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ABSTRACT.  With increased use and public awareness of landfills, there is much concern for the pollution potential of the landfill 
leachate. As leachate migrates away from a landfill, it may cause serious pollution to the groundwater aquifer as well as adjacent sur-
face waters. Modeling the behavior of pollutants during the flow of leachate through soil is essential for predicting the fate of these 
pollutants and designing restoration strategies. In this paper, Particle filter approach is introduced for the estimation of chlorobenzene 
leachating from a landfill into a soil environment. The discrete advection transport equation is used as a deterministic model, in which 
the state vector denotes the concentrations at discrete nodes. First, random Gaussian errors are added to the transport equation to be-
come the state equation. Then, the Particle filter recursive process is applied for that state space model. In each time step, random sam-
ples which represent the density of state vector are propagated through state equations and updated by observation data assimilation. 
The result shows that the filtered estimation from Particle filter approach is in close agreement with the true value. Furthermore, the 
efficiency of Particle filter approach is compared with the numerical method using root mean square error (RMSE). The RMSE value 
for the numerical method was seven times larger than that for the Particle filter approach. 
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1. Introduction 

Sequential state estimation is the process of using dyna- 
mic data from a system to estimate quantities that give a com- 
plete description of the state of the system. State estimation 
has the potential to be widely applied in water quality model- 
ing. For instance, it can be used in subsurface contaminant tran- 

sport problems, in dissolved oxygen (DO) estimation in ecolo- 
gical system such as a river or a lake and, more generally, it 
can be used for water quality data assimilation. For subsurface 
contaminant transport, state estimation can provide crucial in- 
formation to describe the contamination within subsurface cir- 
cumstance whose properties vary with time and space. For the 
river or lake system, state estimation may help to understand 

how the water quality is influenced by ecological processes 
such as photosynthesis and respiration of micro algal biomass. 

State estimation can be considered as an optimal filtering 
problem within a Bayesian framework. State-estimation me- 
thodologies, based on Bayesian framework are powerful be- 
cause (a) they are rigorously based on the probability axioms 
and therefore preserve information, and (b) they give the pro- 
bability density function (PDF) of the model state conditioned 
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on the available information, which may then be used for any 
probability-based water quality problems. With the PDF avai- 
lable, we can not only estimate the state but also give a des- 
cription of the associated uncertainties. It is more reasonable 
to make prediction with uncertainty since a model, its initial 
and boundary conditions, and field measurements contain er- 
rors. The most well known Bayesian state-estimation algori- 
thm is the Kalman filter (KF) (Kalman et al., 1961), which is 
applicable for linear models with Gaussian uncertainties. La- 
ter, KF was modified to extended Kalman filter to accommo- 
date nonlinear system. For the last 30 years, the Kalman filter 
and extended Kalman filter have been applied to meteorolo- 
gical data assimilation (Ghil et al., 1981; Gustafsson, 1981; 
Houtekamer and Michell, 1998) , to surface and subsurface 
hydrologic estimation (Bowles, 1978; Van Geer, 1982; Yu et 
al., 1989; Yangxiao et al., 1991; Ferraresi and Marinelli, 1996; 
Harrouni et al., 1997; Porter et al., 2000; McLaughlin, 2002), 
to subsurface contaminant transport estimation (Cheng, 2002; 
Chang and Jin, 2005), and to water quality modeling in river 
circumstance (Beck and Young, 1976; Cosby et al., 1984; 
Whitehead and Hornberger, 1984). 

During last decade, the Particle filter, based on sequential 
Monte Carlo method, has been introduced to state estimation 
in nonlinear systems and successfully applied in a number of 
different areas such as electronic engineering, ecosystem mo- 
deling, structure modeling, and chemical process modeling 
(Gordon et al., 1993; Kitagawa, 1996; Doucet et al., 2000; 
Svetlana et al., 2003; Chen et al., 2005; Ching et al., 2005). 
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Particle filter application for state and parameter estimation in 
nonlinear structure model was studied by Ching et al. (2005). 
Chen et al. (2005) applied the Particle filter to the modeling of 
a benchmark batch polymerization process. The on-line state 
and parameters for the process are estimated. However, there 
has been limited application of Particle filters in subsurface 
contaminant transport modeling. 

