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ABSTRACT.  Estimation of ecosystem models is an important task and many studies have been carried out on the problem. However, 
estimating some models may be difficult. Here, we want to estimate two nonlinear spatial influence models by using the classical 
least-squares method, and that requires the solution of difficult nonlinear optimization problems. The aim of this paper is to show that 
both models can be efficiently estimated using mathematical programming. The estimation problems are first formulated as nonlinear 
optimization problems which are then transformed into convex quadratic mixed-integer programs. The transformation is based on the 
discretization of some variables and on the linearization of the product of a Boolean variable with a real variable. The approach which 
allows to find the best estimation with a certain precision and in the least-squares framework, is interesting for several reasons: the 
definition of the mathematical programs is relatively simple, they are easy to implement using a mathematical programming language 
together with a quadratic mixed-integer programming software, and computational experiments carried out on large sets of simulated 
data show the excellent performance of the approach. Moreover, the ideas underlying the method can be used for other difficult 
least-squares estimations. These results suggest that mixed-integer programming may be an efficient tool for practitioners and 
researchers in environmental modeling. 
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1. Introduction  

Because of the importance of model estimation in ecosys- 
tem modeling, numerous researchers have worked for many 
years to develop estimation methods or apply known methods 
in a real environment. However, estimation of complicated mo- 
dels in natural resources and environmental systems continues 
to challenge ecological modelers. The aim of this paper is to 
propose an efficient method for the estimation of two general 
spatial influence models suggested in (Kuuluvainen and Lin- 
kosalo, 1998). We consider a plane surface and objects situated 
on this surface. Each of these objects is of a certain type. For a 
given environmental variable, the objects have an influence 
which can be measured over some points of the surface (Fi- 
gure 1). We look for models describing this influence with the 
hypothesis that the spatial influence at any given point of the 
surface depends on the combined individual influences of the 
multiple surrounding objects. More precisely, we consider that 
the influence at a point depends on the distances between this 
point and the objects which are in the influence vicinity from 
this point, and also on the different types of these objects. Since 

a simple linear model does not appear to adequately describe 
these spatial influences, we consider here a nonlinear model 
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including expressions of the form dα where d is the distance 
between an object and a measure point, andα is a parameter 
to be estimated, and which is dependent on the type of the ob- 
ject. 

In this paper, we address the estimation problem by the 
least-squares method. Classically, we want to estimate model 
parameters in order to minimize the sum of the squares of the 
gaps between the values predicted by the model and the obser- 
ved values. Least-squares is a widely used technique in many 
domains. When the parameters appear linearly in these expre- 
ssions then the least-squares estimation can be solved in closed 
form but for nonlinear models the problem often becomes a 
complicated nonlinear optimization problem. Usually, these 
optimization problems are solved by heuristic methods or ite- 
rative optimization techniques (Kuuluvainen and Linkosalo, 
1998). Heuristic approaches such as Genetic Algorithm, Simu- 
lated Annealing or Tabu Search (Glover and Kochenberger, 
2003) are generally fast and often provide good solutions but 
they have significant drawbacks: they provide approximate so- 
lutions which cannot be tested for optimality, it is often diffi- 
cult to tell how far these solutions are from optimality, and they 
require difficult adjustments of several parameters. Iterative 
optimization techniques (Hooke and Jeeves, 1961) may require 
several hours of computation time and do not always give a 
global optimum. In this work, we formulate the estimation pro- 
blem as a nonlinear mathematical program in real variables 
that we then transform into a program with integer and real 
variables, a convex quadratic objective, and linear constraints. 
The transformation is based on the discretization of some va- 
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riables and on the linearization of the product of a Boolean 
variable with a real variable. The discretization of continuous 
variables is a common approach to deal with nonlinear expre- 
ssions including these variables, and the linearization techni- 
que is inspired from (Glover, 1975). The transformed problem 
can be solved by standard mixed-integer quadratic program- 
ming (MIQP) solvers. See Appendix for further information 
about mixed-integer programming. The mathematical program- 
ming approach presented in this paper allows the estimation 
problem to be solved to optimality with a fixed precision, and 
is very different from other methods proposed for least- 
squares estimations in the case of nonlinear models (e.g. 
Hooke and Jeeves, 1961; Gill and Murray, 1978; Gill and 
Wright, 1986). Computational experiments carried out with a 
large set of simulated data show the excellent performance of 
the approach since it allows to quickly find the estimated 
influence models for a surface including 5000 objects and 500 

