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ABSTRACT.  In this study, an interval-fuzzy two-stage stochastic linear programming (IFTP) method is developed for planning 
waste-management systems under uncertainty. In the IFTP, approaches of two-stage stochastic programming, interval-parameter 
programming, and fuzzy linear programming are integrated into a general optimization framework to effectively tackle uncertainties 
described in terms of probability density functions, fuzzy membership functions and discrete intervals. The IFTP method can 
incorporate pre-regulated waste management policies directly into its optimization process, and be used for analyzing various policy 
scenarios that are associated with different levels of economic penalties when the promised policy targets are violated. It can also help 
quantify the satisfaction degrees of the system objective and constraints under uncertainty, as defined in the obtained solutions. The 
IFTP model can be transformed into two deterministic submodels based on an interactive algorithm. Interval solutions, which are 
stable in the given decision space with varying levels of system-failure risk, can then be obtained by solving the two submodels 
sequentially. Then, the developed method is applied to a case study of waste allocation within a municipal solid waste management 
system. The results indicate that reasonable solutions have been generated. They can be used to generate decision alternatives and help 
MSW managers to identify desired policies under various environmental, economic, and system-reliability conditions 
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1. Introduction 

The majority of the previous methods dealing with such 
uncertainties include fuzzy mathematical programming (FMP), 
stochastic mathematical programming (SMP), and interval 
mathematical programming (IMP) (Baetz, 1990; Chang and 
Wang, 1997; Chang et al., 1997; Huang et al., 1992, 1993, 
2001; Chanas and Zielinski, 2000; Li and Huang, 2006a, b). 
FMP considers uncertainties as fuzzy sets, and is effective in 
reflecting ambiguity and vagueness in resource availabilities. 
In comparison, IMP method can deal with uncertainties ex- 
pressed as intervals in objective-function coefficients and con- 
straints’ left- and right-hand sides (Huang et al., 1992). Con- 
sequently, combining advantages of FMP and IMP, Huang et 
al. (1993) proposed an interval-fuzzy programming method 
and applied it to MSW management systems to tackle uncer- 
tainties presented in terms of fuzzy and interval forms. Re- 
cently, Huang et al. (2001) developed an integrated fuzzy-sto- 
chastic linear programming method and applied it to MSW 
management, in which chance-constrained programming and 
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fuzzy linear programming were incorporated within a general 
interval-parameter mixed integer linear programming frame- 
work. In fact, although chance-constrained and fuzzy program- 

ming methods can effectively reflect probabilistic or possibili- 
stic distributions of a linear model’s right-hand sides, they 
cannot handle independent uncertainties of its left-hand sides 
and cost coefficients. Moreover, they are lack of linkage to 
economic consequences of violated policies predefined by au- 
thorities through taking recourse actions in order to correct 
any infeasibilities. 

Two-stage stochastic programming (TSP) is an effective 
tool for handling optimization problems where an analysis of 
policy scenarios is desired and the right-hand-side coefficients 
are random with known probability distributions. The funda- 
mental idea behind the stochastic programming is the concept 
of recourse, which is the ability to take corrective actions after 
a random event has taken place. In the TSP, a decision is first 
undertaken before values of random variables are known; then, 
after the random events have happened and their values are 
known, a second-stage decision can be made in order to mi- 
nimize “penalties” that may appear due to any infeasibility 
(Loucks et al., 1981; Birge and Louveaux, 1988, 1997). The 
initial action is called the first-stage decision, and the correc- 
tive one is named the second-stage decision. The TSP metho- 
dologies were applied to a variety of problems over the past 
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decades (Schultz et al., 1996; Ruszczynski and Swietanowski, 
1997; Ferrero et al., 1998; Huang and Loucks, 2000; Seifi and 
Hipel, 2001; Luo et al., 2003; Maqsood and Huang, 2003; Li 
et al., 2006, 2007). For example, Ferrero et al. (1998) examin- 
ed hydrothermal scheduling of multi-reservoir systems using a 
two-stage algorithm; Huang and Loucks (2000) proposed an 
inexact two-stage stochastic programming (ITSP) method for 
water resources management, which could tackle uncertainties 
expressed as both probability distributions and intervals and 
account for economic penalties. However, few previous stu- 
dies were reported on the development of TSP methods for 
solid waste management. Maqsood and Huang (2003) firstly 
explored a two-stage interval-stochastic programming (TISP) 
method for the planning of solid waste management. The 
TISP can deal with uncertainties expressed as probability den- 
sity functions and discrete intervals; however, it can hardly re- 
flect the system’s dynamic feature (e.g. planning for capacity 
expansions) and, at the same time, has difficulties when the 
model’s right-hand-side parameters have large intervals. Li et 
al. (2006) proposed an interval-parameter two-stage stochastic 
integer programming method for planning solid-waste mana- 
gement systems; this method can facilitate dynamic analysis 
for decisions of capacity-expansion planning within a multi- 
period context and under stochastic conditions. However, it 
was incapable of tackling uncertainties in the constraints’ 
right-hand sides presented as fuzzy sets. In fact, in many real- 
world problems, results produced by optimization techniques 
can be rendered highly questionable if the modeling inputs 
cannot be expressed with precision. Quality of the available 
information is generally poor, and uncertainties may be pre- 
sented as random variables, intervals and/or fuzzy sets (Yeo- 
mans and Huang, 2003; Li and Huang, 2006a). Therefore, a 
robust reflection of the variety of uncertainties is desired. 

