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ABSTRACT. Environmental models are a critical tool for identifying where organisms occur by estimating the relationship among
species occurrence and important environmental factors. To date, the overwhelming majority of predictive occurrence models disre-
gard both the impact of spatial autocorrelation (interaction between neighbouring points) as well as the possibility that model relation-
ships may vary depending on geographic location. To address this gap, we measured their impact on five bird species observed during
seven years of the North American Breeding Bird Survey. We first built traditional occurrence models (of varying functional complex-
ity) using logistic regressions and generalized additive models (GAMs). We then compared model accuracy and goodness-of-fit to
those incorporating spatial autocorrelation (ALOG) and spatial dependence (via geographically weighted regression, GWR). Environ-
mental variables included aspects of land cover, climate, and topography. A residual analysis indicated that spatial autocorrelation per-
sisted within even the most complex traditional models. In contrast, not only did ALOG models incorporate this effect (as indicated by
a lack of residual autocorrelation), but also offered better predictive power for some species (+0.118 in the case of the American Crow,
relative to the best GAM model). From an information-theoretic perspective, ALOG models were consistent improvements over tradi-
tional models. Adoption of GWR models also improved predictive accuracy (ranging from +0.078 for the American Crow and +0.008
for the Purple Finch). However, comparison of their evidence ratios with ALOG models indicated that ALOG models were generally
superior. While we were unable to determine why geographic location influenced species’ responses to environmental conditions, evi-
dence from generalized estimating equations (GEEs) revealed significant within-route correlation (p = 0.54 + 0.26 SE), and implicated
an observer effect. A combination of broad-scale and fine-scale factors were important for predicting occurrence, but we demonstrate
that the incorporation of spatial factors offers the potential to measure the spatially explicit outcomes of intra-specific interactions, and
regional differences in resource usage. We recommend that these methods be considered, particularly when evidence points to spatially
autocorrelated errors or when there are a priori reasons to suspect geographic variability in resource selection.

Keywords: modeling, species distribution, spatial autocorrelation, autologistic regression, non-stationarity, geographically weighted
regression, generalized estimating equation, predictive accuracy, birds

1. Introduction

Environmental modelling is intrinsic to the conceptuali-
zation and testing of environmental relationships (Guisan and
Zimmermann, 2000) as it improves our ability to understand
the ways in which different factors influence phenomena of in-
terest (Austin et al., 1990). In particular, they are often used to
empirically evaluate the factors that influence species occur-
rence, and allow us to: make predictions about where species
will occur (Austin, 2002); assist in the identification of areas
most likely to support a species of interest (Fielding and Ha-
worth, 1995; Venier et al., 1999; Beissinger et al., 2006); or to
highlight the potential distribution of invasive species (Gaston,
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2003). Furthermore, predictions are becoming increasingly im-
portant in the face of global climate change and the subsequent
expectation of shifts in species ranges (Peterson and Kluza,
2003; Gaston, 2003). Whether the modelling objective is better
understanding of ecological relationships or prediction, the pro-
cess of habitat selection (or occurrence) by organisms is one
that is spatially realized. Given their predictive power, it is not
surprising that modelling is so widely used. However, the ov-
erwhelming majority of predictive occurrence models (“tradi-
tional models”) disregard both the impact of spatial autocorre-
lation (interaction between neighbouring points) as well as the
possibility that model relationships may vary depending on
geographic location. Given the importance of accurate models
for conservation planning and the large influence of autocor-
relation and geographic location (to be discussed), this is a
knowledge gap that needs to be addressed.

Legendre (1993) wrote an influential paper that raised the
issue of spatial autocorrelation in ecological modelling, and
advanced ideas later echoed by Fielding and Haworth (1995),
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Elith et al. (2002), and others. The issue of spatial autocorre-
lation arises from the fact that proximity to neighbouring indi-
viduals is frequently an important factor that influences how
observational units respond to their environment, mediated thr-
ough such fundamental phenomena as spacing behaviour, so-
cial structure, and competition (Begon et al., 1990). All of the-
se factors, independent of the characteristics of the local habi-
tat, can be expected to play an important role in determining
where (and how) individuals occur in the landscape. In terms
of the impact on species distribution models, aggregation (or
repulsion) resulting from the interactions between neighbour-
ing individuals produces a local pattern of habitat usage that is
autocorrelated (Fielding and Haworth, 1995; Elith et al., 2002;
Zhang et al., 2005). Statistically, this has the consequence of
overestimating the available degrees of freedom and produces
overly optimistic confidence intervals (Legendre, 1993). It may
even result in biased parameter estimates (Bonham and Reich,
1999). A growing body of evidence from the ecological litera-
ture points to the importance of this effect (e.g. Lichstein et al.,
2002; Betts et al., 2006) and confirms that it should not be ig-
nored.

Aside from the influence of spatial autocorrelation, model
relationships may vary with geographic location, a phenome-
non known as non-stationarity (see Foody, 2004; Fortin and
Dale, 2005; Jetz et al., 2005). When location is important, we
expect traditional methods (that assume average, uniform eff-
ects over the entire region of interest) to mask potentially im-
portant and informative local variation in responses (Fother-
ingham et al., 2002). Osborne and Suares-Seoane (2002) also
drew attention to this fact following an analysis in which they
partitioned their study region and produced models for each
sub-region separately. The recent development of geographi-
cally weighted regression (GWR) (Fotheringham et al., 2002)
affords an opportunity to consider the effects of location in a
manner that alleviates the need to artificially delineate regions
into sub-units for analysis. Unfortunately, the vast majority of
recently published ecological models make exclusive use of tra-
ditional global methods. The indiscriminate application of glo-
bal models (using smoothed, averaged estimates obtained over
the entire region) at local scales, can result in predictions that
are inaccurate over many (or possibly all) portions of the area
(Burrough and McDonnell, 1998; Fotheringham et al., 2002).

The purpose of this study was to expand understanding of
the prevalence and importance of spatial autocorrelation and
geographic location, and to do so we used five songbird speci-
es obtained from the North American Breeding Bird Survey
(BBS). We were particularly interested in the potential to im-
prove model fit and predictive accuracy (assessed using ten-
fold cross validation), and adopted approaches designed to in-
corporate these effects. We addressed spatial autocorrelation
using an autologistic regression (AUTO), and the effect of lo-
cation using a geographically weighted regression (GWR). We
then compared this model performance to traditional, non-spa-
tial models (logistic regression and generalized additive mo-
dels). To further understand the mechanism by which model re-
lationships varied with geographic location, we also consider-
ed the potential impact of observer-level (within-route) effects

using generalized estimating equation (GEE) models.

The following key questions were addressed: (1) what evi-
dence is there for spatial autocorrelation; (2) what evidence is
there for dependence on location; and (3) how does the inclu-
sion of these spatial effects impact goodness-of-fit and predic-
tive accuracy?

2. Methods

We used a small set of species (n = 5), monitored over a
seven-year period by participants of the BBS, for a subset of
routes (n = 56) in the boreal hardwood transition zone (boreal
conservation region 12). Using a combination of land cover,
climate, and elevation data, we produced a series of predictive
species occurrence models. Details of the species distribution
data, the study area, the candidate predictor variables, and the
model specifications are provided below.

2.1. Species Distribution Data
2.1.1. Selected Species

A subset of North American breeding birds was chosen
based partially on the Partners in Flight (PIF) ranking of con-
servation priority and a minimum prevalence of 2% across all
sample locations (see Section 2.1.2). We consulted a specific
priority species list (http://www.bsc-eoc.org/PIF/PIFOntario.
html) compiled for a large portion of the study area (see Sec-
tion 2.2) and chose four species that exhibited assessment sco-
res (based on the combined consideration of low population
size, limited breeding and non-breeding distributions, threats
faced during the breeding and non-breeding season, and nega-
tive population trends) sufficiently high to place them on the
PIF Watch List (see Rich et al., 2004). This included the Bla-
ckburnian Warbler Dendroica fusca, the Canada Warbler Wil-
sonia canadensis, the Purple Finch Carpodacus purpureus, and
the Sedge Wren Cistothorus platensis. We also examined the
American Crow Corvus brachyrhynchos, a breeding species
that is common and widespread throughout the study area. We
felt that this species would serve as a good comparison to the
more habitat-specific species due to its status as a true habitat
generalist (Freemark and Collins, 1992), and also for its str-
ong tendency to socially interact while foraging, roosting, etc.
(Verbeek and Caffrey, 2002).