points of measure. Note that this article only proposes an effi- 
cient technique for least-squares estimation of influence 
models. It does not concern the precise analysis of the results, 
i.e. the statistical comparison of the values predicted by the 
obtained models and the measured values.  
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Figure 1. An example of a 200 m ╳ 200 m surface with 3 
objects of type 1, 4 objects of type 2, 5 objects of type 3, and 
20 measure points. 

 
Section 2 describes the two spatial influence models that 

we consider. In Model 1, the objects are grouped into classes, 
and in Model 2, the objects have a certain measurable charac- 
teristic that varies continuously within a given interval. Sec- 
tion 3 proposes a convex quadratic programming formulation 
of the estimation of Model 1, and in Section 4, we report com- 
putational tests concerning this estimation problem. Section 5 
proposes a convex quadratic programming formulation of the 
estimation of Model 2, and in Section 6 we report computa- 

tional tests concerning this second estimation problem. Section 
7 is a conclusion. 

2. The Models 

We consider a plane surface S and objects 1,  ...,  nO O  si- 
tuated on this surface. Each of these n objects has a certain 
characteristic. For a given environmental variable, the objects 
have an influence which can be measured over some points 

1 2,  ,  ...,  mP P P  of the surface. We want to estimate two models 
describing this influence. 

 
2.1. The First Model 

For all points jP  of the surface S, we try to express the 
influence jF  on this point of the n objects iO  ( 1,  ...,  )i n=  
situated on this surface. Following (Kuuluvainen and Linko- 
salo, 1998) we suppose that the influence at jP  depends on 
the distance between the objects and jP , and that a reasonable 
(nonlinear) model is of the form: 
 

( )1
( )n

j t i iji
F f d

=
= ∑  ( 1,  ...,  )j m=               (1) 

 
where  ( 1,  ...,  ;  1,  ...,  )ijd i n j m= = is the distance that separates 
the point jP from the object iO . For the object iO , ( )t i is the type 
of this object and there are p types. For k =1,  ...,  p , the func- 
tions ( )k ijf d are of the form ( ) kc

k ij k k ijf d a b d= + if max
ij kd d≤ and 

0)( =ijk df if max
ij kd d> , where kk ba , and kc are the parame- 

ters to be estimated. So, an object of type k has an influence 
over a point jP if the distance between this object and jP is less 
than or equal to max

kd . We suppose that for all the points jP of 
the surface, we have a measure jM of the global influence of 
all the objects over this point. We want to estimate by the least- 
squares method the values of the parameters kk ba , and kc (k = 
1,  ...,  )p for which the model best fits the data, i.e. to determine 
the values of kk ba , and kc ( 1,  ...,  )k p= that minimize the sum 
of the squared differences between the predicted values jF and 
the measured values jF : ( )2

1

m
j jj

F F
=

−∑ . 
 

2.2. The Second Model 
As suggested in (Kuuluvainen and Linkosalo, 1998) rath- 

er than to distribute objects in some groups, in this second mo- 
del we consider that the individual influence functions depend 
in a continuous way on a certain parameter characterizing the 
objects. As in the first model, we suppose that the influence 

jF at jP depends on the distance between the objects and jP , 
and that it can be expressed by the following model: 
 

1
( )n

j i iji
F f d

=
= ∑  ( 1,  ...,  )j m=                (2) 

 
where 3/ ( )

1 2( ) ( ) ( ) ic s D
i ij i i ijf d a s D b s D d= ⋅ + ⋅ ⋅ if max

ij id d≤ , and 
( ) 0i ijf d = if max

ij id d> ; ( ) ( 1,  2,  3)k is D k = is a known function 
of iD , the value of the parameter characterizing the object iO . 
As in the first model, object iO has an influence over the 
point jP if the distance between this object and jP is less than 
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or equal to max
id . In this second model, we have to estimate the 

three parameters: a, b and c. 
 