Thus, the objective of this study is to develop an interval- 
fuzzy two-stage stochastic linear programming (IFTP) method 
for planning waste-management systems. The method can di- 
rectly deal with uncertainties expressed as fuzzy membership 
functions, probability density functions and discrete intervals. 
Moreover, it can support the analysis of various policy scena- 
rios that are associated with different levels of economic pe- 
nalties when the promised targets are violated. The proposed 
method will then be applied to a case study of MSW manage- 
ment to demonstrate its applicability. The results can help quan- 

tify the relationships between system cost and degree of satis- 
faction, and thus generate desired decision alternatives. This 
will allow in-depth analyses of tradeoffs between environ- 
mental and economic objectives as well as those between sys- 
tem cost and decision-makers’ satisfaction degree. 

2. Model Development 

2.1. Interval-Fuzzy Linear Programming 

Consider an interval-parameter programming (IPP) model 

as follows (Huang et al., 1992): 
 

Min f  = C X                                     (1a) 
 
subject to: 

A X  B                                         (1b) 
 
X  0                                         (1c)
  
where A {R}mn, B  {R}

mx1
, C  {R}1n, X  {R}n1, 

R denotes a set of interval numbers, and f  refers to a lin- 
ear objective function. This IPP model can be transformed in- 
to two deterministic submodels corresponding to upper and 
lower bounds of the objective function value (Huang et al., 
1992). By solving the two submodels, interval solutions can 
be obtained. Furthermore, when the system’s goal and con- 
straints are fuzzy, an interval-fuzzy linear programming (IFLP) 
model can be formulated through incorporating the concept of 
fuzzy programming within the IPP framework (Huang et al., 
1993): 

 
Max                                          (2a) 

 
subject to: 
 

( )C X f f f                                          (2b) 

 
( )A X B B B                                      (2c) 

 
0X                                            (2d) 

 
0 1                                            (2e) 

 
where f   and f   are lower and upper bounds of the ob- 
jective’s aspiration level, respectively. Based on the principle 
of fuzzy flexible programming (Zimmermann, 1985),   is a 
control variable corresponding to the degree (membership 
grade) of satisfaction for a fuzzy decision. Specifically, the 
flexibility in the constraints and fuzziness in the objective 
(which are represented by fuzzy sets and denoted as “fuzzy 
constraints” and a “fuzzy goal”, respectively) are expressed as 
membership grades ( ) corresponding to the degrees of over- 
all satisfaction for the constraints/objective (Zimmermann, 
1985; Huang et al., 1993). 

 
2.2. Two-Stage Stochastic Programming 

When uncertainties in the model’s right-hand-side values 
are expressed as probability density functions while decisions 
need to be made periodically over time, the study problem can 
be formulated as a two-stage stochastic programming (TSP) 
model. In the TSP, the decision variables are divided into two 
subsets: those that must be determined before the realizations 
of random variables are known, and those (recourse variables) 
that will be determined after the realized values of the random 
variables are available. This implies that a second-stage deci- 
sion is used to minimize “penalties” that may appear due to 
any infeasibility. Assume that B of Model (1) with a minimiz- 
ed objective and equality constraints is not precisely known 
and only its distribution, with finite mean E(B), is given. We 
can then assume that there exists a penalty for any difference 
(a random variable) between AX and B. The problem can thus 
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become to choose X which minimizes the sum of the CX and 
the mean of the penalties (Dantzig, 1983). A standard formu- 
lation for a TSP model is provided as follows (Birge and Lou- 
veaux, 1997): 

 
min [ ( , )]Tz C X E Q X    

 
s.t. Xx                                             (3a) 
 
with 
 

yfxQ T)(min),(     

 
s.t. xThyD )()()(                               (3b) 