The Particle filter is potentially effective for estimation 
and data assimilation problems in subsurface contaminant tran- 

sport due to its advantages in dealing with dynamic and sto- 
chastic processes. The objective of the paper is to apply Par- 
ticle filters for contaminant transport estimation in a soil envi- 
ronment and evaluate its performance. The rest of this paper 
has the following structure: In section 2, the deterministic 
transport model, the Bayesian state estimation method and the 
Particle filter algorithm will be introduced; In section 3 , dis- 
cussion will focus on some practical aspects which are related 
to application of Particle filter in this particular study; In sec- 
tions 4 and 5, the Particle filters are demonstrated by applica- 
tion to a state-space model for state estimation, and its perfor- 
mance is evaluated by the root mean square error (RMSE). 

2. Methodology  

2.1. 1-Dimensional Contaminant Transport Equation and 
the State-Space Model 

The transport equation for contaminant in a soil environ- 
ment with the direction of flow parallel to the y-axis is:  
 

C V C

t R y

 
 

 
                                    (1) 

 
where  

C = Solute concentration, mg/l; 

t = Time, sec; 

y = Cartesian coordinates, m; 

V = Linear velocity of flow field in the y direction, m/sec; 

R = Retardation factor, dimensionless. 

The retardation factor R: 
 

d
b kR



 1                                  (2) 

 

where 

b  Dry bulk mass density of the soil, kg/m3; 

  Soil porosity, dimensionless; 

dk  Linear distribution coefficient for the solute with the soil, 
m3/kg. 

In our experimental models, it is assumed that an initial 
spontaneous point mass source at ( 0t  , 0y  ) and a boun- 
dary condition: 

 

  0, 0 0, t yC y t C                                     (3) 

 , 0C y t                                        (4) 

 
where C0 is the initial concentration at ( 0t  , 0y  );   is 
chosen as a boundary in this study. 

Before applying Particle Filter scheme to this problem, 
the mathematical model that simulates the dynamic process of 
pollutant transport needs to be represented as a state-space 
form. To realize that, a finite-difference scheme is used to dis- 
cretizating the space into n  nodes and the time into m  time 

steps. Then the Forward-Time and Central-Space (FTCS) me- 
thod is applied to the original transport equation: 
 

   , 1 ,C i t C i tC

t t

 


 
                              (5) 

 
   1, 1,

2

C i t C i tC

y y

  


 
                         (6) 

 
where 

1,  2,  3,  ..., i n ; 

1,  2,  3,  ..., t m ; 

n  Total number of discrete nodes;  

m  Total number of time steps. 

Substituting equations (5) and (6) into the 1-dimentsional 
subsurface transport equation (1) gives: 

 

, 1 1 1, 2 , 3 1,i t i t i t i tC C C C                                (7) 

 

where 

,i tC  Vector of pollutant concentration at node i and time t; 

, 1i tC  Vector of pollutant concentration at node i and time 
1t  ; 

1  ∆tV/(2∆yR); 

2  1; 

3  -∆tV/(2∆yR). 

Assuming the number of nodes n  is 5, then the state- 
space model is: 
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  (8) 

 

2.2. Bayesian Approach to Dynamic State Estimation 

In estimation problems the task is to estimate unknown 
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quantities from noisy observations, often with prior knowle- 
dge available. Therefore, it is natural to use a Bayesian appro- 
ach. Many engineering problems are by nature recursive and 
require on-line solutions. 

In order to analyze and make inference about a dynamic 
system, at least two models are required (Arulampalam et al., 
2002). First, a model describing the evolution of the state with 
time (the system model) and, second, a model relating the noi- 
sy measurements to the state (the observation model).  

The equations describing the states of the systems may 
be combined into one vector matrix equation of the form: 

 
 1 1,t t tx f x v                                       (9) 

 
where xt is a time-variable n-dimensional vector of state vari- 
ables; 1tv   is an n-dimensional vector of random process noi- 
se; f is the possible function of the states 1tx   and 1tv  . 

If we take a series of measurements at discrete time steps 
,  1,  2,  ...t t t  , the measurement model is then: 

 
 ,t t tz h x                                       (10) 

 
where tz  is an n-dimensional vector of states observations at 

time t; t  is an n-dimensional vector of random errors. 

A simplified model can be developed if the functions in 
Equations (9) and (10) are linear: 

 

1 1( )t t tx f x v                                       (11) 

 
( )t t tz h x                                      (12) 

 
The Bayesian approach to dynamic state estimation con- 

sists of essentially two stages: prediction and update. The pre- 
diction stage uses the system model to predict the state proba- 
bility density function (pdf). The update operation uses the la- 
test measurement to modify the prediction pdf. This is achi- 
eved by using the Bayes theorem, which is the mechanism for 
updating knowledge about the target state in the light of extra 
information from new data. 

