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ABSTRACT.  Surface water quality models (SWQM) are always developed as universal frameworks so that they can be flexibly em- 
ployed to simulate a large variety of water bodies. These models are often over-parameterized (more parameters than needed are 
included in these models). As a result, it is necessary to identify sensitive parameters when these models are applied to the simulations 
of specific water bodies. Sensitivity analysis has been widely used as an effective tool to undertake the task. In this study, a hybrid 
approach was developed through integrating the parameter perturbation method and the Morris method into a general SWQM- 
parameter sensitivity analysis framework. The approach was applied to Lake Maumelle in Arkansas with its hydrodynamics and water 
quality being simulated by the model CE-QUAL-W2. The sensitivities of the 96 model parameters were firstly evaluated by the 
parameter perturbation method in the simulation of the variables including temperature, ammonium, nitrate-nitrite, dissolved oxygen, 
total phosphorus and chlorophyll a, and 51 of them were found sensitive. The sensitivities of the 51 parameters were further investi- 
gated using the Morris method. It was found that each output variable was strongly sensitive to a distinctive set of parameters. It is also 
observed that the highly sensitive parameters display nonlinear relationships with the model outputs or strong correlations with other 
parameters. The obtained results from this study could provide a scientific base and solid start for the calibration, validation and 
application of the model. 
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1. Introduction 

In the development of surface water quality models 
(SWQM), hydraulic and kinetic parameters are employed to 
describe mathematically the hydrodynamic and kinetic proce- 
sses occurring in water bodies. These models are often estab- 
lished as universal frameworks in order that they are flexible 
and can be employed to simulate a large variety of water bodi- 
es. As a result, the developed universal SWQM frameworks al- 
ways contain a large number of parameters. On the one hand, 
this could significantly facilitate and enhance the water quaili- 
ty modeling process; on the other hand, inevitably, they are 
frequently over-parameterized (in other words, more parame- 
ters than needed are included in these models). Therefore, it 
becomes extremely necessary to identify the most important 
(or say, sensitive) parameters from the parameter pool in these 
models. Once identified, these parameters are the ones to which 
most of the calibration effort should be devoted. Previously, 
sensitivity analysis has been widely used as an effective tool 
for identifying the parameters that have relatively significant 
                                                        
* Corresponding author. Tel.: +1 902 4943958; fax: +1 902 4943108. 

E-mail address: Lei.Liu@dal.ca (L. Liu). 
 
ISSN: 1726-2135 print/1684-8799 online 
© 2008 ISEIS All rights reserved. doi:10.3808/jei.200800133 

influences on the model output. In addition, sensitivity analy- 
sis can play an important role in model verification and appli- 
cation. It also can be used to provide insights into the robust- 
ness of model results when making decisions. 

There are a large number of methods that can be used to 
perform a sensitivity analysis. These methods can be divided 
into two main categories: local and global sensitivity methods. 
Local sensitivity methods, such as the parameter perturbation 
method (Chapra, 1997) and differential analysis, calculate the 
local gradients of the model output with respect to infinitesi- 
mal parameter variations. They are simple to implement, com- 
putationally cheap and best suited for preliminary parameter 
screening to filter important parameters from the large num- 
ber of model parameters. However, these techniques focus on 
the impact of changes from pre-specified parameter values 
(such as default values). They cannot evaluate the sensitivity 
of the parameters over their entire feasible ranges. Conse- 
quently, a number of global sensitivity analysis techniques 
have been developed and are receiving considerable attention 
by different modelers. Examples include Fourier amplitude 
sensitivity test (FAST) (Deflandre et al., 2006), regional sen- 
sitivity analysis (RSA) (Sincock et al., 2003), generalized sen- 
sitivity analysis (GSA) (Cox and Whitehead, 2005), adjoint 
sensitivity method (Piasecki, 2004) and Monte Carlo analysis 
(Bobba et al., 1996). They are capable of explaining the mo- 
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del behavior under simultaneous parameter perturbations of 
arbitrary magnitude. Unfortunately, the global methods are 
generally computationally demanding (i.e. requiring a large 
number of model executions); their applications are mostly 
limited to the models that are computationally cheap or have a 
small number of parameters to be calibrated. Thus, for the 
computationally expensive water quality models, sensitivity 
analysis methods that are computational cheap are desired. 

The Morris method is a relatively computationally cheap 
method for sensitivity analysis (Morris, 1991; Saltelli et al., 
2004). Although it is a “one parameter at a time” (OAT) me- 
thod, in which only one parameter is modified between two 
successive runs of the model, it can examine the entire range 
of a parameter in successive runs. In this sense, the method 
can be regarded as global (Saltelli et al., 2004). This method 
has been used in several fields, such as chemical kinetic sys- 
tems (Zádor et al., 2006), watershed model (Francos et al., 
2003; Griensven et al., 2006), climate change prediction (Cam- 
polongo and Braddock, 1999) and laboratory ground water 
flow and solute transport modeling (Larsbo and Jarvis, 2006). 