 
Yy  

 
where X ك Rn1, c א Rn1, Y ك Rn2, and ω is a random variable 
from probability space (Ω, F, P) with Ω ك Rk, f: Ω → Rn2, h: 
Ω → Rm2, D: Ω → Rm2×n2, and T: Ω → Rm2×n1. Problem (3a) 
with variables x constitutes the first-stage decision which 
needs to be made prior to the realization of uncertain 
parameters ω, while problem (3b) with variables y constitutes 
the second-stage decision. For given values of the first-stage 
variables ( x ), the second-stage problem can be decomposed 
into independent linear sub-problems, with one sub-problem 
for each realization of the uncertain parameters.  

 
2.3. Interval-Fuzzy Two-Stage Stochastic Programming 

Consider a waste-management system wherein a mana- 
ger is responsible for allocating waste flows from two cities to 
one landfill and one incinerator over several time periods. The 
objective of the study problem is to minimize the system cost 
with the optimal waste flow patterns. As waste-generation am- 
ounts from the cities are uncertain (expressed as probability 
density functions) while decisions need to be made periodical- 
ly over time, the study problem can be formulated as a two- 
stage stochastic programming (TSP) model. A decision of tar- 
get waste-flow allocation made at the beginning is named the 
first-stage decision, and the recourse decision is called the se- 
cond-stage decision. The first-stage decision has to be made 
before further information is revealed, whereas the second- 
stage one is to adapt to the previous decision based on the fur- 
ther information. Based on the local waste management poli- 
cies, a projected allowable waste-flow level from each city is 
pre-regulated. If this level is not exceeded, it will result in a 
regular (normal) cost to the system; however, if this allowance 
is exceeded, it will mean a surplus flow associated with eco- 
nomic penalties and/or expansion costs. The penalties will be 
disposed of at a premium expressed in terms of raised trans- 
portation and operation costs; facility expansions will help in- 
crease the allowable flow levels and reduce the penalties. Thus, 
the total waste flow will be the sum of both fixed target and 
probabilistic surplus flows.  

In fact, in real-world MSW management problems, the 
quality of available information is generally poor, being often 

presented as vague values and/or discrete intervals. For exam- 
ple, the uncertainties in waste transportation costs, facility ope- 

ration costs and revenues, and waste-generation rates may be 
described as intervals; at the same time, the lower and upper 
bounds of these interval parameters may also be fuzzy in na- 
ture, leading to dual uncertainties. Thus, the IFLP and TSP 
methods will be integrated within a general optimization frame- 

work to deal with such uncertainties. This leads to an interval- 
fuzzy two-stage stochastic programming (IFTP) model as foll- 
ows: 

 
Max                                             (4a) 
 
subject to: 
 

2 2 3 2 3

2 2 2 1
1 1 1 1 1

2 2 3 2 2
( ) ( )

2
1 1 1 1 1

2 3 2 3
( )

2 1 2
1 1 1 1

( ) ( )

[ ]( ) [ ]

( ) [ ]

k ijk ijk ik k jk k k
i j k j k

w w
k ijk ijk ik k ijk

i j k j k

w
k k k ijk k k ijk

j k j k

L X TR OP L X FE FT OP

L E M DR DP L E M FE

DT DP L X RE L E M

      

    

  

    

   

   

  

   

  

 

 

  2kRM 

 

(1 )( )f f f       (4b) 

[system objective constraint] 
 

2 3
( ) ( )

1 1 2 2 2
1 1

[( ) ( )] (1 )(w w
k jk jk jk jk

j k

L X M FE X M LC LC  

 

       

)LC  (4c) 

[landfill-capacity constraint] 
 

2
( )

2 2
1

( ) (1 )( )w
jk jk

j

X M TC TC TC



                   (4d) 

[incinerator-capacity constraint] 
 

2
( )

1

( ) ,  ,w
ijk ijk jk jk

i

X M W W j k  



      
                (4e) 

