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ABSTRACT.  Traffic allocation planning is commonly required for mass evacuation management. It primarily relies on efficient co- 
ordination and appropriate utilization of roadway capacity and available traffic resources. However, traffic and evacuee information are 
usually difficult to be obtained and consequently of various uncertainties in data. Especially, stochastic information may often exist in 
evacuation management systems. In this study, a two-stage interval-stochastic evacuation management (TISEM) model was developed 
for supporting the evacuation planning under uncertainty, by which stochastic and interval evacuation information could be well re-
flected and communicated in the system. In addition, by adopting the proposed model, a case study abstracted from the City of Wuhan 
was introduced and solved through an interactive method. Results indicated that useful solutions for planning evacuation routes could 
be generated based on results of the model. As well, through the model, complex relationships between evacuation time, environmental 
influences and economic factors could be systematically analyzed. It demonstrated that the proposed TISP model is practical and 
applicable in real world, and is helpful for authorities to make decisions allocating vehicles before evacuation starts. 
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1. Introduction  

Mass evacuation is required when large-scale assembly 
events occur, such as those associated with various political, 
social, economic and sporting activities (Decker et al., 2006; 
Frantzeskakis and Frantzeskakis, 2006). Such events are nor- 
mally transient, dynamic and inflexible in their progresses and 
may lead to intensive evacuation within a short period of time 
(Hobeika and Kim, 1998; Cova and Johnson, 2003). There- 
fore, time is usually considered top priority during evacuation 
processes (Urbanik, 2000; Yi and Zdamar, 2007). At the same 
time, a series of issues such as economic costs, contaminant 
emissions and traffic interferences should also be taken into 
consideration when the evacuation time is to be minimized 
(Graata et al., 1999; Wu et al., 2008; Tan et al., 2008). Thus, 
systems analysis techniques could be employed to assist in de- 
veloping evacuation management plans, which may be helpful 
for making tradeoffs between meeting required environmental 
objectives and minimizing system cost. 

Previously, many studies were conducted in evacuation 
management. For example, regional evacuation modeling sys- 
tems were developed to estimate the evacuation time and the 
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traffic flow in road networks (Suleyman, 1995; Bakuli and 
Smith, 1996). An dynamic traffic assignment model was pro- 
posed for supporting evacuation management (Sattayhatewa 
and Ran, 2000). Cova and Johnson (2003) proposed a network 
flow model to identify and generate optimal lane-based evacu- 

ation routing plans within a complex road network. Yi and 
Zdamar (2007) proposed an integrated location-routing model 
for coordinating evacuation operations in response to emergen- 
cies and natural disasters. Efforts were also made in reducing 
environmental effects from evacuations (Grivas and Chaloula- 
kou, 2006). However, in evacuation management, uncertainty- 
es may exist in the related costs, impact factors and objectives, 
which will affect the optimization processes and the decision 
schemes generated (Ettema and Timmermans, 2006). Such com- 

plexities and uncertainties have placed the related problems 
beyond the conventional optimization methods. 

Consequently, inexact optimization techniques based on 
interval-parameter programming (IPP), fuzzy mathematical 
programming (FMP), and chance-constrained programming 
(CCP) were employed for evacuation management (Wu et al., 
2008; Tan et al., 2008). For example, Waller et al. (2001) and 
Ettema et al. (2006) systematically analyzed the negative eff- 
ects of uncertainties during evacuation. In addition, Waller and 

Ziliaskopoulos (2006) proposed a chance-constrained traffic 
assignment model in dealing with random time-dependent de- 
mand variables with known probability distributions. Further- 
more, an inexact optimization model was developed for sup- 
porting evacuation management under uncertainty (Wu et al., 
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2008), through which interval information was successfully 
introduced into the evacuation modeling systems. Tan et al. 
(2008) developed an inexact fuzzy robust programming model, 
through which factors of fuzzy-boundary interval format were 
successfully introduced as uncertain inputs. Although CCP and 

FMP can effectively reflect probabilistic and possibilistic un- 
certainties in a linear model’s right-hand sides, they can hard- 
ly handle independent uncertainties of the model’s left-hand 
sides and cost coefficients; moreover, none of the FMP, CCP 
and IPP is capable of examining consequences of violating 
overriding policies that are considered out of the scope of the 
planning exercise. 