2.3. Interpretation of the Two Models 
To build the models, we suppose that the influence of an 

object iO over a point jP depends on the object type (Model 1) 
or of a continuous parameter characterizing this object (Model 
2), and also of the distance between the object and the point. 
In both models this influence is a nonlinear decreasing function 
of the distance. In Model 1, the influence is a function of the 
form ( )k ijf d as defined in Section 2.1. An example of such in- 
fluence functions is given in Figure 2 where a = −(0.6, 1.1, 2.1, 
3.6, 5.6), b = (1.6, 2.6, 4.1, 6.1, 8.6), c = −(0.42, 0.28, 0.19, 0.14, 
0.1), and max (10, 20, 30, 40, 50)d = . 
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Figure 2. Model 1: example of influence functions for five 
types of objects. 

 
In Model 2, the influence is also a nonlinear decreasing 

function of the distance; it is expressed by a function of the 
form ( )i ijf d as defined in Section 2.2. An example of such in- 
fluence functions is given in Figure 3 where the parameter iD  
ranges from 10 to 50, 1.32

1( )i is D D= , 2 3( ) ( )i is D s D= = ,iD a = 
−0.029, 0.15,  5.12.b c= = − The influence functions for objects 
such that Di = 10, 15, 20, 25, 30, 35, 40, 45, 50 are presented 
on the figure.  

In both models there is the following additivity hypothe- 
sis: the cumulated influence jF , over the point jP of the surface 
S, of all the objects situated on this surface is equal to the sum 
of the influences of each object on this point, i.e.

1

n
j i

F
=

= ∑  

ft(i)(dij) in Model 1 and
1

( )n
j i iji

F f d
=

= ∑ in Model 2. To sum- 
marize, the data are: 
n: number of objects; 
m: number of measure points; 
p: number of types of objects, for Model 1; 

( )t i : type of the object iO  ( 1,  ...,  )i n= , for Model 1; 
iD : characteristic of the object iO  ( 1,  ...,  )i n= , for Model 2; 

( ,  )i ixo yo : coordinates of the object iO  ( 1,  ...,  )i n= ; 

( ,  )j jxp yp : coordinates of the measure point jP  ( 1,  ...,j =  
)m . 

We deduct from previous data the distance from the 
object iO  to the measure point jP : 

2 2( ) ( )ij i j i jd xo xp yo yp= − + −  ( 1,  ...,  ;  1,  ...,  )i n j m= = ; 
max
kd : maximal influence distance of an object of type k (k  
1,  ...,  )p= , for Model 1; 
id : maximal influence distance of the object iO  ( 1,  ...,i =  
)n , for Model 2; 
jF : result of the measure at point jP  ( 1,  ...,  )j m= ; 

and the unknowns to be determined in order to minimize the 
quantity ( )2

1

m
j jj

F F
=

−∑  are: ,  ,  k k ka b c  ( 1,  ...,  )k p=  for 
Model 1; ,  ,  a b c , for Model 2. 
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Figure 3. Model 2: example of influence functions, 
depending in a continuous way on a parameter Di associated 
with the object Oi. 
 