[waste-disposal demand constraint] 
 

2 2
( )

2 2 2
1 1

( ) ( ),  w
jk jk k jk jk

j j

X M DG W W k   

 

       
           (4f) 

[diversion-rate constraint of waste flows to incinerator] 
 

( ) 0,  , ,w
ijk ijkX M i j k                               (4g) 

 
0 1                                         (4h) 
[non-negativity and technical constraints] 
 

where: 

i = type of waste management facility, where i = 1 for land- 
fill, and i = 2 for incinerator; 

j  = name of city,  j = 1, 2; 

k  = planning period, k = 1, 2, 3; 

kL  = length of period k (day); 
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2kDG  = regulated diversion rate of waste flow to the inci- 
nerator in period k (%); 

ikDP  = operating cost of facility i for excess waste flow dur- 
ing period k (the second-stage cost parameter) ($/t), where 

ik ikDP OP  ; 

ijkDR  = transportation cost for excess waste flow from city j 
to facility i during period k (the second-stage cost parameter) 
($/t), where   ijkijk TRDR ; 

ikDT   = transportation cost of excess waste residue from the 
incinerator to the landfill during period k (the second-stage 
cost parameter) ($/t), where   ikik FTDT ; 

2FE  = residue flow rate from the incinerator to the landfill 
(% of incoming mass to facility i); 

2kFT   = transportation cost for allowable residue flow from 
the incinerator to the landfill during period k ($/t); 

LC  = lower bound of the landfill capacity (tonne);  

LC  = upper-bound of the landfill capacity (tonne);  
( )w
ijkM  = amount by which the allowable waste flow level (Xijk) 

is exceeded when the waste generation rate in city j during 
period k is Wjk (t/d) (the second-stage decision variable); 

ikOP  = operating cost of facility i for allowable waste flow 
during period k ($/t); 

2kRE  = revenue from allowable waste flow treated by the 
incinerator during period k (the first-stage cost parameter) 
($/t); 

2kRM   = revenue from excess flow treated by the incinerator 
during period k (the second-stage cost parameter) ($/t); 

TC  = lower-bound of the incinerator capacity (t/d); 

TC  = upper-bound of the incinerator capacity (t/d); 

ijkTR  = transportation cost for allowable waste flow from city 
j to facility i during period k (the first-stage cost parameter) 
($/t); 

jkW  = random variable of waste-generation rate in city j dur- 
ing period k (t/d); 

ijkX   = allowable waste flow from city j to facility i during 
period k (the first-stage variable) (t/d); 

where f - and f+ are the lower and upper bounds of the ob- 
jective’s aspiration level as designated by decision makers, 
respectively;   is control variable and ( )w

ijkM  are decision 
variables. The   value corresponds to the degree of satisfac- 
tion for the fuzzy objective and/or constraints, which ranges 
between 0 and 1. A value closer to 1 would correspond to a 
solution with a high possibility of satisfying the constraints/ 
objective under advantageous conditions; conversely, a value 
near 0 would be related to a solution that has a low possibility 
of satisfying the constraints/objective under demanding condi- 
tions. In model (4), [ ,  ] [ ,  ]jk jk jk jk jk jk jkW W W W W W W          

  
 

[ ,  ]jk jk jk jkW W W W      , where jkW   is the lower boundary of 
lower interval waste-generation rate, and jkW 

 is the upper 

boundary of lower interval waste-generation rate, and jkW   is 
the lower boundary of upper interval waste-generation rate, 
and jkW   is the upper boundary of upper interval waste-gene- 
ration rate, respectively. 

Model (4) is generally nonlinear, and the set of feasible 
constraints is convex only for some particular distributions. 
However, the IFTP problem can be equivalently formulated as 
a linear model (Maqsood and Huang, 2003). Let each Wjk take 
value wjkh with probability pjh (for h = 1, 2, …, s), where h is 
denoted as the level of waste-generation rate in city j. Con- 
sequently, the above nonlinear model can be converted into a 
linear one (IFTP) as follows: 

 
Max                                             (5a) 
 
subject to: 
 

2 2 3 2 3

2 2 2 1
1 1 1 1 1

2 2 3 2 2

2
1 1 1 1 1 1 1

2 3 3
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( )
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s s
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   
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  

   

  
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2

2
1

h ijkh k
j

M RM 




(1 )( )f f f       (5b) 
 