CE-QUAL-W2 is a widely used hydrodynamic and water 
quality model supported by the USACE Waterways Experi- 
ments Station (Cole and Wells, 2003). Various sensitivity ana- 
lyses have been conducted to investigate the sensitivities of 
different parameters in this model (Green, 2001; Bowen and 
Hieronymus, 2003; Cole and Wells, 2003; Wu et al., 2006). 
However, a complete sensitivity analysis for all parameters in 
CE-QUAL-W2 has never been performed before due to the 
facts that the model contains a vast number of adjustable 
parameters and that the model execution is highly computa- 
tionally demanding. A complete sensitivity analysis would be 
a time-consuming process and computational challenge. 

The objective of this study is to develop a hybrid approach 
based on the parameter perturbation method and the Morris 
method to perform a comprehensive sensitivity analysis for 
the hydraulic and kinetic parameters in the model CE-QUAL- 
W2. The developed approach is applied to Lake Maumelle in 
Arkansas (US) and it is indicated that the obtained results could 
provide a scientific base and solid start for the calibration, va- 
lidation and application of the model. 

2. Methodology – The Hybrid Approach 

In the SWQM, model parameters are used to define vari- 
ous inherent hydrodynamic and kinetic processes affecting wa- 
ter flow and water quality. Some of the model parameters 
have significant impacts on the model outputs while others 
have less or no effects. Therefore, it is essential to screen and 
rank the parameters with respect to their sensitivities (on 
model output/behavior), and generate a short-list of most sen- 
sitive parameters so as to reduce the computation demand in 
model calibration, validation and application. In the proposed 
hybrid approach, the parameter perturbation method is simple 
to implement and computationally economic. It can help iden- 
tify and eliminate the least sensitive ones from the general pa- 
rameter pool through adjusting parameters from default values 
and analyzing their impacts. Then, the Morris method comes 

into play through ranking the remaining sensitive parameters 
in terms of their sensitivity levels and relative importance. 
Thus, individual groups of most and less-most sensitive para- 
meters can be identified, allowing the modeler concentrate on 
them and calibrate the model in a more effective and efficient 
fashion. 

 

2.1. The Parameter Perturbation Method 

The parameter perturbation method is a “one-parameter- 
at-a-time” approach. It consists of varying each of the model 
parameters within their feasible ranges at one point in the pa- 
rameter hyperspace while holding all other terms unchanged 
(Melching and Yoon, 1996; Chapra, 1997). The corresponding 
variations of model variables reflect how sensitive the model 
outputs (or solutions) are in response to the changed parame- 
ter. Different statistic methods, such as the absolute error, re- 
lative error, absolute mean error (AME), and root mean squ- 
are difference (RMSD) can be used to measure the variations. 
In this study, RMSD was used, which can be mathematically 
expressed as: 
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where yk is the kth model output (solution); xi refers to the ith 
model parameter; N is the total number of parameters; ∆xi is 
the perturbation of the model parameter xi and M is the total 
number of model outputs. A RMSD threshold was set for in- 
dicating whether the model parameter xi is sensitive or not. 

 

2.2. The Morris Method 

The Morris method was used in this study to rank the 
parameters in the parameter subset screened from the perturb- 
ation method. This method ranks the input parameters in terms 
of their relative importance and sensitivities through examin- 
ing their mean effect on output and their non-linear interaction 
effects (Saltelli et al., 2004). This method was described be- 
low. 

Assume that the model output y = y(x) is a scalar function 
of the vector x of input parameters. The vector x = (x1, x2, …, 
xN) has N elements and each xi is scaled to have values in the 
set {0, 1/(p − 1), 2/(p − 1), …, 1}, where p is the number of 
levels. A model run is performed based on the random select- 
ion of all input parameters from the set {0, 1/(p − 1), …, 1 − 
∆}. And then a single input parameter, xi, is randomly selected 
and modified by an increment ∆, and a second run is perform- 
ed. The elementary effect of the ith element of x on the output 
y where xi has been changed by an increment ∆ can be calcu- 
lated by: 

 

1 1 1( ) [ ( ,  ...,  ,  ,  ,  ...,  ) ( )]/i i i i Nd x y x x x x x y     x       (2) 

 
where d(xi) denotes the elementary effect of input parameter i 
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on the model output. In the case where a SWQM produces si- 
mulated outputs at several locations in a water body for a se- 
ries of time points, the elementary effect of the ith element of 
x on the outputs can be calculated using the following equa- 
tion: 
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where M is the total number of simulated outputs at all loca- 
tions and time points. Through the same procedure, the ele- 
mentary effects of all elements of x (all parameters) can be 
obtained. However, this procedure is extremely computation- 
ally demanding, and thus becomes unaffordable for most wa- 
ter quality models. Instead, the Morris method tends to obtain 
a finite distribution of elementary effects associated with the 
model parameters, during which this procedure is repeated un- 
til stable output statistics, including (arithmetic) mean and stan- 
dard deviation of elementary effects for each input parameter 
have been achieved. 