2.1.2. Data Compilation and Georeferencing

Species occurrence data was obtained from the North Am-
erican Breeding Bird Survey (BBS), a monitoring project that
was initiated in 1966 (Robbins et al., 1986). While primarily
intended to detect long-term trends in species abundance, in-
dividual volunteer surveys consist of fifty three-minute stop
point observations (0.8 km apart) along a defined route, and
hence contain valuable information about spatial relationships.
For this study, species count data (at the level of the indivi-
dual stop point) was reclassified as “used” when non-zero co-
unts were noted across any of seven years (from 1997 to 2003).
It is possible that defining a sample location as a “presence”
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Figure 1. Geographic location, extent and classified forest cover for the boreal hardwood transition zone (Bird

Conservation Region 12, Rich et al., 2004).

point on the basis of a minimum of a single occurrence within
the sampling time frame could lump more marginal or rapidly
changing habitat with higher quality (more stable) habitat, but
we wished to err on the side of including habitat that was po-
tentially usable. We expect that this may inflate the frequency
of false-positive prediction error, but this will affect all model-
ling methods equally, and exert no impact on the model com-
parisons themselves.

A more important and further-reaching constraint was the
inability to identify truly unsuitable (“absence”) locations. In
practice, it is difficult to distinguish sites that are unsuitable
from those that are vacant due to an observer’s inability to de-
tect a particular species or due to stochastic effects (e.g., other-
wise suitable habitat that is only vacant in a given year by
chance events). We limited the impact of these effects by poo-
ling data over all available years (seven, in this case) so that
we could ensure that sample points defined as “absent” for a
given species were, to the best of our knowledge, never utili-
zed within the sampling time frame.

14

Precisely georeferenced stop points were available for on-
ly seven routes in the study area, so we were forced to employ
a linear referencing operation in ArcGIS (Environmental Sys-
tems Research Institute, 2002) to subdivide individual routes
to obtain a larger sample of stop locations. This required a start
point, a line indicating the route path, and an assumption that
stop points were spaced 0.8 kilometres apart (as specified by
the BBS protocol). Due to digitization errors, not all routes
could be georeferenced with the same degree of reliability, so
routes were only retained (for modelling purposes) if the start
points (designated within the BBS dataset) could be located
within 0.5 kilometres of each route. This resulted in n = 56
routes (2799 stop points). Positional uncertainty remained, how-
ever, prompting an evaluation of the remaining discrepancies.
Seventy-five points from the precisely georeferenced routes
were randomly selected and compared to the location assign-
ed by linear referencing, yielding an average of 1.8 km + 1.9
km (SD). This was in close agreement with an average of 1.5
km reported in a previous study (Dobbyn and Couturier, 1998).
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Table 1. Candidate Variables Used to Model Species Distributions

Variable Description Source
Land Cover:
LANDCOV Land cover, grouped into five classes: MODIS 2001 land cover classification”
(1) conifer-dominated forest (CONIFER)
(2) cropland-vegetation mosaic (CROPVEG)
(3) deciduous-dominated forest (DECID)
(4) mixed (conifer-deciduous) forest (MIXED)
(5) other (OTHER)
EVIMEAN Mean Enhanced Vegetation Index (EVI) for a 3x3 neighbourhood ~ MODIS 16-day EVI™
Mean Standard Deviation of the Enhanced Vegetation Index o
EVISD (EVI) for a 3x3 neighbourhood ¢ MODIS 16-day EVI
Climate:
DTR Mean diurnal temperature range (°C) CRU 2 10 global climate data ™
PRECIP Total annual precipitation (mm) CRU 2 10 global climate data ="
TEMP Mean temperature (°C) CRU 2 10 global climate data ™
Topography:
ELEV Elevation (m) GTOPO30 global digital elevation model”™™

*Derived from the MOD12Q1 (1-km resolution) layer incorporating the 17-class land cover classification system defined by the International

Geosphere-Biosphere Programme (IGBP) (Friedl et al., 2002).

**Derived from the MOD13A2 (1-km resolution) layer for 25 June, 2004 (Huete et al., 2002).
*#*Monthly averages (or annual totals, in the case of precipitation) were averaged over the years 1997-2002 at a resolution of 0.5°x 0.5

(Mitchell and Jones, 2005).

****Global digital elevation data at an approximately 1-km resolution (U.S. Geological Survey, 1996).

2.2. Study Area

This region (Figure 1), classified as the boreal hardwood
transition zone, was first identified as one of a number of stra-
ta in a broad-scale physiographic classification system of Nor-
th America compiled by Bystrak (1981). This classification was
subsequently adopted by Partners in Flight to assist their plan-
ning process (Williams and Pashley, 1999). From south to north,
this region constitutes a transition zone between mixed hard-
wood and boreal forest, and is heavily influenced by the pre-
sence of the Great Lakes (Ontario Partners in Flight, 2006). A
number of political units occur in this area including parts of
the American states of Minnesota, Wisconsin, and Michigan,
and southern portions of the Canadian provinces of Manitoba,
Ontario, and Quebec. The forest communities of this region re-
present a heterogeneous mix of oaks, maples, birch, and pines
in the southern portions of the region, shifting to coniferous
species in the more northern, boreal portions (Ontario Partners
in Flight, 2006).

2.3. Candidate Predictor Variables
2.3.1. Land Cover Variables

Remote sensing imagery was the source of land cover in-
formation for this study. In particular, the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) of the NASA Earth
Orbiting System provided a vegetation index image (the En-
hanced Vegetation Index, or EVI; see Huete et al., 2002) as
well as a supervised land cover classification image (Friedl et
al., 2002).

According to Huete et al. (2002), vegetation indices are
“spectral transformations of two or more bands designed to
enhance the contribution of vegetation properties and allow

reliable spatial and temporal inter-comparisons of terrestrial
photosynthetic activity and canopy structural variations.” Fur-
thermore, according to these authors the EVI is particularly
sensitive to canopy structural variations, including leaf area
index (LAI), canopy type, plant physiognomy, and canopy ar-
chitecture. It was expected that the EVI could help characterize
the structural condition of landscape units, thereby capturing
elements of habitat quality. The equation takes the form:

EVI=G(Prg = Prea)(Prig + CiPrea = CoPppe +1L) (1

where p are atmospherically corrected or partially atmospheri-
cally corrected (Rayleigh and ozone absorption) surface reflec-
tances, G is the gain factor, L is the canopy background ad-
justment that addresses non-linear, differential NIR and red ra-
diant transfer through a canopy, and C;, C, are the coefficients
of the aerosol resistance term, which uses the blue band to co-
rrect for aerosol influences in the red band (Huete et al., 2002).
The constants G, Cy, C,, and L are empirically determined as
2.5,6.0,7.5, and 1.0, respectively (Huete et al., 2002). We used
the 1-km’ resolution data product, and preliminary analysis sug-
gested that an average EVI based on a 3-km X 3-km neigh-
bourhood (EVIMEAN) was a better predictor than local EVI
values. For this reason, the average neighbourhood measure
was used in all candidate models (Table 1). An added benefit
to a neighbourhood-based approach was that it allowed for the
proxy measurement of coarse-scale habitat heterogeneity, esti-
mated using the standard deviation of EVI values in the 3-km
x 3-km window (EVISD).