2 3

1 1 2 2 2
1 1

[( ) ( )] (1 )(k jk jkh jk jk
j k

L X M FE X M LC LC    

 

       

),   LC h   (5c) 
 

2

2 2
1

( ) (1 )( ),   jk jkh
j

X M TC TC TC h 



                (5d) 

 
2

1

( ) ,  , ,ijk ijkh jkh jkh
i

X M w w j k h   



      
            (5e) 

 
2 2

2 2 2
1 1

( ) ( ),   ,jk jkh k jkh jkh
j j

X M DG w w k h    

 

       
        (5f) 

 

0,   , , ,ijk ijkhX M i j k h                              (5g) 

 

0 1                                          (5h) 
 

2.4. Solution Method for the IFTP 

The IFTP model can deal with uncertainties described as 
not only intervals but also probability distributions and mem- 
bership functions. When ijkX   are known as deterministic va- 
lues, the model can be transformed into two deterministic sub- 
models that correspond to the lower and upper bounds of the 
objective value through a two-step solution method (Huang et 
al., 1993). Since the objective is to minimize the system cost, 
submodel with   corresponding to f   (i.e. the most desi- 
rable objective value) can be first formulated as follows: 

 
Max                                             (6a) 
 
subject to: 
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0 1                                            (6h) 
 
where   and ijkhM 

 are decision variables. Let opt  and 

optijkhM   be the solutions of submodel (6). In the second step, 
submodel (7) with   corresponding to f   can then be for- 
mulated based on the solutions of submodel (6) as follows: 
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optijkh ijkhM M                                          (7i) 

 
where   and ijkhM 

 are decision variables. Let opt  and 

optijkhM   be the solutions of submodel (7). Thus, we can obtain 
the general solutions as follows: 

 

opt opt opt[ ,  ],  , , ,ijkh ijkh ijkhM M M i j k h                       (8a) 

 

opt opt opt[ , ]                                        (8b) 

 

opt opt opt[ ,  ]f f f  
                                  (8c)  

Thus, the optimal waste-flow pattern including regular 
and excess flows from each city to each facility under varied 
waste-generation rates is: 

 

opt opt ,  , , ,ijkh ijk ijkhA X M i j k h                           (8d) 
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Figure 1. Framework for the IFTP method.  
 

Figure 1 shows the framework of the IFTP model. The 
main advantage of the developed approach is that different 
policies for waste management activities can be quantitatively 
incorporated within the modeling framework. The IFTP mo- 
del can deal with uncertainties described as intervals, probabi- 
lity distributions, and membership functions. The solution al- 
gorithm of the IFTP model is mainly based on an interactive 
algorithm. Interval solutions with an associated level of sys- 
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tem-failure risk can be obtained through solving submodels (6) 
and (7) sequentially. They can be easily interpreted for gene- 
rating multiple decision-making alternatives. 

3. Case Study 

Considered a case in which municipal waste flows from 
two cities are allocated to one landfill and one incinerator for 
disposal. The planning horizon is 15 years (with three 5-year 
periods). The landfill has an existing capacity of 1.50 to 1.75 
million tonnes, the incinerator has a capacity of 220 to 270 
t/day. The incinerator generates residues of approximately 
30% (on a mass basis) of its incoming waste streams, which 
are disposed at the landfill. In fact, the waste-generation rates 

may fluctuate within a range with the varied production pro- 
cess and major materials. Table 1 shows the waste generation 
rates and their associated probabilities of occurrence at the 
two cities. Table 2 contains transportation costs for allowable 
waste flows from the two cities to the landfill and the inci- 
nerator, operating costs of the landfill and incinerator, penalti- 
es for surplus waste flows, and revenues from the incinerator 
over the planning horizon. According to the waste manage- 
ment policy, an allowable waste-flow level that is a projected 
quota of waste flow from each city to each facility is prede- 
fined by local waste managers. Table 3 gives the allowable 
waste-flow levels from the two cities to landfill and incinera- 
tor, respectively. In addition, to reduce the waste flows dispo- 
sed at the landfill, the region projects that the proportion of 