In the above method, two model runs are required for eva- 
luating each elementary effect. The computational effort requi- 
red for obtaining R elementary effects for each of N input pa- 
rameters equals to a total of 2NR model runs. Morris suggested 
a more efficient sampling method. The sampling method starts 
by randomly selecting a “base” value x*. Each component xi 
of x* is sampled from the set {0, 1/(p − 1), 2/(p − 1), ..., 1}. 
Note that the vector x* is used to generate the other sampling 
points but it is not one of them and the model is never evalu- 
ated at x*. The first sampling point, x(1), is obtained by increa- 
sing or decreasing ith element of x* by . The second sampl- 
ing point is generated from x* but differs from x(1) in its ith 
element. The third sampling point, x(3), is generated from the 
base value x* but differs from x(2) for element j (for any j ≠ i). 
The sampling method proceed to produce a succession of (N + 
1) sampling points x(1), x(2), ..., x(N+1), in which two consecutive 
points differ in only one element. These sampling points defi- 
nes a trajectory in the input space. In this sampling method, 
every element of the base vector x* has been selected at least 
once to be increased or decreased by  in order to calculate 
one elementary effect for each parameter. The total computa- 
tional effort required for obtaining R elementary effects for each 
of N input parameters equals (N + 1)R model runs. Although 
the sampling points belonging to the same trajectory are not 
independent, the R elementary effects for each input parameter 
are from different trajectories and are independent. The Morris 
measure, μ(xi), can then be used to estimate the overall effect 
of the ith element of x on the outputs by the following equa- 
tion: 
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where dj(xi) represents the elementary effect of xi on the out- 
put y in the jth run, where j = 1, …, R; μ(xi) represents the 

mean of dj(xi) over R runs. And the standard deviation is given 
by: 
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where σ(xi) represents the standard deviation of dj(xi). 

One potential problem associated with the Morris measu- 
re [μ(xi)] lies in that, the calculated dj(xi) might be positive or 
negative and the total effect measure could be biased or un- 
derestimated somehow because of that. To overcome this li- 
mitation, the Morris measure is modified to the following for- 
mula by using the absolute mean effect across R runs instead: 
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where μ*(xi) represents the absolute mean of dj(xi) over R runs, 
indicating the influence of input parameter xi on the model 
outputs; the larger the μ*(xi) is, the higher influence on the 
outputs from the input parameter xi, and the more sensitive the 
parameter is. 

The σ(xi) gives the spread extent of the elementary effect 
of one parameter on the output for all runs. A large measure of 
spread [large σ(xi)] usually is contributed from either a highly 
non-linear impact of the parameter xi on the output, or an in- 
teraction of the parameter xi with other parameters, or both. 
On the contrary, a low σ indicates similar values of the ele- 
mentary effects across the different calculations, implying that 
the effects of xi are almost independent of the points in the in- 
put space at which they are computed and the values taken by 
other parameters. 

The Morris method is easy to implement and computa- 
tionally economic in that the number of model evaluations is 
linear to the number of input parameters. The method uses in- 
cremental ratios as the sensitivity measure (i.e. the elementary 
effect) which is apparently a local measure. In order to make 
it be a global measure, the final measure (elementary effect, 
μ*) is obtained by averaging several elementary effects at dif- 
ferent points in the respective ranges of different input para- 
meters. Thus, it does not depend on individual points at which 
the elementary effects are computed. In this sense, the method 
can be regarded as global (Saltelli et al., 2004). 

 
2.3. CE-QUAL-W2 Model 

CE-QUAL-W2 is a two dimensional, longitudinal/vertical, 
hydrodynamic and water quality model coded in Fortran (Cole 
and Wells, 2003). Because the model assumes lateral homoge- 
neity, it is best suited for relatively long and narrow water bo- 
dies exhibiting longitudinal and vertical water quality gradi- 
ents. 

The model has the capability of simulating hydrodynamic 
and kinetic processes in water-bodies. Hydrodynamic calcula- 
tions include predictions of water surface elevations, velocities 
and temperature. Any combination of constituents can be in- 
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cluded/excluded from a simulation. The water quality algorithm 

is modular allowing various constituents to be easily added as 
additional subroutines. A number of water quality state vari- 
ables and derived variables can be simulated to form the out- 
puts of the model. The model has been applied to rivers, lakes, 
reservoirs, estuaries, and combinations thereof, such as the 
Bluestone Reservoir in West Virginia (Tillman and Cole, 1994) 
and the Cumberland River, Tennessee (Thackston et al., 
1994). 