Seventeen global land cover classes (originally developed
by the International Geosphere-Biosphere Programme, IGBP)
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were defined for the MODIS data at a resolution of 1 km® (Fri-
edl et al., 2002). These classes included: water (water); ever-
green needleleaf forest (ENEEDLE); evergreen broadleaf for-
est (EBROAD); deciduous needleleaf forest (ENEEDLE); de-
ciduous broadleaf forest (DBROAD); mixed forest (MIXEDF);
open shrub (OSHRUB); woody savanna (WSAVA); grassland
(GRASS); permanent wetland (WETLAND); cropland and cro-
pland/natural vegetation mosaic (CROP); urban and built-up
(URBAN). The algorithm used to classify MODIS pixels drew
from a database of control sites and a supervised classification
method involving a decision tree approach (Friedl et al., 2002).
A partial analysis of classification accuracy (for a smaller sub-
set of the 17 IGBP land cover classes), based on fivefold par-
titioned testing/training data, produced an overall accuracy es-
timate of 73% (Lotsch et al., 2003). Due to the rarity of most
of the IGBP land cover classes within the study area (Figure
1), categories were limited to one of five classes, which were
aggregated into a single factor called LANDCOV (Table 1).
These classes are: (1) conifer-dominated forest (CONIFER), ob-
tained by combining the original evergreen and deciduous need-
leleaf forest types; (2) cropland/vegetation mosaic (CROPVEG);
(3) deciduous-dominated forest (DECID), obtained by combi-
ning the original evergreen and deciduous broadleaf forest ty-
pes; (4) mixed (conifer-deciduous) forest (MIXEDF); and (5)
all other land cover types (OTHER).

2.3.2. Climatic Variables

Climatic measurements were obtained from the global cli-
mate data of Mitchell and Jones (2005) for the years 1997 to
2002. Initial candidate variables included: mean monthly tem-
perature (TEMP, in °C); mean monthly diurnal temperature
range (DTR, in °C); mean monthly maximum temperature
(MAXTEMP, in °C); mean monthly minimum temperature
(MINTEMP, in °C); monthly number of wet days (WETDAYS);
vapour pressure (VAPOR, in hPa); mean monthly percent cloud
cover (CLOUD, in percent); and number of frost days (FROST).
Each of the monthly estimates was averaged for the entire
year, over all years from 1997 to 2002. Total annual precipi-
tation (PRECIP, in mm) was the final climatic variable used in
this study, and like the previous ones, was averaged over all
years from 1997 to 2002. Considerations of multicollinearity
forced us to retain only three of the previously mentioned va-
riables: DTR, PRECIP, and TEMP (Table 1). However, species
distribution studies commonly implicate these particular cli-
matic variables as key drivers (e.g. Venier et al., 1999; H-
Acevedo and Currie, 2003).

2.3.3. Topographic Variables

In keeping with the large extent and relatively coarse-
scale nature of this study (relative to many other species-dis-
tribution modelling studies), we used a 1-km resolution eleva-
tion dataset obtained from the GTopo30 global digital eleva-
tion model (DEM) of the U.S. Geological Survey’s EROS Data
Center in Sioux Falls, South Dakota (U.S. Geological Survey,
1996). The grid is approximately 1-km resolution and produced
the elevation variable ELEV (in m; Table 1).
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2.4. Model Specifications
2.4.1. Logistic Regression (LINLOG and QUADLOG)

All logistic regressions were estimated within the genera-
lized linear model (GLM) framework, with the probability of
species occurrence linked to a combination of p linear predic-
tors (X}, ..., X,) via the logistic link function (McCullagh and
Nelder, 1999; Collett, 2003):

P(Y)

logit(Y) = log(l “P)

j=ﬂo +3 8K, @)

Factors considered important determinants of habitat se-
lection (see Section 2.3) and which represent components of
the realized niche (Guisan et al., 2002) can be explicitly incor-
porated into logistic regressions. This approach is very well
established, and is traditionally used in predictive species dis-
tribution modelling (Guisan and Zimmermann, 2000).

For each species we specified two different logistic regre-
ssion models: (1) a linear logistic (LINLOG); and (2) a qua-
dratic logistic (QUADLOG). In the first case, all relationships
between species occurrences and candidate predictor variables
were assumed to be simple linear trends (1 degree of freedom),
while in the second case, unimodal relationships were consi-
dered (quadratic polynomials, with 2 degrees of freedom).

From a geostatistical point of view, logistic regression mo-
dels are global interpolators in that they use all available data
to make predictions for the whole area of interest (Burrough
and McDonnell, 1998). In this respect, the priority of global
modelling is to smooth the model relationships to focus on the
functional aspects rather than to maximize the fit at individual
locations (Burrough and McDonnell, 1998).

2.4.2. Autologistic Regression (ALOG)

Spatial autocorrelation was incorporated by extending the
QUADLOG model (Equation 2, with quadratic polynomial te-
rms) to include a spatially lagged autocovariate term (4UTO,
see Anselin, 2002):

:ﬂo+yAUTO+Zp:ﬂ/.X/. 3)

=

: PY)
logit(Y) =log| ———
git(Y) g(l_P(Y)j
The AUTO covariate was the product of an n x n wei-
ghts matrix (W) and an n x [ binary vector (y, a 1/0 dummy
variable indicating presence or absence at neighbouring points).
A simple weighting function was applied to all points:

a {1/8, if point is one of the eight nearest neighbours @

710, otherwise

A Gibbs Sampler (7 = 11 iterations) was used to impute
presences in neighbouring, unsampled locations, based on pri-
or knowledge of the relationship between species presence and
environmental predictors (see below). The method of Augus-
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tin et al. (1996, 1998) was implemented as follows:

1. An ordinary logistic regression (without an autocovari-
ate) was used to produce an initial set of probabilities of occur-
rence;

2. A random number generator, drawing from a Bernoulli
distribution, was used to impute presences for unsampled grid
locations;

3. The logistic regression was recomputed, this time with
the autocovariate term included,

4. The random number generator was re-applied to impute
presences for unsampled grid locations;

5. A Gibb’s Sampler was applied, with unsampled points
chosen at random (one at a time), the autocovariate recalculated,
the conditional probability of occurrence recomputed, and a
new random number generator applied to that point. With each
iteration of the Gibb’s Sampler, the probabilities of occurrence
at any given point are progressively updated (given the condi-
tional dependence on the neighbours), ultimately resulting in a
model of the joint distribution of all grid points (Augustin et
al., 1998).

2.4.3. Generalized Additive Models (GAM)

GAM logistic models are analogous to those estimated by
the GLM approach, in the sense that parameters are additive
and the response constrained to vary between 0 and 1, but dif-
fer by utilizing more generalized smoothing functions to re-
present the relationship between the j predictor(s) and the re-
sponse variable (Hastie and Tibshirani, 1990):

PY)
1-P(Y)

logit(Y):log[ ]=,30 +iﬁj(X,~) ®)

The GAM approach has attracted substantial attention and
is the subject of a number of reviews in the literature (Guisan
and Zimmermann, 2000; Guisan et al., 2002; Segurado and Ar-
aujo, 2004; Elith et al., 2006).

For each species, we specified two different GAM models:
(1) a model with the same degrees of freedom allocated to the
smoothing functions as used in the QUADLOG polynomial lo-
gistic regressions (GAM1); and (2) a model with five degrees
of freedom allocated to all smoothing functions (GAM2). By
keeping the number of degrees of freedom constant, the GAM1
specification permitted the GAM and GLM methods to be di-
rectly compared, while the GAM?2 specification allowed for
the accommodation of more complex responses (e.g. bimoda-
lity). It should be noted that spatially, GAM models are like
logistic regressions in that all observations within the region
of interest are used to estimate model relationships.

