09-classes 
SAS® DA 40.59 10.29 
SEE5® Classification 
tree 

26.33 16.84 

 
These findings seem to be in agreement with previous 

assertions that classification trees are an especially useful 
alternative (or supplement) to DA when dealing with environ- 
mental datasets that are characterized by complexities such as 
missing data, and multimodal distribution (Breiman et al., 
1984; Quinlan, 1993; German et al., 1999; De’ath and 
Fabricius, 2000; Vayssieres et al., 2000; Feldesman, 2002; 
Karels et al., 2004; Luoto and Hjort, 2005). In particular, the 
results of comparison between DA and classification tree me- 
thods were in agreement with previous analyses (Emmons et 
al., 1999; German et al., 1999; De' ath and Fabricius, 2000; 
Vayssieres et al., 2000; Feldesman, 2002; Karels et al., 2004; 
Luoto and Hjort, 2005). For example, Emmons et al. (1999) 
found that the decision tree method resulted in lower-rates of 
misclassification and more interpretable classes of Northern 
Wisconsin lakes than DA-derived classes. 

We have so far found no studies where classification 
trees have been used in watershed-based analyses, for which 
the unit of analysis is the lake, reservoir or even stream water- 
shed. Our results suggest that the watershed is a more appro- 
priate unit of analyses, than ecoregions, for reservoir assess- 
ment in agriculturally dominated ecosystems. Furthermore, 
we have demonstrated the utility of classification tree algo- 

Table 3. Comparison of Classification Strength of Reservoir Classification Methods (CS = ϖ / β *) 

 DA Watershed Classes Ecoregions See5® Watershed Classes 
Number of classes 8 9 8 
Water Biophysical Parameters:    
Secchi Depth 1.520 1.053 1.538 
Chlorophyll-a 3.090 5.992 4.893 
Average 2.305 3.523 3.215 
Water Chemistry Parameters:    
Alkalinity 2.075 6.584 2.146 
Total Nitrogen** 1.047 0.874 1.015 
Total Phosphorus 2.760 0.4904 2.532 
Average 1.961 2.649 1.897 
Agrochemical Herbicide Effluents:    
Atrazine 1.4214 1.301 1.249 
Alachlor 1.877 1.644 1.371 
Average 1.649 1.472 1.310 

*ϖ is within class variation; and, β is between class variations; ** Adjusted mean value of total nitrogen was used in this analysis; 
Note: DA was implemented using SAS® “Discrim” procedure (SAS Inc., 2000); Classification tree was implemented using See5® software 
(RuleQuest Research). 
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rithm, either as a supplement or alternative to DA, in classi- 
fying reservoirs for the purpose of water quality management. 
It is also noteworthy that the SEE5® classification tree soft- 
ware employed in this study can be used to generate an inter- 
pretative user-interface and this has potential applications for 
water resource managers (Figure 6). 

 

Notes: Example showing use of the interface to assign Yankee Hill 
Reservoir (near Lincoln, Nebraska) to class 1 with 72% probability. 
 

Figure 6. Interpretative classification interface.  

5. Conclusions 

A classification tree-based reservoir watershed classifica- 
tion method was compared to Omernik’s Level IV ecoregions 
and discriminant analysis (DA-based watershed classification 
methods). This comparison was done to assess the utility of 
the three classification approaches as potential tools for lake 
water quality management. Initially, the abilities of the water- 
shed-based classifications and ecoregions to account for vari- 
ations in water quality parameters of Nebraska reservoirs 
were evaluated with respect to their classification strength. 
Secondly, the predictive effectiveness of classification tree 
and DA-based reservoir watershed classification methods 
were assessed based on cross-validation prediction errors.  

Sampled Nebraska reservoirs (78) were grouped into va- 
rious classes using the classification tree and DA-based me- 
thods and ecoregions. Annual mean summaries of water qua- 
lity parameters (chlorophyll-a, Secchi depth, alkalinity, total 
phosphorus, total nitrogen, Atrazine and Alachlor) were 
generated and appended to classification tree, DA, and eco- 
regions derived reservoir classes respectively. A classification 
strength metric (which measures how strongly different land- 
scape classification approaches could separate water quality 
conditions) was used to evaluate the effectiveness of water- 
shed-based reservoir classifications and ecoregions-derived 
reservoir classes. The results suggest that both watershed- 
based classification approaches (classification tree and DA) 
were more effective than Omernik’s Level IV ecoregions in 
accounting for the variations in water quality characteristics 
of Nebraska reservoirs. This outcome was in agreement with 

previous findings that despite their usefulness in other eco- 
logical applications, ecoregions may not adequately account 
for variations in lake water quality parameters. 