Table 1. Waste-Generation Rates under Different Probability Levels 

Level of 
waste-generation 

Probability 
Waste-generation rate, jkhW 


 (t/d) 

k = 1 k = 2 k = 3 
City 1: 
h = 1 (L) 0.2 [ [90, 105],  [120, 130] ] [ [105, 120],  [135, 145] ] [ [120, 135],  [150, 160] ] 
h = 2 (M) 0.6 [ [130, 150],  [165, 180] ] [ [145, 165],  [180, 195] ] [ [160, 180],  [200, 215] ] 
h = 3 (H) 0.2 [ [180, 205],  [215, 230] ] [ [195, 220],  [235, 250] ] [ [215, 240],  [255, 270] ] 
City 2: 
h = 1 (L) 0.15 [ [110, 125],  [140, 150] ]  [ [130, 145],  [160, 170] ] [ [155, 170],  [185, 195] ] 
h = 2 (M) 0.4 [ [150, 170],  [185, 200] ] [ [170, 190],  [205, 220] ] [ [195, 215],  [230, 245] ] 
h = 3 (M-H) 0.3 [ [200, 225],  [240, 255] ] [ [220, 245],  [260, 275] ] [ [245, 265],  [285, 300] ] 
h = 4 (H) 0.15 [ [255, 275],  [285, 295] ] [ [275, 295],  [305, 315] ] [ [300, 320],  [330, 340] ] 

L: low; M: medium; M-H: medium-high; H: high. 

Table 2. Regular Transportation and Operation Cost and Penalty 

 Time period 

k = 1 k = 2 k = 3 
Transportation cost of allowable waste to landfill ($/t): 
 City 1 [10.5, 14.5] [11.6, 15.9] [12.7, 17.5] 
 City 2 [12.8, 17.1] [14.1, 18.8] [15.5, 20.7] 

Transportation cost of allowable waste to incinerator ($/t): 
 City 1 [8.8, 11.7] [9.7, 12.9] [10.7, 14.2] 
 City 2 [9.6, 12.8] [10.6, 14.1] [11.7, 15.5] 

Regular operation cost ($/t): 
 Landfill [30, 45] [35, 50] [40, 55] 
 Incinerator [50, 65] [60, 80] [70, 90] 

Transportation cost of allowable residues ($/t) [4.7, 6.3] [5.2, 6.9] [5.7, 7.6] 

Revenue from incinerator from allowable waste ($/t) [15, 25] [20, 30] [25, 35] 

Transportation cost of excess waste to landfill ($/t): 
 City 1 [15.8, 21.8] [17.4, 23.8] [19.0, 26.3] 
 City 2 [19.2, 25.6] [21.1, 28.2] [23.2, 31.0] 

Transportation cost of excess waste to incinerator($/t): 
 City 1 [14.0, 18.6] [15.5, 20.6] [17.1, 22.7] 
 City 2 [15.2, 20.6] [16.7, 22.6] [18.3, 24.8] 

Operation cost of excess waste ($/t): 
 Landfill [50, 65] [60, 85] [70, 100] 
 Incinerator [100, 130] [120, 160] [140, 180] 

Transportation cost of excess residues ($/t) [7.1, 9.5] [7.8, 10.4] [8.6, 11.4] 

Revenue from incinerator from excess waste($/t) [15, 25] [20, 30] [25, 35] 
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waste flows allocated to the incinerator will not be less than 
35%. 

 
Table 3. Allowable Waste Flows from the City to the Two 
Facilities 

 Time period 

k = 1 k = 2 k = 3 
Allowable waste flow to landfill (t/d): 
City 1 85 95 105 
City 2 95 105 115 

Allowable waste flow to incinerator (t/d): 
City 1 55 60 65 
City 2 70 80 90 

 
Therefore, the problem under consideration is how to ef- 

fectively allocate waste flows from the two cities to suitable 
waste management facilities with the minimized system cost 
under varied waste generation and management conditions. 
The decision variables represent probabilistic excess waste 
flows from city j to facility i in period k under waste-gene- 
ration level h (denoted as M±

ijkh). The constraints involve all 
relationships among the decision variables and the waste ge- 
neration/management conditions. Information for a variety of 
system components in such a waste management system is 
not known with certainty. Uncertainties may exist in 
terms of intervals, probability distributions and fuzzy mem- 
bership functions; moreover, a linkage to the predefined poli- 
cies as formulated by local authorities is desired. Thus, the 
IFTP method is considered to be a suitable approach for tac- 
kling this planning problem. 