2.4.4. Generalized Estimating Equations (GEE)

The GEE approach extends the GLM by allowing for the
incorporation of correlated responses (Halekoh et al., 2006;
Kleinbaum and Klein, 2002). Such correlation can arise when

repeated measures of the same observational unit are made or
observations are grouped within clusters. The consequence of
this “within-cluster” correlation is for responses within those
clusters to be non-independent, and the estimation of a con-
ventional GLM can result in parameters that are biased or that
have overly narrow (overly optimistic) confidence intervals.
The logistic model for correlated data looks identical to the or-
dinary logistic regression model (Equation 2), with the crucial
difference that a working correlation structure is specified for
describing how the within-cluster responses are related to each
other (Kleinbaum and Klein, 2002). Another important differ-
ence between the GLM and GEE procedures is that GEE mo-
dels are estimated using quasi-likelihood methods (Halekoh et
al., 20006) that prevent the calculation of likelihood-based AIC
values.

In the case of the BBS data used in this study, each of the
individual stop points were clustered within one of fifty-six po-
ssible survey routes and an exchangeable correlation structure
was employed to capture the correlation in their responses. A
single correlation parameter (p) was estimated for each speci-
es to capture the within-cluster effect of the same set of obser-
vers conducting all of the stop points for a given survey route.
All GEE models were estimated using the geepack package
(V1.0-10) of Yan (2002) for the R Statistical Package (Ihaka
and Gentleman, 1996).

2.4.5. Geographically Weighted Regression (GWR)

Within the binomial GWR framework, parameters are es-
timated at each sample location using the local neighbourhood
of observations, each of which is differentially weighted as a

continuously decaying function of distance from the center
(Fotheringham et al., 2002):

E(Y)
1-E(Y)

logit(Y):log( j:ﬂo(xay)+iﬂ/(xay)xj (6)

It can be seen that for n samples there will be n parameter
estimates, each a function of location (represented by Carte-
sian x and y coordinates). We estimated these parameters us-
ing the code originally implemented in the R Statistical langu-
age by C. Brunsdon.

2.5. Variable Selection

The aim of this study was to compare the accuracy and
performance of a number of predictive models, so our goal
was to not to exhaustively explore alternative model structures
but to objectively select a reasonable base specification for com-
paring each of the methods. To identify this baseline model
structure we used all candidate predictor variables, fit quadra-
tic polynomial logistic regressions to all continuous variables
(QUADLOG specification), and used an all-combinations ap-
proach to select a plausible starting model. The all-combina-
tions model selection procedure was used because it avoided
the potential vagaries of stepwise model selection. For instance,
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an important criticism of stepwise model selection is that im-
portant combinations of variables can escape consideration due
to prematurely discarding key variables in earlier model selec-
tion steps. We found that the all-combinations approach was a
practical and robust way to produce this reduced set of varia-
bles, provided that we confined variable selection to the logis-
tic regression algorithm. This was a result of the computation-
al demands of all-combinations algorithms. Interactions were
not tested.

We used the simple (but objective) rule of choosing the
final set of predictor variables that resulted in the QUADLOG
regression with the lowest AIC value, and recognized that: (1)
it is the relative difference in AIC values that is important, not
the absolute values, and (2) some alternative specifications of
predictor variables resulted in models that were virtually indi-
stinguishable in terms of relative AIC differences. The final set
of predictor variables defined the base specification used to bu-
ild all subsequent distribution models. In this way, we were
able to eliminate variability attributable to differences in mo-
del selection procedures and to focus on the head-to-head per-
formance of each of the methods. We advise practitioners who
are applying one of the modelling methods in isolation and
who have recourse to sufficient time and computational re-
sources to consider the use of bootstrapping to assess the rela-
tive importance of predictor variables (Harrell, 2001) or calcu-
late model-averaged estimates for each parameter (Burnham
and Anderson, 2002).

Implicit in all starting specifications was an assumption
ofa potentially symmetric unimodal response to environmental
gradients, i.e., some optimum range of conditions in which the
probability of habitat usage is maximal, outside of which oc-
currence declines. We had no a priori reasons to implicate mul-
ti-modal responses for any of the environmental gradients, and
as partially pointed out by Austin (2002, 2007), due to the fol-
lowing reasons we could not unambiguously determine alter-
native functional responses anyway: (1) occurrence and envi-
ronmental data were too coarse a scale (1-km?); (2) environ-
mental variables (e.g. annual precipitation) were indirect (GIS-
based) measures of environmental conditions that would, at
best, be proxies for direct factors (e.g. moisture availability);
(3) model relationships were defined empirically (data-derived);
(4) we did not sample the entire environmental gradient for
each of the species, i.e. over their entire North American bree-
ding range. Keeping these limitations in mind, we did accom-
modate the possibility of multimodal or skewed unimodal res-
ponses through the estimation of the GAM2 models (Section
2.4.3).

2.6. Assessment of Model Fit and Autocorrelation

As all model predictions were probabilities of occurrence
at individual locations, this introduced a threshold dependency
in deciding the cutoff point for determining whether test points
should be expected to contain an occurrence for that species
(for a discussion see Fielding and Bell, 1997). Predictive ac-
curacy, therefore, was assessed using the area under the recei-
ver operating characteristic curve (ROC curve, see Zweig and
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Campbell, 1993; Fielding and Bell, 1997), which avoids the th-
reshold problem by integrating across all combinations of po-
ssible thresholds. The area under the curve (AUC) of the ROC
curve represents the proportion of cases in which the model pre-
dictions are consistent with the observed test points (i.e., where
model predictions are higher for presence points than absence
points), with a value of 0.50 indicating a model no more capa-
ble of predicting occurrence/absence than random chance. As
pointed out by Elith, et al. (2006), values less than 0.50 indi-
cate models which actually perform poorer than random pre-
diction.

Accuracy assessments, based on the same set of data used
to train the models, are prone to overfitting the data at hand,
resulting in overly optimistic (biased) accuracy values (Harrell,
2001). We corrected the apparent accuracies using the method
of Harrell, et al. (1996):

. 1 10
Bias-corrected Accuracy = AAcc - (Ez AAcc—BAcc,) (7)

i=1

where AAcc is the apparent accuracy (derived using the same
set of test data used to build the model) and BAcc is the boot-
strapped accuracy (derived from one of ten sets of randomly
selected test data not used during the model building phase).

With the exception of the GEE method, all other modelling
procedures were likelihood based, allowing comparisons among
them to be made using relative differences in AIC values. Mo-
del calibration was evaluated using the Hosmer and Lemeshow
statistic (H-L Statistic, Hosmer and Lemeshow, 2000), which
compares the expected number of occurrences (via quintile
groupings of the predicted probabilities of occurrence)to those
observed. We provide the H-L Statistic as a means for com-
paring model calibration, but as pointed out by Pearce and Fe-
rrier (2000), the primary goal of predictive modelling is nor-
mally to discriminate used from unused locations. As this was
our goal as well, we stress the results of the accuracy assess-
ments as a measure of the discriminatory power of each of the
modelling procedures.

To evaluate how adequately each modelling method ac-
counted for spatial autocorrelation in species response, model
residuals were assessed using the Moran’s [ statistic calculated
for varying numbers of nearest neighbours using the ‘spdep’
package (V0.3-12) of Bivand (2006) for the R Statistical Pac-
kage (Ihaka and Gentleman, 1996):

1=(n/iiwy)-{znlzn:wy(y,-—i)(yj—?)}/i(yi—?)z ®)

i=1 j=1 i=1 j=1

where wy is the distance weighting, » is the number of pairs,
and y; and y; are the values of y at locations i and j.