3. The Study Site and Model Implementation 

3.1. The Study Site 

In this study, the CE-QUAL-W2 model was applied to si- 
mulating the hydrodynamic process and water quality condi- 
tions in Lake Maumelle in Arkansas (Figure 1). The lake is the 
major drinking-water supply source for the Little Rock metro- 
politan area in central Arkansas. In addition to water supply, 
the reservoir is a habitat for wildlife and also used for recrea- 
tional and fishing purposes. The lake contains a total water vo- 
lume of 2.70 × 108 m3 at the spillway elevation and has a vo- 
lume of 2.31×108 m3 of usable water (Green, 2001). Its sur- 
face area at the spillway elevation is approximately 36 km2. 
maximum length of the reservoir is 19 km, and maximum 
depth is 13.7 m with an average depth of 7.5 m. Four fixed 
sampling sites (Figure 1) were established along the down- 
stream gradient of Lake Maumelle. Water quality measured in 
Lake Maumelle varied spatially and temporally. Total phos- 
phorus concentrations were significantly less in the lower end 
of the lake than that in the upper end of the lake; however, 

concentrations of nitrogen, orthophosphorus, total and dissol- 
ved organic carbon did not vary significantly along the reach 
of the lake. The chlorophyll a concentrations varied seasonal- 
ly, with the highest concentrations occurred in October and 
November, but were relatively uniformly distributed through- 
out the space and year. 

 
3.2. Model Implementation 

To set up the CE-QUAL-W2 model, Lake Maumelle was 
discretized into 10 active computational segments along the 
mainstream of the reservoir with each segment being divided 
vertically into 1-m layers. The computational grid in the lon- 
gitudinal/vertical plane is presented in Figure 1. It consists of 
10 active longitudinal segments and up to 15 active cells in a 
segment. 

The model was configured to simulate the hydrodynamics 
and water quality of Lake Maumelle for the time period of 
2002 ~ 2004. A large number of hydraulic and kinetic para- 
meters, mainly kinetic parameters, are used in this model and 
96 of them can be adjusted in the simulation of the hydrody- 
namic and water quality variables, including temperature, dis- 
solved oxygen (DO), ammonium (NH4), nitrate plus nitrite 
(NO3 + NO2), total phosphorus (TP) and chlorophyll a (Chla). 
These parameters were preliminarily calibrated to the lake si- 
tuations, based mostly on the suggestions provided by Cole and 
Wells (2003). The pre-calibrated parameter values, as well as 
the names and definitions of the parameters were presented in 
Appendix. In addition, the upper and lower bounds of the pa- 
rameters were also provided in this Appendix. These bounds 
were determined according to the literature, particularly Cole 
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Figure 1. The Lake Maumelle and the computational grid: (a) the computational grid on the longitudinal-vertical plane; 
(b) Lake Maumelle with the water quality sampling sites. 
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and Wells (2003) and were adjusted to ensure the numerical 
stability of the model. 

4. Results and Discussions 

4.1. Sensitive Parameters 

A sensitivity analysis for the 96 dynamic and kinetic pa- 
rameters in the simulations of temperature, DO, NH4, NO3 + 
NO2, TP and Chla was conducted using the parameter pertur- 
bation method. This purpose was accomplished by implemen- 
ting two operations for each parameter. Firstly, the value of a 
selected parameter was increased from its preliminarily cali- 
brated value by 10% of its range (difference between its upper 
and lower bounds) while holding all other parameters to their 
preliminarily calibrated values without change. Secondly, the 
value of the selected parameter was decreased by 10% of its 
range from its preliminarily calibrated value. The correspond- 
ing variations of model output for each hydrodynamic or wa- 
ter quality variable were calculated using equation (1). If one 
of the two operations resulted in a RMSD value greater than a 
certain number for a variable (0.1% of averaged observed va- 
lues for temperature, and 0.5% for the other variables in this 
study), it can be considered that this parameter was sensitive 
in the simulation of this variable. This process was continued 
until the effects of all parameters were investigated. 

In total, 51 parameters were found sensitive in the simu- 
lations of temperature and concentrations of NH4, NO3+NO2, 
DO, TP and Chla over the time period of 2002 ~ 2004, as pre- 
sented in Table 1. In addition, the results show that hydraulic 
parameters, including AX, DX and FRICT, were sensitive in 
the simulation of water quality variables, while a part of kine- 
tic parameters were sensitive in the simulation of temperature. 
Based on the results, the other 45 parameters are much less 
sensitive or not sensitive at all in the simulations of these vari- 
ables. The values of these parameters could remain as their 
preliminarily calibrated values throughout the model calibra- 
tion and application process with very minor impacts on the 
model results. 