An attractive technique that could help tackle the above 
shortcomings is the two-stage stochastic programming (TSP). 
TSP is effective for problems where an analysis of policy sce- 
narios is desired and the related data are mostly uncertain. In 
TSP, a decision is firstly undertaken before values of random 
variables are known and, then, after the random events have 
occurred and their values are known, a second-stage decision 
is made in order to minimize “penalties” that may appear due 
to any infeasibility (Loucks et al., 1981; Birge and Louveaux, 
1988, 1997; Li et al., 2006). Therefore, the objective of this 
study is to develop a two-stage interval-stochastic evacuation 
management (TISEM) model for route planning and vehicle 
allocation in an evacuation system. The developed model will 
be able to handle uncertainties expressed as not only probabi- 
lity distributions but also interval values. It can be used for ana- 
lyzing various policy scenarios that are associated with differ- 
ent levels of penalties when the promised policy targets are vio- 
lated. This objective entails (a) integrated consideration of eva- 
cuation time, transportation costs, and environmental emissi- 
ons in an evacuation system, (b) incorporation of uncertainties 
existing as interval values and probability distributions into the 
modeling formulation, (c) development of an efficient algori- 
thm for solving the T-ISEM model, and (d) application of the 
T-ISEM model to an case study abstracted from the City of 
Wuhan. 

2. Modeling Formulation 

Commonly, after a large social event happens, audiences 
should be transported to several multiple locations, during 
which time saving, cost reduction and environmental protec- 
tion are major challenges. Undertaking these challenges pri- 
marily relies on efficient coordination and appropriate utiliza- 
tion of roadway capacity and available traffic resources. How- 
ever, transportation infrastructure is usually a limited resource 
in terms of accessibility and capacity. Different paths between 
the event place and multiple destinations may exist. Each path 
may consist of multiple links. During the evacuation, multiple 
types of vehicles that have different passenger-loading capaci- 
ties, fuel consumptions and exhaust emission factors should 
be allocated to these paths (Wu et al, 2008; Tan et al., 2008). 
Consequently, varied operational costs, exhaust emissions, and 
evacuation time may be presented. Therefore, an effective rou- 
ting plan is desired for making optimal use of the infrastruc- 
ture.  

2.1. Two-stage Evacuation Management (TSEM) Model 
Stochastic information may exist in evacuation manage- 

ment systems. For example, during an evacuation process, some 

people may walk away themselves; other people may take pub- 
lic vehicles. Therefore, the number of people who need to be 
evacuated and that of the related vehicles can hardly be ob- 
tained precisely. However, according to the ticket selling and 
historical data in similar events, the number of passengers may 
be estimated. Thus, after the original evacuation plan is pre- 
defined, a recourse process is required to make modifications. 
In order to reach the minimum time taken under acceptable eco- 
nomical and environmental considerations, all related factors 
should considered. Therefore, the problem can be formulated 
as a TSP model, with minimum time used as the objective 
function, and the transportation cost and environmental emiss- 
ion as main constraints. The model can be presented as foll- 
ows: 
 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

Min 
s s

s sa s sa

s

A AS I S I

sai i m i sai i m
s a i m a s a i m a

A K A KS I S I

sai i k i sai i k
s a i k a s a i k a

AS I B I B

sai i b i sai i b
s a i b a a i b a

t x r t E D r t

x r Lt E D r Lt

x r Tt E D r Tt

= = = ∈ = = = ∈

= = = ∈ = = = ∈

= = = ∈ = = ∈

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + ⎜ ⎟
⎝ ⎠

+ +

∑∑∑ ∑ ∑∑∑ ∑

∑∑∑ ∑ ∑∑∑ ∑

∑∑∑ ∑ ∑ ∑
1 1

1 1 1

s

s

AS

s

AS I

i sai i i
s a i

E D rTe

=

= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

∑∑

∑∑∑

   (1a) 

 
subject to 
 

( )
1 1

,
sA I

sai sai i sj
a i

x D r R s j
= =

+ ≥ ∀∑∑                         (1b) 