The estimation tx  from measurements, from Bayesian 
perspective, is to calculate the degree of belief in the state tx  
at time t, given the data 1:tz . Thus it is required to construct 
the pdf 1:( )t tp p x z . 

The Bayesian estimation formulation consists of the time 
update equation (11) and the measurement update equation 
(12). 

 

     1: 1 1 1 1: 1t t t t t t s tp x z p x x p x z dx                       (13) 

 

     
 

1: 1
1:

1: 1

t t t t
t t

t t

p z x p x z
p x z

p z z




                         (14) 

For a simplified model that Equations (11) and (12) des- 
cribe, the following relations can be calculated: 

 

1 1( ) ( ( ))t t v t tp x x p x f x                              (15) 

 
( ) ( ( ))t t t tp z x p z h x                               (16) 

 

 
 
Figure 1. The recursive process of the particle filter 
algorithm. 
 
2.3. Particle Filter Algorithms 

Particle filters are an extension to point-mass filters. The 
basic idea of Particle filters is to approximate  1:t tp x z  us- 
ing a set of random samples (also called particles)  ,  1,i

tx i   
2, ...,  N  with associated weights  ,  1,  2, ...,  i

tw i N  where 

1
1

N i
ti

w


  (Doucet et al., 2000): 

 

   1:
1

N
i i

t t t t t
i

p x z w x x


                           (17) 

 
where ( )x  is an indicator function which is equal to unity 
if 0x  ; otherwise it is equal to zero.  

The location and weight of each particle reflect the value 
of the density in that region of the state space. With these par- 
ticles and associated weights, the estimated state vector, tx


, 

is the mean of  1:t tp x z  and is calculated as: 

 

1

N
i i

t k i
i

x w x



                                     (18) 

 
Then Particle filter updates the particle locations and the 

corresponding weights recursively with each new observation. 
However, this approach leads to divergence, if most of the 
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particles have a zero weight. This divergence problem can be 
solved by introducing a selection or resampling step. The 
general Particle filter estimation recursive process is shown in 
Figure 1. 

 

2.4. Particle Filter Effectiveness Examination 

The effectiveness of the Particle filter can be shown by 
comparing the results from the models with and without the 
Particle filter. The root mean squared error (RMSE) is used to 
as error parameter RMSE (k): 

 

21
( ) [ ( , ) ( , )]

1
E

i

RMSE k C i k C i k
N

 
              (19) 

 
where 

( )RMSE k : the error for time step k; 

( , )EC i k : the expectation for the concentration at node i at 
time step k; 

( , )C i k : the estimated concentration at node i at time step k; 

iN : the number of nodes. 

Each RMSE value shows the error associated with all 10 
nodes in the specific time step k, so RMSE is the function of 
time. 

 

 

Figure 2. The application of discrete-space approach on the 
one-dimensional problem.  

3. Example Application 

3.1. Application Scenario 

By applying the discrete-space approach, a one-dimensio- 
nal numerical scheme is constructed for simulation the conta- 
minant advection process in a soil environment. The model 
grid mG  is defined on a 1-D plane domain (Figure 2). mG has 
n grid points in y direction. In the numerical scheme, we set n 
= 10, dy = 0.5 m, dt = 0.20 day. In this problem, it is as- 
sumed that: (a) each soil layer is homogenous; (b) isothermal 
conditions prevail; (c) soil layer is completely saturated; (d) 
Darcy’s Law is valid; (e) no biological activity is affecting the 
contaminate migration. 

Table 1. The Hydraulic Parameters of the Soil 

Parameters From Fernandes (1996) In this study 
Effective porosity  22-45% 30% 
Bulk dry density 60-480 kg/m3 300 kg/m3 
Hydraulic conductivity 1×10-5-1×10-8 m/s 5×10-7 m/s 

 

The hydraulic parameters for the soil environment are lis- 
ted in Table 1. The initial concentration 0C , which is injected 
into the top node, is 500 mg/l in this study. 