 
4.2. Most Sensitive Parameters 

The sensitivities of the 51 parameters that were identified 
by the parameter perturbation method were further investigat- 
ed using the Morris method. In the Morris method, how to cho- 
ose the value of p is a challenging question. The value of p 
depends not only on the sampling step ∆, which can be expre- 
ssed as ∆ = p/2(p − 1) (Saltelli et al., 2004), but also on the 
sample size, R. When the sample size R is small, it is very li- 
kely that not all the possible parameter levels be explored; 
while a high value of R implies a bigger sample size and cer- 
tainly more model runs. Morris (1991) used a sample size of 
R = 4 as the minimum value to place confidence in the results. 
Previous experiments (Campolongo and Saltelli, 1997; Cam- 
polongo et al., 1999; Saltelli et al., 2000) demonstrated that 
the choice of p = 4 and R = 10 produced valuable results. In 
this study, p = 4 and a much bigger R (R = 30) were used to 
make sure that stable results could be achieved (the order of 
parameters would not change with the increase of the sampl- 

ing size R). In total, 1560 model evaluations [= R × (N + 1) = 
30 × (51 + 1) = 1560] were performed. The sensitivity ranks 
of the 51 parameters in the simulations of temperature and 
concentrations of NH4, NO3 + NO2, DO, TP, and Chla over the 
years of 2002 ~ 2004 were presented and discussed in the fol- 
lowing context. 

 

 
 

Figure 2. The Morris sensitivity measures μ* and σ for the 51 
parameters in the simulation of temperature (only the most 
sensitive parameters are labeled). 
 

 
 

Figure 3. The Morris sensitivity measures μ* and σ for the 51 
parameters in the simulation of DO (only the most sensitive 
parameters are labeled). 

 
(1) Temperature 

The Morris sensitivity measures μ* (averaged absolute ele- 
mentary effect) and σ (standard deviation of elementary effects) 

were plotted in Figure 2 for the 51 model parameters in the si- 
mulation of temperature. It can be seen that the parameters can 
be categorized into three groups. Group one consists of three 
parameters, WSC, EXH2O, and CBHE, and all of them have 
high values of μ* and σ. High μ* indicates their significant 
impacts on the simulated temperature. High σ indicates that 
these parameters may have either nonlinear relationships with 
the simulated temperature or interactions with other parame- 
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ters or both. In other words, the influences of these parameters 
on the simulated temperature would change as the values of 
these parameters vary or the values of other parameters change. 
Group two includes four parameters, i.e., FRICT, BETA, DX 
and TSEDF. Their variations also affect the simulated tempe- 
rature. The above seven parameters are the most sensitive pa- 
rameters in simulating the temperature in the lake. Group three 
consists of the other 44 parameters. Their means and standard 
deviations of elementary effects are low, implying that the va- 
riations of their values result in minor influences on the simu- 
lated temperature. 

 

(2) DO 

Figure 3 shows the Morris sensitivity measures μ* and σ 
for the 51 model parameters in the simulation of DO. Seven 
parameters that have significant effects on the simulated DO 
are distinguished from other parameters. These parameters are 
SOD, WSC, SODK1, FSOD, SODK2, EXH2O, and FRICT. 
Among them, SOD and WSC are the most important parame- 
ters in terms of μ*. SODK1 and SODK2 have high values of 
both μ* and σ, indicating that they have large influence on 
simulated DO and their influence depends on their values and/ 
or the values of other parameters. FSOD, EXH2O and FRICT 
are also important in the simulation of DO. 

 

(3) NH4 

The Morris sensitivity measures μ* and σ for the 51 mo- 
del parameters in the simulation of NH4 is presented in Figure 
4. It can be seen that 15 parameters have effects on the simu- 
lation of NH4. These parameters are NH4DK, NH4R, ALGP, 
NH4K1, EXH2O, AR, AG, PO4R, SOD, OMK1, ALGN, AHSP, 
ASAT, FSOD, and SODK2. It can also be found that most of 
the parameters with high values of μ* also have high values of 
σ. It is indicated that the parameters that have large influen- 
ces on simulated NH4 also have high non-linear relationships 
with simulated NH4 and/or have high interactions with other 
parameters. 

 

(4) NO3 + NO2 

Figure 5 shows the Morris sensitivity measures μ* and σ 
for the 51 model parameters in the simulation of NO3 + NO2. 
As shown, 51 parameters can be divided into four groups. 
ALGP is the most sensitive parameter in the simulation of 
NO3 + NO2 because of its high average of absolute elementary 
effects. Its standard deviation is also high, indicating that its 
sensitivity strongly depends on its own value and the values 
of other parameters. The second group is composed of PO4R 
and SOD, both of which have a high average of absolute ele- 
mentary effects and a high standard deviation. The third group 
consists of approximately a dozen of parameters. The influen- 
ces of these parameters on the simulation of NO3 + NO2 can 
not be neglected. The remaining parameters form the fourth 
group. These parameters have the lowest means and standard 
deviations of elementary effects, implying that they have small 
influences on the simulation of NO3 + NO2. 