[passenger capacity constraints] 
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[vehicle quantity constraints]  
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[profit constraint] 
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[emission constraint]                               (1e) 
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( )
1 1

 
sA S I

asi asi m m
m a s i

x D MX VM m
∈ = =

+ + ≤ ∀∑∑∑                (1f) 

[traffic constraints] 
 

0 , ,sai saix D s a i+ ≥ ∀                               (1g) 
[non-negativity constraints] 
 

saix and saiD are integer, , ,s a i∀                      (1h) 
[integer constraints] 

 
where: 

sA  = number of paths from evacuation spot to destination s, 
where 1 2 32,  3,  2A A A= = = ; 
B  = number of toll stations; 

iBe  = the lowest profit of type i vehicle (dollar); 

iCe  = excessive cost assigning one extra type i vehicle (dol- 
lar); 

miC  = toll of type i vehicle on link m (dollar); 

saiD      = deficient type i vehicles to destination s through path a, 
(second-stage decision variable); 

miEC =  CO emission factor of type i vehicle on link m (g/veh·km), 
miEC = 2

i i m i mV Vα β γ+ + ; 

iEIC  = CO idling emission factor of type i vehicle (g/veh·h); 
Ep  = environmental capacity (CO) available in the region 
(g); 

iF  = average cost per kilometer of type i vehicle (dollar/ 
km); 

sG  = ticket price from evacuation place to destination s (dol- 
lar); 
I  = number of vehicle types; 
K  = number of nodes with traffic light; 

ml  = length of link m (km); 

kLt  = average time delay at node k with traffic light (h); 
m  = number of links; 

mMX  = traffic flow on link m (veh); 

iN  = the maximum number of type i vehicles available; 

sR  = number of people whose destination is s; 

ir  = full load number of passengers in type i vehicle;  
S  = number of destinations; 

mt  = travel time on link m (h), /m m mt l v= ; 

rTt  = average time delay at toll station k (h); 

iTe  = excessive time taken assigning a type i vehicle; 
mv  = traffic velocity on link m (km/h); 

mVM  = the maximum traffic capacity on link m (veh); 

saix  = number of type i vehicles whose destination is s on 
path a (veh), (first-stage decision variable); 

, ,i i iα β γ  = coefficients of emissions factor for type i vehicles. 
Traffic information within a specific link (such as lengths, 

capacities, traffic flows, and average speeds) can be obtained 
through various technologies. Some traffic information can al- 

so be predicted according to real-time historical records. Thus, 
travel time, transportation profits, and mobile emissions can be 

obtained. Generally, travel time is the total time used for all pa- 
ssengers to reach their corresponding destinations, which may 
include running time and traffic delays (due to traffic light and 
toll-fee payment), as well as extra time that is required in as- 
signing additional vehicles (Southworth, 1991). The profit of 
transportation companies is the difference of the revenue from 
ticket sales and the total of operational costs and vehicle tolls. 
The operational cost includes fuel consumption, vehicles de- 
preciation, drivers’ wage, and road-maintenance tax. It is typi- 
cally dependent on route conditions and vehicle types. Thus, 
an average operational cost (per kilometer) is used in this stu- 
dy. The environmental emissions, mainly include two parts: 
emissions when vehicles are running, those when vehicles are 
in idle status. The first part of emissions is correlated to vehi- 
cle number, link length and emission factor; the second part is 
mainly related to vehicle number, traffic light waiting time and 

idle emission factor. Generally, emission is a function of spe- 
ed within a certain link. It can be calculated based on emiss- 
ion factors ( miEC , iEIC ) of each type of vehicles. Herein the 
emission of CO is adopted to express the emission levels of 
vehicles. 

To solve the above problem, the distribution of each sR  
must be converted to an equivalent set of discrete values. Let 
each sR  take values sjR  with probabilities sjp for j = 1, 2, …, q, 
where j defines q levels of the number of people who want to 
go to destination s. Thus, according to Maqsood and Huang 
(2003, 2004) and Li and Huang (2006), model (1) can be re- 
formulated as follows: 
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( ) ( )
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saix , saiD  is integer, , , ,s a i j∀                          (2h) 
 
where saijD is the number of vehicles to be further assigned 
when the number of passengers to destination s is sjR with pro- 
bability sjp and the existing number of type i vehicles ( saix ) 
are not insufficient in the given routes. 