 
3.2. Practical Aspects of Implementing Particle Filter 

In order to implement the Particle filter algorithm for the 
given transport model and sets of parameter values in Table1, 
four kinds of errors and the “true value” must be specified: 

 

3.2.1. The “true” Data and Its Error 

Based on the same numerical model used in the predict- 
tion, the true value is produced by adding random errors into 
the prediction result from the numerical model. Those random 
errors indicate the uncertainty in a real world. Since the ran- 
dom error cannot be duplicated by using computer programs, 
the profile of true value will vary slightly for each different 
run but with the basic shape. The error in true value field in 
this study is assumed to follow the Gaussian distribution with 
zero mean and standard deviation 5%. 

 

3.2.2. The Initial Error 

The initial error covariance matrix is usually treated as a 
diagonal matrix. The only elements that need be specific initi- 
ally are the diagonal elements which can be interpreted as the 
uncertainty in the initial estimates of state variable. The initial 
errors are chosen arbitrarily since the system error will theo- 
retically converge to the true estimation error as long as the 
system equation is corrected. The concentration of 10 mg/l is 
used as the initial error in this study. 

 

3.2.3. The Error in the System Equation 

The system error covariance matrix is a diagonal matrix. 
The zero off-diagonal elements indicate assumed independen- 
ce of the disturbances affecting each state. The elements of 
system error matrix corresponding to state variables indicate 
uncertainty in state estimates arising from several sources: ran- 

dom disturbances in the system, errors or random disturbances 
in measured inputs, and to some extent the error inherent in 
representing a complex system with a simple model. Value of 
diagonal elements is difficult to obtain. In this study, Gaussian 
error with 2.5%sys   is chosen for indicating the uncertain- 
ty in system equation. 

 

3.2.4. The Error in the Observation Equation  

The observation error matrix is a diagonal matrix. The 
diagonal elements are the measure of the inherent uncertainty 
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of the state observations. Usually they are obtained from the 
known precision and accuracy the instrument or technique 
used to the measure the state variable. Estimations of the pre- 
cision are easily obtained from laboratory steadies or from the 
literature; σobs = 2.5% is used as standard deviation in this 
study. 

4. Results and Discussion  

4.1. Prediction from Numerical Model  

Firstly, the FTCS numerical method is applied to the ori- 
ginal deterministic model with specified boundary and initial 
conditions as described in the section above. The result of the 
first step is presented in Figure 3, which shows the concentra- 
tion profile predicted by the numerical method without obser- 
vation correction. As shown, at the grid with time = 0 and dis- 
tance = 0, the pollutant concentration is equal to the initial 
concentration 500 mg/l and there is no other girds with con- 
centration. Along the timeline, the “peak” in concentration 
profile moves along from the first node to the lower nodes, 
which indicates the velocity direction of pollutant transport is 
from the top layer of soil to the lower layer. The smooth curve 
shows the theoretical one dimensional advection transport 
process. 
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Figure 3. Predicted chlorobenzene concentration profile from 
the numerical method. 

 

4.2. Uncertainty Simulation in “True field” 

To simulate the uncertainty and inaccuracy in the true 
field, the random numbers drawn from the normal distribu- 
tions are incorporated into the result from the numerical me- 
thod. Figure 4 shows the one of 3-dimensional profile of the 
concentration after the random uncertainty is taken into consi- 
deration. Compared to the simulation result from the numeri- 
cal method, the “true field” curve is more irregular due to the 
random errors. Every time the program is run, we get the dif- 
ferent random numbers with the same distribution; the true 
field cannot be repeated. 
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Figure 4. The true value field of chlorobenzene concentration. 
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Figure 5. Predicted chlorobenzene concentration profile from 
Particle filter. 

 

4.3. Prediction from Numerical Model with Observation 
Correction  

As mentioned in section “practical issue for applying Par- 
ticle filter”, the random errors, assumed as Gaussian distribu- 
tion with zero mean and standard deviations 10%, are inserted 
to the Equation (7). The complete system equation indicates 
the system evolves with time and the uncertainty in this pro- 
cess. Based on the system equation, the same time series is 
repeatedly processed, corrected by the observation data by us- 
ing the Particle filter algorithm. The observation data, with as- 
sumed error, is used for this data assimilation process. In each 
time step, 500 random samples are drawn from the prior den- 
sity function. Each sample is then assigned a weight based on 
the likelihood density function. Figure 5 presents the 3-dimen- 
tional predicted concentration profile by using Particle filter. 
By assimilating observation data from the field nodes into the 
state equation, the Particle filter reduces the model deviation 
and the resulting stochastic model makes the improved pre- 
diction. 