2.7. Monte Carlo Resample Test for Non-Stationarity

We evaluated the significance of non-stationarity for the
GWR model parameters by employing a Monte Carlo resamp-
ling procedure. As described by Fotheringham, et al. (2002),
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Figure 2. Spatial autocorrelation (measured by Moran’s 1), over a range of neighbourhood sizes, for six continuous
environmental predictor variables: a) mean enhanced vegetation index for a 3-km x 3-km spatial neighbourhood
(EVIMEAN); b) standard deviation of enhanced vegetation indices for the same spatial neighbourhood (EVISD); ¢) average
diurnal temperature range (DTR, in °C); d) annual precipitation (PRECIP, in mm); €) average temperature (TEMP, in °C);

and f) elevation (ELEV, in m).

the observed spatial variation in parameter estimates should
be no different than that expected by chance when the null hy-
pothesis of stationarity is true. To test this null hypothesis we
randomly re-allocated the locational coordinates of each sam-

ple point n = 100 times, and evaluated the proportion of itera-
tions in which the observed variation in parameter estimates
exceeded that of the resample. We considered 5% or fewer
cases in which resampled data sets matched or exceeded the
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Table 2. Top Five QUADLOG Models Obtained from the All-Combinations Model Selection Procedure, Sorted According to the
Lowest AIC Values

n.p. AIC AAIC Wi

AMCR
EVIMEAN + EVIMEAN? + EVISD + EVISD?+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + TEMP?+ ELEV + LANDCOV 16 34524 0 0.277
EVIMEAN + EVIMEAN? + EVISD + EVISD?+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + TEMP?+ ELEV + ELEV> 13 3452.5 0.1 0.264
EVIMEAN + EVIMEAN? + EVISD + EVISD?+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + TEMP?+ ELEV + ELEV?+ LANDCOV 17 34332 0.8 0.186
EVIMEAN + EVISD + EVISD*+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + 2TEMP2 +ELEV + EIEEVZ + LANDCZOV 16 34335 I 0.160
EVIMEAN + EVIMEAN? + EVISD + EVISD?+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + ELEV 1 34542 18 0.113
BLBW
EVIMEAN + EVIMEAN? + DTR + DTR?+ PRECIP + PRECIP?

+TEMP + TEMP?+ ELEV + ELEV? + LANDCOV 15 1620.6 0 0-369
EVIMEAN + EVIMEAN? + EVISD + EVISD? + DTR + DTR?+ PRECIP

+ PRECIP?+ TEMP + TEMP?+ ELEV + ELEV? + LANDCOV 17 1620.7 0.1 0.351
EVIMEAN + EVIMEAN? + EVISD + DTR + DTR?+ PRECIP + PRECIP?

+ TEMP + TEMP? + EIzEV +ELEV? +2LANDCOV . 16 1621.7 11 0.213
EVIMEAN + EVIMEAN? + DTR + DTR?+ PRECIP + PRECIP

+ TEMP + TEMP?+ ELEV + LANDCOV 14 1625.0 44 0.041
EVIMEAN + EVIMEAN? + EVISD + EVISD? + DTR + DTR?+ PRECIP + PRECIP? 16 1625.8 59 0.027

+ TEMP + TEMP?+ ELEV + LANDCOV ’ ’ )
CAWA
DTR + DTR?+ PRECIP + TEMP + TEMP? + ELEV 7 860.2 0 0.381
DTR + DTR?+ PRECIP + TEMP+ TEMP? + ELEV + ELEV? 8 861.0 0.80 0.255
DTR + DTR? + PRECIP + PRECIP? + TEMP + TEMP? + ELEV + ELEV? 9 862.3 2.1 0.133
PRECIP + TIZEMP +TEMP? + ELE\ZI . 5 862.4 22 0.127
DTR + DTR?+ PRECIP + PRECIP? + TEMP + TEMP

+ELEV + ELEV?*+ LANDCOV 13 862.8 2.6 0.104
PUFI
DTR + DTR?+ TEMP + TEMP?+ ELEV+ LANDCOV 10 1478.1 0 0.348
EVISD + DTR + DTR?+ 2TEMP +TEMP?*+ ELEV + LANDZCOV X 11 1478.2 0.1 0.331
EXS]SC(;VDTR + DTR? + PRECIP + TEMP + TEMP?> + ELEV + ELEV® + 5 14794 3 0.182
2 2 2 2

E\{I:}I\? D+C]2)\</ISD + DTR + DTR*+ PRECIP + TEMP + TEMP* + ELEV + ELEV' 14 14807 26 0.095
EVIMEAN + EVISD + EVISD? + DTR + DTR?+ PRECIP + TEMP + TEMP? +
ELEV + ELEV?+ LANDCOV 15 1482.2 4.1 0.045
SEWR
EVIMEAN + EVIMEAN? + EVISD + DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + TEMP?+ ELEV + ELEV?>+ LANDCOV 16 652.2 0 0.698
EVIMEAN + EVIMEAN? + EVISD + EVISD?*+ DTR + DTR?+ PRECIP

+ PRECIP? + TEMP + TEMP?+ ELEV + ELEV?>+ LANDCOV 17 654.2 2.0 0.257
EVIMEAN + EVISD + EVISD?+ DTR + DTR?+ PRECIP + PRECIP?

+TEMP + TEMP? + ELZEV +ELEV?+ LAI\iDCOV i 16 637.9 37 0.040
EVIMEAN + EVIMEAN? + EVISD + EVISD?>+ DTR + DTR?+ PRECIP

+ PRECIP?>+ TEMP + TEMPZZ+ ELEV + ELEVZ , 13 662.5 103 0.004
EVIMEAN + EVISD + EVISD?*+ DTR + DTR?+ PRECIP + PRECIP 1 665.2 13.0 0.001

+ TEMP + TEMP?+ ELEV + ELEV?

Notes: Also presented are the numbers of parameters (n.p.), differences in AIC values (Aaic), and Akaike weights (W;); Aaic and W; are defined
relative to the lowest AIC model; See Table 1 for a description of predictor variables.

observed as evidence for rejecting the null hypothesis. It should 3. Results
be noted that this involved repetition of the GWR procedure
100 times for each species, and required approximately twen-
ty-four hours per species on a 1.90 GHz Mobile Intel Pentium
computer with 1.0 GB of main memory. Preparatory to selecting important predictor variables, we

3.1. Analysis of Predictor Variables
3.1.1. Spatial Autocorrelation
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Figure 3a. Exploratory plots of the relationship between occurrence of the American Crow and the environmental predictor
variables, using a nonparametric lowess smoother (see Table 1 for definitions).

first investigated the degree to which they were intrinsically
autocorrelated. As indicated in Figure 2, all continuous vari-
ables showed very high levels of autocorrelation, with Mo-
ran’s / values in excess of 0.80. The spatial scale varied quite
dramatically, with the EVIMEAN and EVISD variables show-
ing a steady decline in autocorrelation with increasing neigh-
bourhood size. The remaining climatic and topographic envi-
ronmental variables all showed a much lower rate of decay in
spatial autocorrelation, with the variable TEMP showing high
levels out to the furthest distances of all.

3.1.2. Exploratory Analysis of Effects on Occurrence

Prior to performing the all-combinations model selection

procedure (Section 3.1.3) we constructed exploratory plots of
the relationships between species occurrence and the environ-
mental predictor variables (Figures 3a to 3e). Preliminary in-
formation conveyed by these plots was for generally unimodal
responses. However, there were also instances where respons-
es were multimodal (e.g. American Crow and EVIMEAN) or
linear (e.g. American Crow and TEMP). Bar charts for the
LANDCOYV variable suggested a positive response by the Ame-
rican Crow and Sedge Wren to CROPVEG-classified landsca-
pe units, a positive response by the Blackburnian Warbler to
CONIFER-classified units, and a positive response by the Ca-
nada Warbler and Purple Finch to MIXEDF-classified units
(see Section 2.3).
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Figure 3b. Exploratory plots of the relationship between occurrence of the Blackburnian Warbler and the environmental
predictor variables, using a nonparametric lowess smoother (see Table 1 for definitions).