 
2.2. Two-stage Interval-Stochastic Evacuation Manage- 
ment (TISEM) Model 

As described above, uncertainties in the number of pass- 
engers who are going to given destinations can be reflected in 
model (2) as probability density functions. As well, random- 
ness in other factors (e.g., number of passengers in each type 
of vehicles, average speed and traffic flow of every link, wait- 
ing time, operational cost, and emission of each type of vehi- 
cles) also needs to be addressed. However, in evacuation ma- 
nagement systems, the quality of uncertain information may 
not be satisfactory enough to be expressed as probability dis- 
tributions; even if the probability distributions are available, it 
could be difficult to reflect them in large-scale models. Conse- 
quently, interval parameters are introduced into the stochastic 
programming framework to facilitate communication of the un- 

certainties into the optimization process, resulting in a TISEM 
model as follows: 
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0 , , ,sai sai sai saijx x y D s a i j− ±+ Δ + ≥ ∀                        (4g) 
 

0 1saiy≤ ≤                                           (4h) 
 

sai sai saix x y− + Δ  and saijD±  are integer, , , ,s a i j∀         (4i) 
 

where /m m mt l V± = m ; 2( )mi i i m i mEC V Vα β γ± ± ±= + + ; , ,
iiBe Ce± ±  

, , , , , , , , , , mi i k m i m i b m saiEC EIC Ep Lt MX r t Te Tt V x± ± ± ± ± ± ± ± ± ±m  and saijD ±  
are interval parameters and variables. For example, letting 

saix −
 and 

saix +
 be lower and upper bounds of saix± , respectively, 

we have saix± = [ , sai saix x− + ]. 
 

2.3 Solution Method 
Model (4) is a single objective interval-parameter progra- 

mming model. According to Huang et al. (1993, 1994) and 
Maqsood and Huang (2003), it can be solved through decom- 
position into two submodels. The submodel corresponding to 
the lower bound of the objective function value can be formu- 
lated as follows: 
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x x y D VM MX m j− − −
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+ Δ + ≤ − ∀∑∑∑         (5f) 

 

0 , , ,sai sai sai saijx x y D s a i j− −+ Δ + ≥ ∀                     (5g) 
 

0 1saiy≤ ≤                                        (5h) 
 

sai sai saix x y− + Δ  and saijD−  are integer, , , ,s a i j∀         (5i) 
 
where saijD−  and saiy  are decision variables. Let 

saij opt
D−  

and 
sai opt

y  be solutions of model (5). Then the optimized 
pre-assigned type i vehicles on path a to destination s are 

sai optx± = saix− + sai sai optx yΔ . Thus, according to Huang (1996), 
the submodel corresponding to the upper bound of the objec- 
tive function value (i.e. Min t+ ) is: 
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( )
3 3

1 1
 ,

sA

sai sai sai opt saij m m
m a s i

x x y D VM MX m j− + +

∈ = =

+ Δ + ≤ − ∀∑∑∑      (6f) 

 
0 , , ,sai sai sai opt saijx x y D s a i j− −+ Δ + ≥ ∀                     (6g) 

 
 , , ,saij saij opt

D D s a i j+ −≥ ∀                             (6h) 

 

saijD+  is integer, , , ,s a i j∀                           (6i) 
 
where saijD+

 are decision variables. Sub-models (5) and (6) are 
deterministic LP problems. Thus, according to Huang et al. 
(1993), solutions for model (4) under the optimized allow- 
able-vehicle levels are: 
 