4. Result Analysis 

Table 4 presents the solutions obtained through the IFTP 
method. The temporal and spatial variations of waste-genera- 
tion rates may result in the varied waste-flow patterns. Each 
optimized waste flow is the sum of the allowable and excess 
flows (i.e. A±

ijkhopt = X±
ijk + M±

ijkhopt) from a city to a facility 
un- der a given waste-generation condition. In case of excess 
waste, allotment to the landfill should be assigned firstly and 
then to incinerator due mainly to their differences in operating 
costs. The analysis of the modeling solutions for period 1 are 
provided below, while those for periods 2 and 3 can be simi- 
larly interpreted based on Table 4. 

Figure 2 shows the optimized waste flows (including al- 
lowable and excess flows) from the two cities to the landfill 
under different waste-generation rates. For city 1, when waste- 
generation rates are low, medium and high, the excess waste 
flows to the landfill would be 0, [4.0, 20.5] and [33.2, 42.3] 
t/day (with probabilities of 20, 60 and 20%, respectively); 
thus, the total waste flows from city 1 to the landfill would be 
85, [89.0, 105.5] and [118.2, 127.3] t/day. For city 2, when 
waste-generation rates are low, medium, medium-high and 
high, the excess flows to the landfill would be 0, [0.0, 15.5], 
[49.0, 71.6] and [81.7, 100.8] t/day (with probabilities of 15, 
40, 30 and 15%, respectively); thus, the total waste flows 
from city 2 to the landfill would be 95, [95.0, 110.5], [144.0, 

166.6] and [176.7, 195.8] t/day.  
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Figure 2. Optimized waste flows from the two cities to the 
landfill.  
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Figure 3. Optimized waste flows from the two cities to the 
incinerator. 
 

Figure 3 provides the optimized waste flows (including 
allowable and excess flows) from the two cities to the incine- 
rator under different waste-generation rates. For city 1, the ex- 
cess flow to the incinerator would be zero when waste-genera- 
tion rates are low and medium, and the total waste flows from 
city 1 to the incinerator would be 55 t/day; the excess flows to 
the incinerator would be [16.2, 33.2] t/day when waste-genera 
tion rate is high, and the total waste flow would be [71.2, 88.2] 
t/day. For city 2, there would be no excess flow to the incine- 
rator when waste-generation rates are low, medium and me- 
dium-high, and the total waste flows from city 2 to the in- 
cinerator would be 70 t/day; the excess flow to the incinerator 
would be 17.6 t/day when waste-generation rate is high, and 
the total waste flow would be 87.6 t/day. 

 

The expected system cost is $[115.8, 191.1] million, with 
the degree of overall satisfaction (  ) being [0.21, 0.93]. The 
lower system cost value represents as an alternative with a 
lower waste generation rate, while the higher one corresponds 
to an alternative with a higher waste generation rate. Usually, 
planning with a higher system cost would guarantee that the 
waste management requirements and environmental regula- 
tions are met; in comparison, as the plan aims toward a lower 
system cost, these requirements may not be met. Therefore, in 
practical problems, lower decision variable values generally 
should be used under lower waste generation conditions since 
they correspond to a lower system cost; in comparison, higher 
decision variable values are suitable for more conservative 
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conditions where a higher waste generation rate (and thus hi- 
gher system cost may exist. The   level represents the pos- 
sibility of satisfying both objective and constraints. It corres- 
ponds to the decision makers’ preference regarding environ- 
mental and economic tradeoffs. In detail, λ- = 0.21 corres- 
ponds to the upper-bound system cost ( f = $191.1 million), 
representing the maximum degree of satisfaction under de- 
manding system conditions. In comparison,  = 0.93 is as- 
sociated with the lower-bound system cost ( f = $115.8 mil- 
lion), representing the maximum degree of satisfaction under 

advantageous conditions.  

5. Conclusions 

In this study, an interval-fuzzy two-stage linear program- 
ming (IFTP) method has been developed for planning waste- 
management systems under uncertainty. Methods of two-stage 
stochastic programming and interval fuzzy linear program- 
ming are introduced to a general optimization framework to 
effectively tackle uncertainties that are presented in terms of 

Table 4. Solutions Obtained from the IFTP Model 

ijkh Facility City Period 
Waste 

generation rate 
Probability (%) 

Allowable 
waste flow (t/d) 

Excess waste 
flow (t/d) 

Optimized waste 
flow (t/d) 