Also, the classification tree and DA-based watershed cla- 
ssification methods were compared with respect to their cross- 
validation prediction errors. The results suggest that the cla- 
ssification tree method was more effective in handling the 
complexities of watershed characteristics dataset and Nebra- 
ska reservoir classes. These results are in line with previous 
assertions that classification trees are especially useful alter- 
native (or supplement) to DA when dealing with environ- 
mental datasets that are characterized by complexities such as 
nonlinear relationships, multimodal distributions and missing 
data. An important feature of the See5® classification tree 
software is the interpretive classification interface that can be 
used to predict the classes to which new cases (reservoirs) be- 
long. This interface is particularly useful to water resource 
managers interested in identifying the class membership of a 
particular lake, in order to explore management options for 
the reservoir being considered. 

It is noteworthy that classification trees do not allow for 
the inclusion of prior knowledge of known relationships be- 
tween watershed characteristics and reservoir water quality to 
improve the classification results, e.g. weighting of watershed 
characteristics using lake area (Minka and Picard, 1997). 
However, this limitation can be overcome by exploring expert 
systems to incorporate prior knowledge of watershed charac- 
teristics and water quality parameters in a post-classification 
process to refine the results of the classification tree (Lau- 
ritzen and Spiegelhalter, 1988; Neapolitan, 1990). 

Relationships between watershed characteristics and wa- 
ter quality parameters have been derived using parametric sta- 
tistical methods such as correlation and linear regression ana- 
lysis. Regression trees are non-parametric methods and can be 
used to derive simple but ecologically interpretable associ- 
ations between watershed characteristics and water quality pa- 
rameters. This is because the regression trees algorithm uses 
both numeric and categorical explanatory variables in assess- 
ing relationships or associations among the variables of in- 
terest. For example, Robertson and Saad (2003) used regret- 
ssion trees to determine the most statistically significant en- 
vironmental characteristics affecting the water quality para- 
meters of streams in the upper Midwestern United States. 
Hence, additional work is needed to explore how to incor- 
porate the relationships between watershed characteristics and 
water quality in either pre-processing the input variables of 
classification tree modeling (to enhance the splitting process) 
or into post-classification expert systems (to refine the classi- 
fication tree modeling results). 

Despite the aforementioned issues, the study results pro- 
vide some useful insights into the utility of the watershed- 
based classification tree and DA versus ecoregions in group- 
ing reservoirs for water quality management. Both watershed- 
based classification approaches (classification tree and DA) 
outperformed Omernik’s Level IV ecoregions and hence were 
more effective in accounting for the variations in water qua- 
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lity characteristics of Nebraska reservoirs. These results con- 
cur with previous suggestions to explore classifications frame- 
works other than ecoregions as tools for water quality assess- 
ment and management. 

Of the watershed-based classification methods that were 
examined in this study, the DA seems to perform better when 
the dataset is not complex (e.g., no missing data or single- 
member classes). However, the predictive strength of DA de- 
creases sharply in the face of data perturbations (in this case, 
inclusion of single-member classes). This is coupled with the 
need to meet all distributional assumptions of DA in order to 
make the discriminant functions meaningful in segregating the 
dataset. Hence, DA may not be the best tool for watershed 
based reservoir classification for water quality management. 
As a result, it is concluded that the classification tree method 
was better than DA at handling environmental data of reser- 
voir watersheds as well as complexities the in reservoir class 
datasets. 

Even though all three methods performed reasonably 
well, the results of this study suggest that the classification 
tree method may be the best classification tool overall, i.e. a 
watershed-based classification tree method for grouping Ne- 
braska reservoirs for water quality management. Finally, the 
SEE5® classification interface is user-friendly and has poten- 
tial applications for water resource managers. 
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