,  opt opt optt t t± − +⎡ ⎤= ⎣ ⎦ ; ,
saij opt saij opt saij opt

D D D± − +⎡ ⎤= ⎣ ⎦  , , ,s a i j∀ ; 
 
where optt−  and 

saij opt
D− are from solution of sub-model (5), 

and optt+  and 
saij opt

D+  are from that of sub-model (6). Thus, 
the optimum assignment of the vehicles is: 
 

sai optA± = sai optx± + ±
saij opt

D  , , ,s a i j∀  
 

Figure 1 shows the schematic of the modeling methodo- 
logy. In the following, solution algorithm of the TISP model 
with the objective being minimized is presented in a pseudo- 
code format as follows:  
Step 1. Formulate TISP model (3). 
Step 2. Reformulate the TISP model by introducing saix± = 

sai sai saix x y− + Δ , where saix = saix+ − saix−  and [ ]0,  1saiy ∈ ; this 
leads to model (4). 
Step 3. Transform the TISP model [i.e. model (4)] into two 
sub-models, where the lower bound of the t±  is desired since 
the objective is to minimize t± . 
Step 4. Formulate Min t−  sub-model (5).  
Step 5. Solve the Min t−

 sub-model, and obtain 
saij opt

D−
 and 

sai opt
y . 

Step 6. Calculate sai optx± = saix− + sai sai optx yΔ . 
Step 7. Calculate optt− . 
Step 8. Formulate Min t+  sub-model (6).  
Step 9. Solve the Min t+  sub-model, and obtain 

saij opt
D+ . 

Step 10. Calculate optt+ . 
Step 11. Solutions of the TISP model are: ,  opt opt optt t t± − +⎡ ⎤= ⎣ ⎦  and 

,
saij opt saij opt saij opt

D D D± − +⎡ ⎤= ⎣ ⎦  , , ,s a i j∀ . 
Step 12. Thus, we have the optimized assignment of vehicles: 

saij optA± = sai optx± +
saij opt

D±  , , ,s a i j∀ . 
Step 13. Stop. 

3. Case Study 

The study system is a part of the traffic network within 

the City of Wuhan, which is the capital of Hubei Province, 
China. The city is recognized as the political, economic, cul- 
tural, and transportation center of central China. Passenger 
transportations within the city mainly rely on vehicles. With 
the development of economy and the consequent increase of 
traffic vehicles, the City of Wuhan is suffering from the increa- 

sing emissions of air pollutants from transportation sources (Lv 

et al., 2006; Querol et al., 2006). Such problems are presented 
to be intensified especially during evacuations of mega-events 
(such as sports games). As the biggest stadium of the city, the 
Wuhan Sports Center Stadium (WSCS) has a capacity for con- 
taining 60,000 people. It can also provide space for parking of 
3000 cars and 300 buses at the same time. In 2007, the FIFA 
Women's World Cup and the 6th Intercity Games were succe- 
ssfully held there. However, some problems were disclosed 
during the evacuations, such as limited capacity at several road 

links, consequent delays in the transportation system, and ex- 
cess emissions of air pollutants. 

 

 Uncertain data (spatial and temporal) 

Probability distributions

Two-stage stochastic 
programming 

Interval-parameter 
programming 

TISP model 

TISP lower bound sub-model 

TISP upper bound sub-model 

Sub-solutions 

Generation of decision 
alternatives 

Sub-solution 

Intervals 

TISP 
solution

Figure 1. Schematic of the TISP methodology. 
 
To improve evacuations after major events, the developed 

TISEM can be used for supporting the planning of evacuation 
management. The upcoming 2009 Wuhan City Games is to be 
held at the Wuhan Sport Center Stadium in 2009. During the 
Games, after each competition activity, ten thousands of audi- 
ences need to be evacuated. Among them, some audiences 
(usually of 20 to 30 percent) who live in the urban area may 
use the public transportation system. However, thousands of 
the other people (70 to 80 percent) still need to commute to 
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bus or train stations first, and then to other towns or commu- 
nities. In this study, one evacuation spot (Wuhan Sports Center 

Stadium) and three destinations (Qiaokou Bus Station, Hankou 

Long Distance Bus Station, and Wuchang Railway Station) 
are considered (Figure 2).  