S. Y. Chang and X. P. Li / Journal of Environmental Informatics 12(2) 88-95 (2008) 

 

93 

The RMSE for the numerical method and Particle filter 
method is shown in Figure 6. As shown in Figure 6, without 
correction of observation data, the prediction of the determi- 
nistic transport model tends to depart from the true field of 
stochastic process along the timeline. The calculated RMSE 
(for numerical method) varies with time step. And the maxi- 
mum RMSE for numerical method is shown as 37 mg/l in the 
11th day. The effectiveness of the Particle filter is also veri- 
fied by the RMSE value in each time step. As shown in Figure 
6, the RMSE for the predicted result from Particle filter algo- 
rithm is around 5 mg/l along with the time line, which is seven 
times lower than the maximum error in the predicted result 
from the FTCS numerical method. 
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Figure 6. Prediction error for numerical method and Particle 
filter method. 
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Figure 7. The concentration profile along with distance at 
time = 4 day. 

 

4.4. The Predicted Results at Fixed Time Step 

Now we investigate the prediction process further by fix- 
ing the time step. Figure 7 shows the assimilated concentra- 
tion from the numerical method and Particle filter algorithm 

along with the distance on the 4th day. There is no obvious di- 
fference between the results from two methods. This result 
may due to the less amount of observation data used for the 
assimilating process at the beginning of the experiment. At the 
time 20th day, the prediction result from Particle filter, which is 

corrected by observation data, seems more close to the “true 
value” than that from the numerical method. As Figure 8 
shows, the shape of line with circle (indicating the result from 
Particle filter) fits the true value field well in each node. Fig- 
ures 7 and 8) show that the effect of Particle filter will be- 
come significant only after the system equation is corrected 
by enough observation data along with the timeline. In this 
experiment, the “threshold” is around the 4th day. This is also 
verified by the Figure 6, which presents the small difference 
between two methods in the first 4 days and a bigger differen- 
ce after 4th day till the end of experiment. 
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Figure 8. The concentration profile along with the distance at 
time = 20 day. 
 

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

time,day

P
ol

ut
an

t 
co

nc
en

tr
at

io
n 

, 
m

g/
l

true value

particle filter

numerical method

P
o

llu
ta

n
t c

o
n

ce
n

tr
a

tio
n

 (
 m

g
/l)

 

Time (day) 

 

Figure 9. The concentration profile along with the time at 
node = 2. 
 

4.5. The Predicted Results at Fixed Distance 

To further investigate the involvement of concentration 
profile at specific locations, for example at the 2nd and 5th 
nodes, Figures 9 and 10 indicate the prediction varying along 
with the timeline at those locations. As we can see from 
Figures 9 and 10, the simulation result from the Particle filter 
matches quite well with the “true field” in each time step. The
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Figure 10. The concentration profile along with the time at 
node = 5. 

 
zigzag nature of the predicted concentration indicates the ran- 
dom error associated in the prediction process, which is rea- 
sonable but cannot be presented by the smooth curve from the 
numerical method. 

5. Conclusions 

The complex dynamic behavior of contaminant transport 
within soil environment systems has been studied using nu- 
merical methods. However, errors from the numerical method 
can bring unavoidable prediction deviations from the real world. 
Errors associated with the numerical method may include nu- 
merical errors from model mechanisms, time and space limits 
of numerical schemes, and boundary conditions. And the de- 
terministic models have inaccurate transport parameters due 
to the complexity of the subsurface environment. According 
to Bayesian sequential estimate theory for the discrete-data 
filter problem, using the Particle filter to combine observed 
information into model dynamics should give more accurate 
estimation result compared to that from the numerical method. 

This paper introduced Particle filtering for the chloroben- 
zene concentration estimation in a soil environment. The result 
shows that Particle filters are appropriate for handling the state 

space models describing contaminant transport. A Particle fil- 
ter algorithm is demonstrated based on an advection-adsorp- 
tion subsurface transport model. The method is applied to as- 
similate observation data and then enhances the estimation ac- 
curacy of the concentration prediction problem. The effective- 
ness of proposed method is then evaluated by RMSE, and pro- 
mising results are obtained. It shows that with the Particle fil- 
ter data assimilation, the error of the prediction is reduced by 
seven times or so (compared to the result from the numerical 
method). An extension on application of Particle filter to para- 
meter estimation will be the subject of future work. 
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