3.1.3. Identification of Influential Predictors Table 3. Comparison of Residual Autocorrelation, as
Measured by Moran’s I (for A Neighbourhood Defined by the
Sample Point and Its Two Nearest Neighbours), with Respect

to Species and Modelling Method (see Section 2.4)

An all-combinations model selection procedure (see Sec-
tion 2.5), using QUADLOG models and an AIC-minimization
criteria, was used to identify the set of important predictor va-

riables for each species (Table 2). Table 2 presents the five Method AMCR"™ BLBW  CAWA" PUFIT SEWR’
“best” models for each species, ranked according to AIC va- LINLOG 0.710 0.0672  0.182  0.154  0.099

lues. In the case of most species, EVIMEAN and EVISD were QUADLOG 0.714 0.0276 0.043 0.120  -0.0018
retained in the final set of predictor variables, but in quadratic GAM1 0.696  0.0648  0.063  0.153  0.0072
form (e.g. American Crow). In the case of the Canada Warbler GAM2 0.602 0.0422 0.038 0.073  -0.0015
and Purple Finch, only climate and elevation (the former), or GEE 0.714 0.0276 ~ 0.043  0.120 -0.0018

climate and land cover (the latter) were retained. LANDCOV ALOG -0.042  -0.028  -0.013 -0.035 -0.012

was retained for all species with the exception of the Canada
Warbler.
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*AMCR = American Crow; BLBW = Blackburnian Warbler; CAWA =
Canada Warbler; PUFI = Purple Finch; SEWR = Sedge Wren.
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3.2. Comparative Analysis of Predictive Models
3.2.1. Impact of Spatial Autocorrelation

Modelling methods differed in their ability to incorporate
the effects of spatial autocorrelation, as indicated by their resi-
duals (Table 3). While the most complicated of the non-spa-
tially explicit models (GAM2) had lower residual autocorrela-
tion, it was still unable to eliminate its effect. Therefore, we di-
rectly incorporated autocorrelation using a 3-km x 3-km spa-
tial neighbourhood and a succession of ALOG models. Imme-
diately noteworthy was a consistent improvement in model fit
relative to non-spatial equivalents (as measured by declines in
AIC values; see Table 4). This was especially obvious for the

ALOG model of the American Crow, which had an AIC value
several times lower than the non-spatial equivalents. In con-
trast, predictive accuracy (based on a comparison of ALOG vs.
GAM?2) was really only improved for the American Crow
(+0.118). The remaining species showed a tendency for either
no net change in predictive power (Blackburnian Warbler), or
a net loss of —0.009, —0.021, —0.008, as in the case of the Ca-
nada Warbler, Purple Finch, and Sedge Wren, respectively. The
particularly dramatic improvement in predictive accuracy for
the ALOG model of the American Crow was consistent with
our prior knowledge of the strong autocorrelation in the resi-
duals of its non-spatial models (Figures 4a to 4c). Clearly, the
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Figure 3c. Exploratory plots of the relationship between occurrence of the Canada Warbler and the environmental
predictor variables, using a nonparametric lowess smoother (see Table 1 for definitions).
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Figure 3d. Exploratory plots of the relationship between occurrence of the Purple Finch and the environmental predictor
variables, using a nonparametric lowess smoother (see Table 1 for definitions).

American Crow was strongly influenced by proximity to other
members of its species.

In summary, while the information-theoretic perspective
suggested that ALOG models were consistent improvements
over non-spatial models, the assessment of predictive accuracy
demonstrated that this was true only for species strongly af-
fected by “endogenous” autocorrelation (sensu Fortin and Dale,
2005), that is, autocorrelation not attributable merely to spa-
tial structure in the environmental predictors themselves.

3.2.2. Impact of Location (Non-Stationarity)
We investigated the influence of location on the species

24

distribution models through the use of a geographically wei-
ghted regression (GWR). Comparison of the AUC values of
GWR models with their global, stationary equivalents (Table
4) revealed a tendency for improvements in predictive power.
In fact, the GWR models yielded the highest predictive power
for four of the five species, with the American Crow standing
out as the lone exception. Improvements in predictive accuracy,
through the adoption of the GWR approach (relative to the
GAM2 non-spatial models), were highest for the American
Crow (+0.078), but were also measurable for the Blackburn-
ian Warbler (+0.02), Canada Warbler (+0.027), Purple Finch
(+0.008), and Sedge Wren (+0.021).
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Figure 3e. Exploratory plots of the relationship between occurrence of the Sedge Wren and the environmental predictor
variables, using a nonparametric lowess smoother (see Table 1 for definitions).

As measured by AIC values, the GWR models represent-
ed large improvements in fit relative to the best of the non-
spatial models (i.e. GAM2), but in all cases to a lesser degree
than the ALOG equivalents.

We also considered the significance of the non-stationari-
ty using a Monte Carlo resampling procedure (Table 5). For
the American Crow, Blackburnian Warbler, Canada Warbler,
and Purple Finch, all continuous predictor variables exhibited
a significantly high level of spatial variation (P < 0.05). This
contrasted with the findings for the Sedge Wren in which the
observed variation in parameter estimates was only significant
for DTR, TEMP, and ELEYV, but not for PRECIP, EVIMEAN,

or EVISD. With the exception of the American Crow, the ca-
tegorical variable LANDCOV was not significant for any spe-
cies in which it was part of the variable set.

3.2.3. Impact of Within-Route (Observer) Effects

As individual survey points were clustered within one of
fifty-six possible survey routes, there was a chance that the ob-
server conducting the route may have influenced the probabi-
lity of detecting and recording species occurrence at each lo-
cation along the route. This would have introduced a within-
route correlation and a breakdown of the independence assump-
tion. To test for this effect, GEE models (using an exchange-
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Table 4. Properties of the Statistical Models, including the Akaike’s Information Criterion (4/C), Hosmer and Lemeshow Statistic
(HL %), and the Area under the Receiver Operating Characteristic Curve (See Section 2.6), by Species and Modelling Method

(See Section 2.4)

Method LINLOG QUADLOG GAMI GAM2 GEE ALOG***  GWR
AMCR* — A1C 34942 3452.4 3366.7 2947 - 1093.7 2295
HL 2 56.6 108.9 19.9 53.9 37.1 16.3 284
AUCH* 0.69 0.693 0.72 0.809 0.649 0.927 0.887
BLBW*  A1C 1735.1 1620.6 1614 15243 - 1141.8 1483
HL 2 8.68 7.43 18.1 102 7.66 15 5.82
AUCH** 0.704 0.756 0.764 0.803 0.754 0.803 0.823
CAWA*  A1C 874.4 860.2 860.3 851 - 744.9 837.2
HL 2 33 2.59 2.26 8.1 6.11 10.8 10.1
AUCH** 0.684 0.692 0.703 0.715 0.712 0.706 0.742
PUFI' AIC 15152 1478.1 1476 1409.7 - 1205.1 1421
HL 2 12.1 9.8 26.9 113 19.5 1.6 7.2
AUC? 0.63 0.672 0.673 0.72 0.683 0.699 0.728
SEWR'  AlC 836.9 652.2 679.2 610.9 - 483.9 669.9
HL 2 2.8 245 10.6 3 185 1.1 32
AUC? 0.815 0.907 0.9 0.917 0.916 0.909 0.938

* AMCR = American Crow; BLBW = BlackburnianWarbler; CAWA = Canada Warbler; PUFI = Purple Finch; SEWR = Sedge Wren.
** Bias-corrected accuracy values, based on 10 sets of bootstrap-resampled test points (see Methods).

*** The autologistic results are presented for k£ = 8 nearest neighbours.

able correlation structure) were estimated for each species and
a single correlation parameter (p) calculated. The results of the
GEE models revealed that only the American Crow exhibited
significant (p < 0.05) within-route correlation: 0.54 + 0.26 SE.
Values for the remaining species were 0.12 = 0.37 (Black-
burnian Warbler), 0.049 + 0.11 (Canada Warbler), 0.12 £ 0.13
(Purple Finch), and 0.064 + 0.35 (Sedge Wren). Consideration
of the effect of incorporating within-route correlation (Figure
5) reveals that standard errors were considerably wider for the
climatic variables: DTR, PRECIP, and TEMP. There were also
changes in the values of the coefficients for EVIMEAN and
EVISD. ELEV and LANDCOV were unaffected.