Based on the spatial relationships among the evacuation 
spot and the destinations, a study network is formulated with- 
out loss of generality. This network includes eight links, two 
traffic lights and one toll station, as shown in Figure 3. To rea- 
ch the three destinations, seven alternative paths exist. In de- 
tail, there are two (i.e. paths 11 and 12), three (i.e. paths 21, 
22 and 23) and two (i.e. paths 31 and 32) possible paths for 
destinations 1, 2 and 3, respectively. The lengths (L), the ave- 
rage traffic flow speeds (V), the maximum capacities (VM), 
and the predicted normal traffic flows ( MX ) of the links are 
shown in Table 1. The adopted evacuation vehicles can be cla- 
ssified into three types according to their loading capacities 
(r), which are associated with different operational costs (F), 
ticket prices (G), available numbers (N) and emission factors 
( , ,α β γ  and EIC) (Table 1). Numbers of evacuees to the three 
destinations and the associated probabilities are given in Table 
2. Table 3 presents the vehicle allocation plans (i.e. first-stage 
decisions) predefined by the local authority, which should be 
adjusted by assigning extra vehicles to the paths when the ran- 
dom numbers of evacuees are realized to certain values. Extra 
cost ( Ce ) and extra time (Te ) corresponding to the corrective 
actions at the second stage are also shown in Table 1. Consi- 
dering the limitations in traffic resources, the requirements for 
minimum profits and the targets of pollutant emissions, the 
concerned problems are: (i) how to effectively allocate the ve- 
hicles from the vehicle centers to the paths in order to mini- 
mize the total evacuation time under uncertainty, and (ii) how 
to meet the evacuation demands and fulfill the economic and 
environmental targets under the least system disruption. Since 
uncertainties exist in a variety of system components and a lin- 
kage to economic consequences is desired, TISEM is consi- 
dered as an effective approach for tackling such a problem. 

 

 
 

Figure 2. The evacuation routes.  

The solutions obtained from the TISEM model are dis- 
played in Table 4. The obtained objective function value (i.e. 
minimized total time) would be [3556, 6181] hrs. Three sets 
of solutions for the decision variables are obtained correspon- 
ding to the three probability levels of evacuee numbers. Table 
4 suggests that, under a low level of evacuee numbers (j = 1), 
a total of [68, 82] vehicles would be allocated for evacuating 
persons to destination 1, among which only 6 would be arran- 
ged to path 11, while [62, 76] would be allocated to path 12. 
The reason is that the travel time on path 11 is longer than that 
on path 12. For reaching destination 1, the medium-sized ve- 
hicles would be dominant (i.e. 53), followed by large-sized 
ones (i.e. [15, 29]). As for destination 2, the numbers of vehi- 
cles allocated to paths 21, 22 and 23 would be 1, 34 and [41, 
57], respectively. Paths 22 and 23 would be the main routes for 

destination 2 due to their relatively shorter distances. In terms 
of vehicles sizes, [16, 17] small-size, [31, 32] medium-size 
and [29, 43] large-size vehicles would be allocated for desti- 
nation 2. To reach destination 3, [36, 42] vehicles would take 
path 31, and only 5 would take path 32. It is indicated that, 
most of the vehicles allocated to destination 3 are of large size 
(with only 1 small-size vehicle being included). This is due to 
the fact that the large-sized vehicles have lower unit transporta- 

tion costs (dollar per passenger) and CO emission rates (gram 
per passenger) compared to vehicles of smaller sizes. 

Under a medium level of evacuee numbers (j = 2), there 
would be [6, 27] vehicles on path 11, and [71, 76] vehicles on 
path 12. Among them, the medium-sized vehicles would be in 
majority ([53, 74]), followed by large-sized ones ([23, 27]) and 

then small-sized ones ([1, 2]). For destination 2, the numbers 
of vehicles allocated to paths 21, 22 and 23 would be [1, 2], 
34 and [50, 66], respectively. Due to their relatively shorter 
distances, paths 22 and 23 would still be the main routes to 
reach destination 2. The numbers of allocated small-, medium-, 

and large-sized vehicles would be [17, 18], [31, 32] and [37, 
52], respectively. For destination 3, [38, 66] vehicles would be 
allocated to path 31, while 5 vehicles would take path 32. Ve- 
hicles of large size would be the dominant ones. Compared 
with the allocation plans under a lower level of evacuee num- 
bers, more small-sized vehicles would be allocated under this 
condition. This is probably attributed to the increased evacua- 
tion demands associated with the raised numbers of evacuees. 