In Kuuluvainen and Linkosalo (1998), the authors study 
the effects of tree neighborhoods on the values of environ- 
mental variables. For example, they try to determine if the hu- 
mus layer thickness in a point of a forest depends on trees si- 
tuated around this point, and how to express this dependence. 
More exactly, they try to know if the humus layer thickness in 
a point can be expressed by a simple function of the diameter 
of the trees situated at a small enough distance of this point, 
and of the distance between these trees and this point. In their 
study, trees are grouped together in p various classes follow- 
ing their diameter. Their problem is the same that the one pre- 
sented in Section 2.1: the plane surface is a forest, each object 

iO is a tree, ( )t i is the class to which the tree iO belongs, jM is 
the humus layer thickness measured in the point jP of the for- 
est, and if the distance between the tree iO and the point jP is 
greater than max

( )t id , then the tree iO has not influence on the poi- 
nt jP . They suppose that the individual influence of a tree over 
the humus layer thickness in a point can be expressed by a func- 
tion of the form ( ) kc

k ij k k ijf d a b d= + as defined in Section 2.1. 
They also make the additivity hypothesis of the individual influ- 
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ences for defining the global influence. The model 2 which is 
slightly different from Model 1 is suggested in (Kuuluvainen 
and Linkosalo, 1998). Indeed, in their conclusion, these auth- 
ors indicates as future research the development of a method 
to estimate tree influences as a continuous function of distance 
and tree size. 

3. Estimating Model 1 by Convex Quadratic 
Programming 

Among all the difficult optimization problems, the mini- 
mization of a linear or convex quadratic function subject to li- 
near constraints is particularly well solved by standard soft- 
ware. Variables are real, but some of them must take only in- 
teger values. (See Appendix for a brief presentation of mixed- 
integer programming). Estimating the first spatial influence 
model consists in solving the mathematical program (3): 
 

( ) 2
( ) ( )1

min [ ( ) ]t i

j

m c
t i t i ij jj

i I

a b d F
=

∈

+ −∑ ∑               (3) 

s.t. , ,  ( 1,  ...,  )k k ka b c R k p∈ =            (3.1) 
 
   0 ( 1,  ...,  )kb k p≥ =             (3.2) 
 
where jI is the set of objects having an influence over the point 

jP , i.e. { }{ }max
( )  

1,..., : ( 1,  ...,  )j ij t iI i n d d j n= ∈ ≤ = . Program (3) 

is a difficult nonlinear programming problem because the ob- 
jective function is a sum of squared expressions where the non- 
linear term ( )

( )
t ic

t i ijb d appears. By discretizing the variable kc , we 
are going to reformulate (3) as a program with a convex qua- 
dratic function and linear constraints. For that, let min max[ , ]k kc c  
be the interval in which the optimal value of kc falls, and let us 
choose a precision kδ for the variable  ( 1,  ...,  )kc k p= . We can 
then express the variable kc in the following way: min

k kc c= +  
0

kn
k krr

r wδ
=

⋅∑ where max min( ) /k k k kn c c δ⎡ ⎤= −⎢ ⎥ and  ( 1,  ...,  ;krw k p=  
r = 0, …, nk) are Boolean variables subject to constraints

0
kn

r=∑  
 1 ( 1,  ...,  )krw k p= = . So, the possible values of kc are min

kc , min
kc  

kδ+ , min 2k kc δ+ , …, min
k k kc n δ+ , and min

k k kc n δ+ is greater than 
or equal to max

kc . For example, if min 1kc = − , max 2kc = and kδ =  
0.1, we will look for a value of kc belonging to the following 
finite set of values: {−1, −0.9, −0.8, …, 1.8, 1.9, 2}. In this case, 
we look for a real value of the coefficient kc , belonging to the 
interval [−1, 2], and with one digit after the decimal point. Dis- 
cretizing kc in (3) leads to the program (4). 
 

( )2

1
min m

j jj
F F

=
−∑                  (4) 

 
min

( ) ( ) ( )
( ) ( ) ( ),0

s.t. [ ] ( 1, ...,  )t i t i t i

j

n c r
j t i t i t i r iji I r

F a b w d j mδ+

∈ =
= + ⋅ =∑ ∑  (4.1) 

 
min

0
 ( 1,  ...,  )kn

k k k krr
c c r w k pδ

=
= + ⋅ =∑           (4.2) 

 

0
1 ( 1,  ...,  )kn

krr
w k p

=
= =∑             (4.3) 

 

{ }, ,  0,  0,1 ; 1,  ...,  ;  0,  ...,  k k k kr ka b R b w k p r n∈ ≥ ∈ = =         (4.4) 
 