4. Discussions

4.1. Influence of Autocorrelation (Proximity)

Initially, autocorrelation was assessed by examining the
pattern of residual error for non-spatial models. Species that
tend to show clustered or patchy distributions should be the
least adequately modelled by non-spatial methods. Judging
from residual autocorrelation, models based purely on en-
vironmental variables appeared adequate for four of the five
species. This made sense given the fact the environmental va-
riables themselves exhibited high levels of autocorrelation, such
that the bulk of proximity effects could be accounted for by the
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spatial distribution of the environmental factors alone.

However, even the most complex non-spatial model (i.e.
GAM?2) was unable to mitigate residual autocorrelation for the
American Crow. Major proximity effects played an important
role in determining the distribution of this species, independent
of environmental factors. Therefore, it made sense that incor-
porating an autocovariate would eliminate residual autocorre-
lation, improve model fit, and boost predictive accuracy. From
an information-theoretic perspective there was a tendency for
all species to benefit from the inclusion of a proximity effect,
as indicated by the substantially lowered AIC values for ALOG
models.

4.2. Influence of Location (Non-Stationarity)

Location exerted a strong effect on modelled relationships,
particularly for the American Crow. This was consistent with
the expectation that different factors, possibly combined with
regional differences in adaptation, could result in model rela-
tionships that vary through space. Evidence for the importance
of this effect came from the Monte Carlo significance tests, as
well as from the improvements in model fit and predictive ac-
curacy. There were species-specific differences, however, with
the greatest improvements in AIC and AUC values realized for
the American Crow and Blackburnian Warbler, respectively. In
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contrast, large-scale spatial variation for the Sedge Wren, based
on the Monte Carlo tests, was significant for less than half of
the predictor variables (Table 5). This may have been a product
of the smaller sample size for this species, but it may also be
attributable to its smaller geographical distribution within the
study area (estimated at 153,686 km’, or about 25% of the to-
tal extent, based on a minimum convex polygon enclosing the
presence points). Possibly this represents a lower bound of
geographical extent for consideration of non-stationarity at the
scale of this study.

Table 5. Monte Carlo Tests of the Significance of Non
Stationarity in Parameter Estimates for the GWR Statistical
Models

Variable AMCR BLBW CAWA PUFI SEWR
Land Cover

LANDCOV* <0.01 0.06 - 0.21 0.36
EVIMEAN  <0.01  <0.01 - - 0.60
EVIMEAN®  <0.01 <0.01 - - 0.58
EVISD <0.01 - - - 0.86
EVISD? <0.01 - - - -
Climate

DTR <0.01  <0.01 <0.01 <0.01  <0.05
DTR? <0.01 <0.01 <0.01 <0.01 <0.05
PRECIP <0.01  <0.01 <0.01 - 0.13
PRECIP? <0.01 <0.01 - - 0.13
TEMP <0.01 <0.01 <0.01 <0.01 0.05
TEMP? <0.01 <0.01 <0.01 <0.01 0.05
Topography

ELEV <0.01 0.01 <0.01 <0.01 0.01
ELEV? <0.01 <0.01 - - 0.01

* Significance averaged over all indicator variables

What drove spatial non-stationarity? Clearly, spatial vari-
ation in model relationships were statistically significant for
most variables, that is, greater than expected by chance given
the null hypothesis that model relationships were the same eve-
rywhere. The geographical arrangement of the responses intro-
duced variation that could not be explained purely by environ-
mental conditions. However, the potential for localized over-
fitting (discussed later in more detail), or misspecification of
the functional form of the relationships due to subsampling of
the entire range of conditions (Austin, 2007), is always a risk.
In the case of this study, the size of the GWR kernel (512 km)
may have coincided with a sufficiently high level of autocor-
relation in some of the predictor variables (Figure 2) to have
contributed to non-stationarity. By sharing neighbouring posi-
tions along each of the environmental gradients, nearby points
could lead to models that are purely an artifact of the particu-
lar range of conditions sampled by those points. In an example
(see Figure 5) provided by Austin (2007), species response to
rainfall was steeply linear in one portion of the gradient, but
unchanging in a latter portion of the gradient. However, this
explanation is unlikely to account for non-stationarity in the less
strongly autocorrelated variables (such as EVIMEAN). Further
to this point, Fotheringham et al. (2002) implicate three other
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Figure 4. Plot of residual autocorrelation, as measured by
Moran’s I, with respect to species and modelling method: (a)
linear logistic regression (LINLOG), (b) quadratic logistic
regression (QUADLOG), and (c) GAM2.
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factors capable of driving non-stationarity: (1) spatially-biased
sampling error; (2) a process that is genuinely dependent on
the location where it is observed; and (3) the presence of un-
measured but influential factors that are capable of accounting
for the observed spatial pattern.

In considering the possibility that sampling error was de-
pendent on location, we need to revisit the results of the GEE
models. The American Crow exhibited significant within-route
correlation, which strongly suggested the influence of an ob-
server effect on the probability of this species being both de-
tected and recorded as present. Of the five species examined,
gains in predictive accuracy through adoption of the GWR ap-
proach (relative to GAM2 non-spatial models) were also grea-
test for the American Crow (approximately three-times higher
than the next highest species, the Canada Warbler). Taken to-
gether, this suggests that an important proportion of the non-
stationarity in the American Crow GWR model could be attri-
buted to route-level effects (i.e. the observer).

Despite the evidence for observer effects on the detection
and recording of American Crows, we still cannot rule out the
possibility that the process of habitat selection was not also
geographically dependent or that other unknown (or unmea-
sured factors) were active in different portions of the study
area. In the first case, the species is common and widespread
and could quite conceivably exhibit localized adaptation to en-
vironmental conditions. In the second case, given the coarse-
scale nature of the study there may have been finer-scale, un-
measured factors (e.g. food availability) driving geographic
variation. We suggest that only a carefully controlled study,
conducted at wide spatial extent but fine-scale resolution, could
test the relative importance of these factors.

Methods such as GWR, which allow modelled relation-
ships to vary with location, have the potential to capture re-
gional differences in resource selection (as in this study), be-
haviour, or any other ecological phenomenon of interest. Given
its flexibility and power to generate new insights, we feel that
this method should receive greater attention from the ecologi-
cal and modelling community. However, we also concur with
Jetz et al. (2005) that general inferences can be difficult to
make in an environment where parameter estimates assume a
wide range of geographically specific values, and that non-
biologically meaningful sources of variation may be captured
by GWR regressions. One way to avoid the latter problem may
be to apply Monte Carlo significance tests for non-stationarity
as done here.

Consideration must also be given to the appropriate scale
(neighbourhood size) to search for non-stationarity, which we
feel represents an important area of research for GWR appli-
cations in species distribution modelling. A priori expectations
about the geographical range of local adaptation could help
guide the choice of neighbourhood size and may reveal poten-
tially important and informative geographic variation. Alter-
natively, geographic variation may be attributable to the pre-
sence (or absence) of the effects of important predictor vari-
ables and may help guide subsequent investigation into new
(or possibly overlooked) factors.
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4.3. Species-Specific Responses

One interesting aspect of our study was its cross-scale na-
ture: we were able to simultaneously address factors operating
at local scales (e.g. dominant forest cover) as well as those op-
erating over much larger spatial scales (e.g. average annual
temperature). This can be directly attributed to the geographi-
cally wide extent of the individual BBS survey routes (each
with fifty individual sample points). While the particular vari-
ables retained in each model varied for each species, all showed
sensitivity to a mixture of fine-scale (land cover) and broad-
scale (climatic and topographic) factors. The goal of our study
was to highlight prominent trends, not to rigorously test hypo-
theses about functional responses to environmental gradients
— an unachievable goal given the coarse scale of the study
(meaning that all predictor variables were indirect factors) and
the fact that we didn’t sample the entire range of conditions
experienced by each species over its entire range.