As shown in Table 4, under a high level of evacuee num- 
bers (j = 3), the evacuation plan for destination 1 would be si- 
milar to those under the low and medium levels of evacuees. 
In detail, [6, 35] vehicles would take path 11, while [80, 83] 
ones would be allocated to path 12. Most of these vehicles 
would be of medium size ([53, 84]), and the large- and small- 
sized vehicles would be 31 and [2, 3], respectively. As for de- 
stination 2, there would be [1, 33], [34, 41] and 59 vehicles on 
paths 21, 22 and 23, respectively. A total of [17, 18] small- 
sized, [31, 32] medium-sized and [37, 52] large-sized vehicles 
would be adopted for evacuating event-participants to destina- 
tion 2. It appears that small-sized vehicles would be more like- 

ly to be employed on path 21 which has a longer distance. This 
is because large-sized vehicles are competitive in both trans- 
portation costs and CO emission ratios, which would thus be 
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preferably used on time-saving paths. To reach destination 3, 
most of the vehicles (i.e., [52, 96]) would be allocated to path 
31, while only a small portion (i.e., 5) would be diverted to 
path 32. Large-sized vehicles account for most of those which 
would be directed to destination 3. Generally, under the three 
levels of evacuee numbers, large-sized vehicles would be pre- 
ferred due to their lower transportation costs (per passenger) 
and CO emission rates (per passenger) compared with smaller 

ones. In contrast, small-sized vehicles would only be consi- 
dered when the large- or medium-size ones are completely al- 
located. Under a lower level of evacuees, fewer small-sized ve- 

hicles would be allocated, and most of the solutions for the 
numbers of large-sized vehicles are intervals; comparatively, 
under a higher level of evacuees, small- and medium-sized ve- 

hicles are more likely to be adopted due to the shortage of 
large-sized ones, and the solutions for the amounts of large- 
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L5 

L4   

L1   

L2   L7  
L8 

L3 

T1 

D2 D3 

D1  

 Evacuation  spot  

 Destination   

 Traffic  light   

 Toll  station   

 

   
 

Figure 3. The traffic network of evacuation management system. 
 
Table 1. The Modeling Parameters  

1L  2L  3L  4L  5L  6L  7L  8L  
25 8 12 6 9 4 2.1 2.3 

1VM  2VM  3VM  4VM  5VM  6VM  7VM  8VM  
2250 700 1200 300 810 360 180 300 

1MX  2MX  3MX  4MX  5MX  6MX  7MX  8MX  
[1800, 2000] [450, 505] [990, 1110] [165, 190] [540, 600] [235, 250] [33, 37] [180, 200] 

1V  2V  3V  4V  5V  6V  7V  8V  
[70, 75] [27, 30] [36, 40] [20, 25] [45, 50] [30, 35] [27, 30] [36, 40] 

path11 path12 path21 path22 path 23 path31 path32  
link (4, 6) Link(2, 7) Link(4, 5) Link(4, 6, 8) Link(2, 7, 8) Link(1) Link(2, 3)  

1Lt  2Lt  1Tt  1Te  2Te  3Te    

[0.03, 0.04] [0.04, 0.05] [0.10, 0.15] [0.133, 0.171] [0.111, 0.143] [0.089, 0.114]   

1N  2N  3N  1r  2r  3r    

130 150 120 [18,20] [27,30] [54,60]   

1EIC  
2EIC  

3EIC  
1α  

2α  
3α  

1β  
2β  

[355, 379] [603, 619] [1183,1298] 81.8760 138.905 454.813 -1.8551 -3.1472 

3β  1γ  2γ  3γ  Ep  
  

-11.811 0.0123 0.0209 0.0878 [4248000, 5345000]  

11C  12C  13C  1F  2F  3F  
 

2.5 4 6 [1.10, 1.40] [1.50, 1.80] [2.40, 2.80]   

1Ce  2Ce  3Ce  1Be  2Be  3Be  11G  12G  
[3.3, 4.2] [4.5, 5.4] [7.2, 8.4] [5.0, 7.5] [8.0, 11.0] [13.0, 18.0] 1.75 1.50 

13G  21G  22G  23G  31G  32G  33G   

1.25 2.00 1.75 1.50 3.00 2.50 2.00  
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sized vehicles are mostly deterministic. 
 