 

Table 1. 51 Sensitive Parameters Identified by the 
Perturbation Method 

# Parameter T* NH4 NO3  

+ NO2 
DO TP Chla 

1 AE + + +  + + 
2 AG  + +  + + 
3 AHSN  + +  + + 
4 AHSP + + + + + + 
5 AK1  + +  + + 
6 AK2  + +  + + 
7 AK3  + +  +  
8 AK4   +    
9 ALCHLA      + 
10 ALGN + + +  + + 
11 ALGP + + + + + + 
12 ALPOM  + +  +  
13 AM + + + + + + 
14 AR + + + + + + 
15 AS + + +  + + 
16 ASAT  + +  + + 
17 AX  + +  +  
18 BETA + + +  + + 
19 CBHE + + + + + + 
20 DX + + +  + + 
21 EXH2O + + + + + + 
22 EXOM + + + + + + 
23 EXSS + + +  + + 
24 FI + + +  + + 
25 FRICT + + + + + + 
26 FSOD  + + + + + 
27 LDOMDK  + + + + + 
28 LPOMDK + + +  + + 
29 LRDDK  + +  +  
30 LRPDK   +    
31 NH4DK + + + + + + 
32 NH4K1  + +  +  
33 NH4K2  + +  +  
34 NH4R + + + + + + 
35 NO3DK  + +  + + 
36 NO3K1   +    
37 NO3K2   +    
38 NO3S  + +  +  
39 O2LIM  + +  +  
40 OMK1 + + + + + + 
41 OMK2  + +  +  
42 PO4R + + + + + + 
43 POMS  + +  + + 
44 RDOMDK + + +  + + 
45 RPOMDK  + +  +  
46 SEDK  + +  +  
47 SOD  + + + + + 
48 SODK1  + + + + + 
49 SODK2  + +  + + 
50 TSEDF + + +  + + 
51 WSC + + + + + + 

Note: + denotes a sensitive parameter; T* means temperature. 
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(5) TP 

Figure 6 presents the sensitivity measures μ* and σ for the 
51 parameters in the simulation of TP. It can be found that the 
parameters can be divided into four groups. The first group 
consists of only one parameter, PO4R. This parameter has the 
highest mean and standard deviation of elementary effects. The 
second group is composed of six parameters, SOD, ALGP, 
FSOD, SODK2, SODK1, and WSC. These parameters have 
relative high means and standard deviations of elementary 
effects. The third group includes three parameters, EXH2O, 
RDOMDK and ALGN. The remaining parameters have low 
means and standard deviations of elementary effects, indicating 
minor influences from them on the simulated concentration of 
TP. 

 
(6) Chla 

Figure 7 shows the Morris sensitivity measures μ* and σ 
for the 51 model parameters in the simulation of Chla. 20 pa- 
rameters which have been identified as “most sensitive para- 

meters” in the simulation of Chla can be further ranked based 
on the values of calculated absolute mean of elementary effects. 
Among them, AS is in the first place; ALGP is in the second 
place; ALGN, PO4R and SOD are in the third place; RDOMDK 
is in the fourth place; and all others are in the sixth place.  

 
(7) Summary 

Apparently, simulation of each model variable (i.e. tem- 
perature, NH4, NO3 + NO2, DO, TP and Chla in this case stu- 
dy) is sensitive to a different set of parameters, respectively. 
Based on the mean absolute elementary effect (μ*) and stand- 
ard deviation of elementary effects (σ), the most sensitive pa- 
rameters were determined. A total of 28 parameters were iden- 
tified as most sensitive parameters when simulating all the mo- 
del variables, as presented in Table 2. Therefore, the signifi- 
cance of conducting model sensitivity analysis becomes im- 
mediately obvious from the perspective of improving the for- 
thcoming modeling effort when the parameters could be na- 
rrowed from a number of 96 to 28. 
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Figure 4. The Morris sensitivity measures μ* and σ for the 51 parameters in the 
simulation of NH4 (only the most sensitive parameters are labeled). 
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Figure 5. The Morris sensitivity measures μ* and σ for the 51 parameters in the 
simulation of NO3 + NO2 (only the most sensitive parameters are labeled). 
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Figure 6. The Morris sensitivity measures μ* and σ for the 51 
parameters in the simulation of TP (only the most sensitive 
parameters are labeled). 
 