The optimal solution of (4) gives the best spatial influence 
model (with the least-squares criterion) when the parameter kc  
is allowed to take only values belonging to the finite set min{ kc , 

min min min
    , 2 , ..., } ( 1, ...,  ).k k k k k k kc c c n k pδ δ δ+ + + = Now, the obje- 

ctive function of (4) is obviously quadratic and convex but con- 
straints (4.1) are nonlinear because of the products ( ) ( ),t i t i rb w  
where ( )t ib is a nonnegative real variable and ( ),t i rw is a Boolean 
variable. Let us put ( )k t i= and linearize these products in a 
classical way: replace k krb w by the real variable krv and add the 
linear constraints ( ,  ,  ,kr k krC v b w  max )kb forcing krv to be equal 
to k krb w . 
 

),,,( max
kkrkkr bwbvC ( 1,  ...,  ;  0,  ...,  )kk p r n= = :            (5) 

 
max

kr k krv b w≤  
 

kr kv b≤  
 

max (1 )kr k k krv b b w≥ − −  
 

0krv ≥  
 

In (5), max
kb is the maximal possible value of (kb k = 1, …, 

p). For each couple ( ,  )k r belonging to{1,  ...,  } {0,p × ...,  }kn , 
max( , , , )kr k kr kC v b w b corresponds to four linear inequalities. By 

examining successively the two possible values of krw , we im- 
mediately see that kr k krv b w= if and only if the four constraints 
of max( , , , )kr k kr kC v b w b are satisfied. By using this linearization of 

( ) ( ),t i t i rb w in (4), we get the mixed-integer program (6), equiva- 
lent to (4). The objective function of (6) is quadratic and con- 
vex and now all the constraints are linear. The program (6) can 
therefore be solved by a standard mixed-integer quadratic pro- 
gramming solver. 
 

( )2

1
min m

j jj
F F

=
−∑                  (6) 

min
( ) ( ) ( )

( ) ( ),0
s.t. [ ] ( 1,  ...,  )t i t i t i

j

n c r
j t i t i r iji I r

F a v d j mδ+

∈ =
= + ⋅ =∑ ∑   (6.1) 

min
0

( 1,  ...,  )kn
k k k krr

c c r w k pδ
=

= + ⋅ =∑           (6.2) 
 

0
1 ( 1,  ...,  )kn

krr
w k p

=
= =∑             (6.3) 

 
max( , , , ) ( 1,  ...,  ;  0,  ...,  )kr k kr k kC v b w b k p r n= =         (6.4) 

 
{ }, ,  0,  0,1  ( 1,  ...,  ;  0,  ...,  )k k k kr ka b R b w k p r n∈ ≥ ∈ = =       (6.5) 

 
To sum up, an optimal solution  ( ,  ,  ) ( 1,  ...,k k ka b c k = p) 

of (6) provides the best estimation of Model 1 when the value 
of the parameter kc is restricted to the following 
ones: min

kc , min
kc  kδ+ , min 2k kc δ+ , …, min

 ( 1,  ...,  )k k kc n k pδ+ = . 
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Program (3) 
objective : nonlinear function 

no constraints 
real decision variables : kkk cba ,,  

Program (4) 
objective : quadratic convex function 

constraints : linear and quadratic 
real decision variables : kk ba ,  

discretized decision variables : kc  
Boolean working variables : krw  

Program (6) 
objective : quadratic convex function 

constraints : linear 
real decision variables : kk ba ,  

discretized decision variables : kc  
Boolean working variables : krw  

real working variables krv  

discretization of 
the variables kc  

linearization of the  
quadratic constraints 

 
Figure 4. The different steps to formulate the estimation of 
Model 1 by a mathematical program with a quadratic convex 
objective, linear constraints and real or 0/1 variables. 