Table 2. The Number of Evacuees to Each Destination and 
the Associated Probability 

sjR  Level 
description 

Number of evacuees 
to each destination 

Probability 
( sjp ) 

11R  Low [2501, 3000] 0.31 

12R  Medium [3001, 3500] 0.36 

13R  High [3501, 4000] 0.33 

21R  Low [3001, 3500] 0.26 

22R  Medium [3501, 4000] 0.44 

23R  High [4001, 4500] 0.30 

31R  Low [2001, 2500] 0.30 

32R  Medium [2501, 3000] 0.42 

33R  High [3001, 3500] 0.28 

 
Table 3. The Number of Vehicles Pre-allocated to Each 
Route 

1aix  Number of 
Vehicle 

2aix  Number of 
Vehicle 

3aix  Number of 
Vehicle 

111x  [0, 42] 211x  [0, 5] 311x  [1, 2] 

112x  [1, 1] 212x  [0, 25] 312x  [0, 20] 

113x  [5, 8] 213x  [0, 19] 313x  [35, 45] 

121x  [0, 30] 221x  5 321x  [0, 2] 

122x  [45, 55] 222x  [2, 5] 322x  [0, 5] 

123x  [10, 15] 223x  [20, 60] 323x  [5, 25] 
/ / 231x  [0, 11] / / 
/ / 232x  [0, 25] / / 
/ / 233x  [2, 5] / / 

 
Table 4 also indicates that, the solution for the objective 

function value provides two extremes of the minimum time 
( optt± = [3556, 6181]) which are required to evacuate all of the 
event-participants to their destinations. As the actual value of 
each variable or parameter vary within its two bounds, the to- 
tal evacuation time may change correspondingly between optt−  
and optt+  under a variety of reliability levels. Planning for the 
lower bound of the objective function value would lead to a 
lower evacuation time and emission level, but a higher risk of 
violating the evacuation demand constraints. In contrast, plan- 
ning for the upper bound of the objective junction value would 

result in higher system stability; but this would also lead to 
higher system cost and emission level. Therefore, these results 
could help analyze the tradeoff between system efficiency and 
reliability. Desired decision alternatives can thus be generated 
from the solutions according to projected applicable system 
conditions. 

4. Conclusions 

A two-stage interval-stochastic evacuation management 

(TISEM) model was developed for supporting environment- 
oriented evacuation management under uncertainty. Through 
TISEM, minimized evacuation time could be achieved with a 
comprehensive consideration of economic cost and environ- 
mental target. Interval solutions could be obtained from the 
model, which were useful for facilitating the generation of de- 
cision alternatives under various system conditions. In addi- 
tion, TISEM was helpful for dynamic analysis of vehicle as- 
signment within a multi-stage and multi-level context.  

A study case was used to demonstrate the applicability of 
TISEM. Useful solutions were obtained. The results revealed 
that, large-sized vehicles would be preferably adopted due to 
their lower transportation costs (per passenger) and CO emis- 
sions (per passenger) compared to small- and medium sized 
ones. In contrast, small-sized vehicles would only be adopted 
when large- or medium-sized ones were completely allocated. 
Under a lower level of evacuees, fewer small-sized vehicles 
would be allocated for evacuation, and most of the solutions 
for the numbers of large-size vehicles were intervals; compa- 
ratively, under a higher level of evacuees, small- and medium- 
sized vehicles were more likely to be adopted due to the ex- 
haustion of large-sized ones, and the solutions for the amounts 
of large-size vehicles were mostly deterministic. 

This study made the first attempt to plan evacuation ma- 
nagement systems through a two-stage interval-stochastic pro- 
gramming (TISP) approach. With the integration of two-stage 
stochastic programming (TSP) and interval-parameter pro- 
gramming (IPP) methods, TISEM improves upon the conven- 
tional evacuation management models by directly communi- 
cating uncertain information into optimization efforts. The 
study results have demonstrated that TISEM is applicable to 
real-world evacuation management problems that are associa- 
ted with extensive uncertainties within a multi-stage context. 
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