Table 2. The Most Sensitive Parameters Identified by the 
Morris Method in the Simulation of Temperature, NH4, 
NO3+NO2, DO, TP and Chla 

Variable Most Sensitive Parameters 

Temperature* EXH2O, WSC, CBHE, FRICT, BETA, DX, 
TSEDF 

DO* SOD, WSC, SODK1, FSOD, SODK2, EXH2O, 
FRICT 

NH4
* NH4R, NH4DK, NH4K1, ALGP, EXH2O, AR, 

AG, PO4R, SOD, OMK1, ALGN, AHSP, ASAT, 
FSOD, SODK2 

NO3+NO2
* ALGP, PO4R, SOD, ALGN, NH4K1, FSOD, 

NH4DK, EXH2O, AHSP, NO3S, SODK2, AG, 
WSC, SODK1 

TP* PO4R, SOD, ALGP, FSOD, SODK2, SODK1, 
WSC, EXH2O, RDOMDK, ALGN 

Chla AS, ALGP, SOD, ALGN, PO4R, RDOMDK, AM, 
ALCHLA, AG, FSOD, LPOMDK, AHSP, OMK1, 
SODK2, EXH2O, AR, NH4R, SODK1, WSC 

Overall** AG, AHSP, ALCHLA, ALGN, ALGP, AM, AR, 
AS, ASAT, BETA, CBHE, DX, EXH2O, FRICT, 
FSOD, LPOMDK, NH4DK, NH4K1, NH4R, 
NO3S, OMK1, PO4R, RDOMDK, SOD, SODK1, 
SODK2, TSEDF, WSC 

*The parameters are ranked in terms of importance given by µ*. 
**The parameters are ordered alphabetically. 

5. Conclusions 

This study presents a computationally economic and effi- 
cient approach for identifying sensitive parameters in SWQMs. 
This approach was developed through integrating the parame- 
ter perturbation method and the Morris method into a general 
SWQM-parameter sensitivity analysis framework. The appro- 
ach was applied to the model CE-QUAL-W2 which was set 
up to simulate the hydrodynamics and water quality in Lake 
Maumelle in Arkansas. Model parameters were firstly evalu- 
ated by the parameter perturbation method and were then fur- 
ther investigated using the Morris method. It was found by the 

parameter perturbation that 51 out of 96 parameters were sen- 
sitive in the simulations of the variables including temperature, 
ammonium, nitrate-nitrite, dissolved oxygen, total phosphorus 
and chlorophyll a. The results from the parameter perturbation 
method show that hydraulic parameters are sensitive in the si- 
mulation of water quality, while some kinetic parameters are 
important in the simulation of hydrodynamics. It is thus indi- 
cated that hydrodynamic calibration and water quality calibra- 
tion should be implemented simultaneously. By the Morris 

method, it was found that the simulation of each variable was 
strongly sensitive to a different subset of 51 parameters and 
28 out of the 51 parameters were found the most sensitive pa- 
rameters in the simulations of all the variables. It is also ob- 
served through the Morris method that the highly sensitive pa- 
rameters not only display nonlinear relationships with the mo- 
del outputs but also demonstrate strong interactions with other 
parameters. This indicates that the importance of these sensi- 
tive parameters depends closely on the values of other para- 
meters, and thereby all the sensitive parameters should be ca- 
librated simultaneously in the next modeling step. The obtain- 
ed results from this study could provide a scientific base and 
solid start for the calibration, validation and application of the 
model. 
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Appendix I. Definitions of the 51 Sensitive Parameters 

# Parameter Pre-calibrated 
Value 

Lower 
Bound 

Upper 
Bound 

Definition 

1 AE 0.020 0.014 0.030 Maximum algal excretion rate, day-1 
2 AG 1.800 1.500 2.200 Maximum algal growth rate, day-1

3 AHSN 0.014 0.010 0.020 Algal half-saturation for N limited growth, g m-3 

4 AHSP 0.002 0.001 0.004 Algal half-saturation for P limited growth, gm-3 

5 AK1 0.100 0.050 0.120 Fraction of algal growth rate at lower temperature (5°C) for algal growth  
6 AK2 0.990 0.975 0.990 Fraction of maximum algal growth rate at lower temperature (27°C) for 

maximum algal growth 
7 AK3 0.990 0.980 0.999 Fraction of maximum algal growth rate at upper temperature (30°C) for 
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Figure 7. The Morris sensitivity measures μ* and σ for the 51 parameters in the simulation 
of Chla (only the most sensitive parameters are labeled). 
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maximum algal growth  
8 AK4 0.100 0.080 0.180 Fraction of algal growth rate at upper temperature (40°C) for algal growth  
9 ALCHLA 110.00 105.00 115.00 Ratio between algal biomass and chlorophyll a 
10 ALGN 0.070 0.065 0.075 Stoichiometric equivalent between algal biomass and nitrogen 
11 ALGP 0.0025 0.0020 0.0030 Stoichiometric equivalent between algal biomass and phosphorus 
12 ALPOM 0.800 0.750 0.850 Fraction of algal biomass that is converted to particulate organic matter when 