50
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|

Coefficient
20
1

-10

EVIMEANT EVISD1 DTR1  DTR2 PRECIP2 TEMP2 LANDCOV1 LANDCOV3

Predictor Variable

Notes: The coefficients and standard errors of individual predictor
variables are shown for a traditional model not incorporating
within-route effects (QUADLOG, indicated by crossed symbols,
broken lines) as well as the GEE model (solid circles and lines); See
Table 1 for variable definitions.

Figure 5. GEE model for the American Crow incorporating
the effects of within-route correlation.

All five species responded to broad-scale variation in aver-
age annual diurnal temperature range, average annual tempe-
rature, and elevation, with total annual precipitation only fai-
ling to be retained in models for the Purple Finch. Conven-
tional wisdom in biogeography maintains that external, large-
scale environmental factors such as temperature (Root, 1988)
or other measures of ecosystem productivity (Currie, 1991;
Irwin, 1998) are key determinants of broad-scale species dis-
tribution. A number of studies provide strong empirical evi-
dence in favour of this notion (e.g. Venier et al., 1999) and de-
monstrate that useful predictions can be made at biogeogra-
phic (or near-biogeographic) scales using this information alone.
The findings of our study reinforce this notion in that all five
passerine species showed significant relationships with clima-
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tic variables. Furthermore, four of the five species are migra-
tory and do not occur within the study area during the winter
season, so we expect much of the response to average climatic
conditions was likely of the “distal” type described by Austin
(2002), in which the integration of climatic conditions over
time acts through an indirect chain of events to influence the
suitability of particular locations for these species. This effect
could ultimately manifest itself by influencing food availabi-
lity or habitat (Venier et al., 1999).

Despite the importance of climatic conditions, local land
cover features (such as dominant forest class) were a signifi-
cant influence on species occurrence. The modelled relation-
ships were also consistent with previously documented habitat
associations, lending confidence to the results. The American
Crow, a species known for its preference for a mixture of open
fields for foraging and scattered woods for nesting (Godfrey,
1966; Verbeek and Caffrey, 2002), commonly frequents agri-

cultural land during the breeding season (Cadman et al., 1987).

This species’ tendency to occur in fragmented agricultural land-
scape was represented in the distribution model by a positive as-
sociation with EVISD and the CROPVEG class of LANDCOV.

While models for the Sedge Wren also showed a positive
response to the CROPVEG class, they showed a negative res-
ponse to EVISD. This may have been reflective of the spe-
cies’ preference for wet meadows, hayfields, and retired crop-
lands, but in areas of evenly distributed woody vegetation used
as cover (Godfrey, 1966; Herkert et al., 2001). The negative
response to EVISD was consistent with previously published
findings for this species to occur in relatively intact (i.e. un-
fragmented) grassland cover (Bakker et al., 2002; Fletcher and
Koford, 2002). While this species is considered transitory, that
is, likely to nest in different locations from year to year (Her-
kert et al., 2001), it appeared to occur in a narrow enough range
of landscape types to be predicted with a high degree of accu-
racy. It may be that aggregating occurrence information over
the seven-year period of this study also helped to yield a larg-
er sample of occurrences for this rare species. It is also possi-
ble that the coarse scale of the predictions, applied over an ar-
ea of large spatial extent, may have lessened the impact of
year-to-year variation in the location of nesting sites. We ex-
pect that attempts to predict occurrences at finer spatial and
temporal scales might result in higher false-positive prediction
error, that is, a tendency to predict occurrence in suitable land-
scape units that are, in fact, unoccupied due to stochastic vari-
ation in micro-site conditions. Moisture availability, for ins-
tance, appears to be a candidate factor that acts in this way
(Dechant et al., 1998).

Of the two warblers in this study, the Blackburnian
Warbler is known to associate with mature conifer-dominated
woodland (Cadman et al., 1987; Morse, 2004), although re-
cent habitat association studies have documented preference
for mixedwood forest, depending on scale (Girard et al., 2004;
Young et al., 2005). Our study, limited to the 1-km scale of the
MODIS land cover classification, detected a preference for the
CONIFER-class of LANDCOV (Figure 3b). Subtleties of ha-
bitat usage within those landscape units (e.g. choice of indivi-
dual trees for singing or foraging) were not measured. The

Canada Warbler is known to prefer mixedwood forest (Cadman
et al., 1987; Conway, 1999), but we were unable to establish a
link between this species and the MIXED-class of LANDCOV.
Finally, models for the Purple Finch were most strongly asso-
ciated with the CONIFER and MIXEDF classes of LANDCOV
(Figure 3c), which was consistent with its documented prefer-
ence for nesting in conifer-dominated or conifer-deciduous
mixed forest (Godfrey, 1966; Wootton, 1996; Machtans and
Latour, 2003).

One local-scale variable of special interest to us was
EVISD, the standard deviation of the enhanced vegetation in-
dex (EVI), which we postulated may index landscape frag-
mentation. The EVISD variable was a largely non-significant
factor in all of our models, with the exception of the American
Crow (which showed a positive response to this variable) and
the Sedge Wren (which showed a negative response). Species
considered sensitive to habitat fragmentation or vegetation spe-
cies composition (e.g. the Blackburnian Warbler and the Ca-
nada Warbler) did not show a significant response to EVISD.
Given that the finest resolution of EVI values for our MODIS
land cover data was 1 kilometre, and the possibility of pixel
mixing, it may be that our EVISD measure was too coarse to
generally capture this effect. We concur with the recommenda-
tion of Kadmon et al. (2003) that data used to test hypotheses
be gathered at a finer scale than that for which inferences are
to be made, and for this reason speculate that 1-km’land co-
ver data may have been of inadequate resolution. Nevertheless,
other unmeasured characteristics of the land cover variables
(e.g. vegetation structure) may have acted as important miss-
ing components.

4.4. Recommendations

We present evidence that consideration of the effects of
autocorrelation and non-stationarity, via spatially autocorrelat-
ed or geographically weighted models, can improve model fit
and raise predictive accuracy. However, they introduce addi-
tional complexities that may limit their general use. For in-
stance, the use of spatially autocorrelated models to make pre-
dictions about probability of occurrence in unsampled areas
(for purposes of interpolation) requires special simulation of
presence in those areas (e.g. via a Markov Chain Monte Carlo
approach; see Wu and Huffer, 1997; Augustin et al., 1998).
Furthermore, it is our experience that without a priori expec-
tations about the spatial pattern of model relationships, infer-
ences about GWR estimates can also be challenging to make,
that is, it can be difficult to determine whether or not the geo-
graphic variation is biologically meaningful. As well, use of
GWR warrants consideration of the risk of over fitting models
that may be less generalizable outside the region of study.

Because of the difficulties previously mentioned we re-
commend an iterative process for incorporating spatial effects.
First, non-spatial models can be estimated and the adequacy
of environmental predictor variables determined. Second, au-
tocorrelation in model residuals can then be assessed using a
measure such as Moran’s 1. Species that exhibit a tendency to
be patchily distributed (e.g. the American Crow) should exhi-
bit more poorly fit models, and be of lower accuracy, than less
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patchily distributed ones. These species represent good candi-
dates for an autologistic approach. In this study, proximity ef-
fects exerted a stronger overall impact on models than loca-
tion, but for studies occurring over large areas, or for which a
priori reasons exist for suspecting geographic differences in
model relationships, a GWR approach may be quite helpful.
Investigators must still contend with interpretation of those
geographic patterns, but GWR can raise new and interesting
questions about model relationships or suggest the influence
of unknown or unmeasured factors.
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