1111 Landfill 1 1 Low 20 85 0 85 
1112 Landfill 1 1 Medium 60 85 [4.0, 20.5] [89.0, 105.5] 
1113 Landfill 1 1 High 20 85 [33.2, 42.3] [118.2, 127.3] 
1121 Landfill 1 2 Low 20 95 0 95 
1122 Landfill 1 2 Medium 60 95 [4.0, 20.5] [99.0, 115.5] 
1123 Landfill 1 2 High 20 95 [32.4, 47.5] [127.4, 142.5] 
1131 Landfill 1 3 Low 20 105 0 105 
1132 Landfill 1 3 Medium 60 105 [8.7, 21.0] [113.7, 126.0] 
1133 Landfill 1 3 High 20 105 [41.6, 51.7] [146.6, 156.7] 
1211 Landfill 2 1 Low 15 95 0 95 
1212 Landfill 2 1 Medium 40 95 [0.0, 15.5] [95.0, 110.5] 
1213 Landfill 2 1 Medium-high 30 95 [49.0, 71.6] [144.0, 166.6] 
1214 Landfill 2 1 High 15 95 [81.7, 100.8] [176.7, 195.8] 
1221 Landfill 2 2 Low 15 105 0 105 
1222 Landfill 2 2 Medium 40 105 [0.0, 15.5] [105.0, 120.5] 
1223 Landfill 2 2 Medium-high 30 105 [53.7, 66.6] [158.7, 171.6] 
1224 Landfill 2 2 High 15 105 [88.3, 100.3] [193.3, 205.3] 
1231 Landfill 2 3 Low 15 115 0 115 
1232 Landfill 2 3 Medium 40 115 [4.0, 20.5] [119.0, 135.5] 
1233 Landfill 2 3 Medium-high 30 115 [58.7, 71.6] [173.7, 186.6] 
1234 Landfill 2 3 High 15 115 [56.1, 75.2] [171.1, 190.2] 
2111 Incinerator 1 1 Low 20 55 0 55 
2112 Incinerator 1 1 Medium 60 55 0 55 
2113 Incinerator 1 1 High 20 55 [16.2, 33.2] [71.2, 88.2] 
2121 Incinerator 1 2 Low 20 60 0 60 
2122 Incinerator 1 2 Medium 60 60 0 60 
2123 Incinerator 1 2 High 20 60 [21.6, 29.1] [81.6, 89.1] 
2131 Incinerator 1 3 Low 20 65 0 65 
2132 Incinerator 1 3 Medium 60 65 0 65 
2211 Incinerator 2 1 Low 15 70 0 70 
2212 Incinerator 2 1 Medium 40 70 0 70 
2213 Incinerator 2 1 Medium-high 30 70 0 70 
2214 Incinerator 2 1 High 15 70 17.6 87.6 
2221 Incinerator 2 2 Low 15 80 0 80 
2222 Incinerator 2 2 Medium 40 80 0 80 
2223 Incinerator 2 2 Medium-high 30 80 0 80 
2224 Incinerator 2 2 High 15 80 [11.1, 18.1] [91.1, 98.1] 
2231 Incinerator 2 3 Low 15 90 0 90 
2232 Incinerator 2 3 Medium 40 90 0 90 
2233 Incinerator 2 3 Medium-high 30 90 0 90 
2234 Incinerator 2 3 High 15 90 48.3 138.3 

Satisfaction degree:          opt = [0.21, 0.93] 

Net system cost ($106):       optf  = [115.8, 191.1] 
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probability density functions, fuzzy membership functions 
and discrete intervals. Moreover, the IFTP can be used for ex- 
amining various policy scenarios that are associated with dif- 
ferent levels of economic penalties when the promised targets 
are violated. Furthermore, the IFTP can produce solutions for 
not only the decision variables and the objective function but 
also the degree of overall system satisfaction under various 
conditions. Thus, the solutions can help quantify relationships 
between the system cost and the overall satisfaction degree, 
which is meaningful for supporting more in-depth analyses of 
tradeoffs between environmental and economic objectives as 
well as those between system optimality and reliability. The 
method has been applied to a case study of waste-flow allo- 
cation within a municipal solid waste management system. 
The results indicate that reasonable solutions have been gene- 
rated. They can provide desired waste-flow patterns with mi- 
nimized system cost and maximized system reliability. In ge- 
neral, although the developed method is for the first time in- 
troduced to the waste-management field, the results suggest 
that it is also applicable to other resource and environmental 
management problems. 
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