algae die 
13 AM 0.070 0.065 0.075 Maximum algal mortality rate, day-1

14 AR 0.070 0.050 0.100 Maximum algal respiration rate, day-1

15 AS 0.150 0.100 0.180 Algal settling rate, m day-1

16 ASAT 80.00 60.00 86.00 Light saturation intensity at maximum photosynthetic rate, W m-2

17 AX 1.000 0.500 5.000 Longitudinal eddy viscosity, m2 s-1

18 BETA 0.450 0.400 0.500 Fraction of incident solar radiation absorbed at the water surface 
19 CBHE 0.500 0.400 0.600 Coefficient of bottom heat exchange, W m-2 s-1 

20 DX 1.000 1.000 5.000 Longitudinal eddy diffusivity, m2 s-1

21 EXH2O 0.450 0.250 0.450 Solar radiation extinction coefficient for pure water, m-1 

22 EXOM 0.100 0.010 0.200 Solar radiation extinction coefficient due to organic suspended solids, m-1

23 EXSS 0.100 0.080 0.120 Solar radiation extinction coefficient due to inorganic suspended solids, m-1

24 FI 0.010 0.001 0.030 Interfacial friction factor 
25 FRICT 65.0 60.0 80.0 Chezy coefficient 
26 FSOD 0.800 0.800 1.000 Fraction of the zero-order SOD rate used. 
27 LDOMDK 0.150 0.100 0.200 Labile dissolved organic matter (DOM) decay rate, day-1 
28 LPOMDK 0.150 0.100 0.200 Labile particulate organic matter (POM) decay rate, day-1 
29 LRDDK 0.001 0.001 0.005 Labile to refractory DOM decay rate, day-1 
30 LRPDK 0.001 0.001 0.005 Labile to refractory POM decay rate, day-1 
31 NH4DK 0.050 0.030 0.080 Ammonium decay rate, day-1 
32 NH4K1 0.100 0.010 0.250 Fraction of nitrification rate at lower temperature (5°C) for ammonia decay  
33 NH4K2 0.990 0.970 0.990 Fraction of nitrification rate at lower temperature (25°C) for maximum 

ammonia decay 
34 NH4R 0.004 0.002 0.005 The sediment release rate of ammonium under anaerobic conditions, 

specified as a fraction of SOD 
35 NO3DK 0.050 0.030 0.150 Nitrate decay rate, day-1 
36 NO3K1 0.100 0.030 0.150 Fraction of denitrification rate at lower temperature (5°C) for nitrate decay 
37 NO3K2 0.990 0.950 0.990 Fraction of denitrification rate at lower temperature (25°C) for maximum 

nitrate decay 
38 NO3S 0.000 0.000 0.020 Denitrification rate from sediments which represents how fast nitrate is 

diffused into the sediments where it undergoes denitrification, , m day-1 
39 O2LIM 1.000 0.800 1.200 Dissolved oxygen half-saturation constant or concentration at which aerobic 

processes are at 50% of their maximum, g m-3 

40 OMK1 0.100 0.050 0.200 Fraction of organic matter decay rate at lower temperature (5°C) for organic 
matter decay 

41 OMK2 0.990 0.990 0.999 Fraction of organic matter decay rate at upper temperature (30°C) for organic 
matter decay 

42 PO4R 0.001 0.001 0.002 Sediment release rate of phosphorus under anaerobic conditions specified as 
a fraction of the sediment oxygen demand 

43 POMS 0.300 0.250 0.350 Particulate organic matter (POM) settling rate, m day-1 

44 RDOMDK 0.002 0.001 0.002 Refractory DOM decay rate, day-1

45 RPOMDK 0.002 0.001 0.003 Refractory POM decay rate, day-1

46 SEDK 0.000 0.000 0.001 Sediment decay rate, day-1

47 SOD 1.100 0.800 1.200 Zero-order sediment oxygen demand for each segment in the computational 
grid, g O2 m

-2 day-1 
48 SODK1 0.100 0.050 0.150 Fraction of SOD or sediment decay rate at lower temperature (5°C) for 

zero-order SOD or first-order sediment decay 
49 SODK2 0.990 0.980 0.999 Fraction of SOD or sediment decay rate at upper temperature (30°C) for 

zero-order SOD or first-order sediment decay 
50 TSEDF 1.000 0.800 1.000 Coefficient that regulates how much short-wave solar radiation that 

penetrates to the bottom of the grid is added back to water column 
51 WSC 0.900 0.800 1.000 Wind-sheltering coefficient which is used to adjust measured wind speed at 

met station to effective wind speed at water surface 

 