4. Experimental Estimation of Model 1 Parameters 

Two simulated surfaces were generated to test the app- 
roach, i.e. the possibility of effectively solving the convex qua- 
dratic mixed-integer programs (6)  associated with the estima- 
tion problem. In this section, we report computational results 
on these surfaces, which show the efficiency of the approach. 
The different instances of the mathematical program (6)  have 
been implemented using the modeling language AMPL (Fourer 
et al., 1993) and solved by the MIQP solver CPLEX 10.2.0 
(CPLEX, 2007). The experiments have been carried out on a 
PC with an Intel Core Duo 2 GHz processor and 2 Go of RAM. 
The solution of (6)  has been tested in two simulated surfaces 
whose the characteristics are given below.  

Surface 1 − A rectangular region of dimension 1000 m  
500 m× including 5000 objects of five types, and 500 mea- 

sure points ( 5000n = , 5p = , 500m = ). The coordinates of the 
objects and measure points, ,  ,  ,  ,i i j jxo yo xp yp are real numbers 

uniformly and randomly generated between 0 and 1000 for xoi 
and jxp , and between 0 and 500 for iyo and jyp . For each ob- 
ject, its type is an integer uniformly and randomly generated 
between 1 and 5. In this simulated surface, the number of ob- 
jects of types 1, 2, 3, 4 and 5 are 609, 1269, 1225, 1256 and 
641, respectively. 

Surface 2 − A rectangular region of dimension 200 m ×  
100 m including 5000 objects of five types, and 500 measure 
points ( 5000n = , 5p = , 500m = ). The coordinates of the ob- 
jects and measure points, ,  ,  ,  i i j jxo yo xp yp , are real numbers 
uniformly and randomly generated between 0 and 200 for xoi 
and jxp , and between 0 and 100 for iyo and jyp . For each ob- 
ject, its type is an integer uniformly and randomly generated 
between 1 and 5. In this simulated surface, the number of ob- 
jects of types 1, 2, 3, 4 and 5 are the same as in Surface 1. 

In order to test the approach proposed to estimate the pa- 
rameters of Model 1, we have carried out the two tests des- 
cribed below. 

 
4.1. Test 1 

The following (known) individual test influence functions 
are used to simulate in Surface 1 the values of a hypothetical 
object influence at the 500 points of the surface: ( )k ij kf d a= + 

kc
k ijb d if max

ij kd d≤ and ( ) 0k ijf d = if max ,ij kd d> with a =  
(0.6,  1.1,  2.1,  3.6,  5.6),− (1.6,  2.6,  4.1,  6.1,  8.6)b = , c = 
(0.42,  0.28,  0.19,  0.14,  0.1),− and max (10, 20, 30, 40, 50)d = . 

These influence functions are represented in Figure 2. In this in- 
stance, the values of the influence at point jP ,

1

n
j i

F
=

= ∑  ft(i)(dij), 
vary from 2.97 to 20.34. The minimum number of objects that 
influence a measure point is equal to 11, the average number 
of objects that influence a measure point is equal to 31.3, and 
the maximum number of objects that influence a measure point 
is equal to 54. In the solution of (6), the minimal and maximal 
values of kb , kc and kd are fixed as follows: min 0kb = , max

kb =100, 
3min −=kc , max

kc = 0.1− ( 1,  ...,  )k p= . 
In this test, the optimal value of (6) with 0.01kδ = (k = 1, …, p) 
is equal to 0 as expected, and the corresponding so- lution 
provides exactly the coefficients chosen to test the ap- proach, 
i.e. (0.6,  1.1,  2.1,  3.6,  5.6)a = − , (1.6,  2.6,b = 4.1, 6.1, 8.6), 
and     (0.42, 0.28, 0.19, 0.14, 0.1)c = − . The solution re- quires 
92 seconds of CPU time and a search tree composed of 14 
nodes. With  0.1 ( 1,  ...,  ),k k pδ = = the optimal value of (6) is 
equal to 0.2957 and the corresponding solution is a = −(0.652, 
0.993, 1.964, 5.296, 5.599), b = (1.650, 2.505, 3.977, 7.706, 
8.598) and (0.4, 0.3, 0.2, 0.1, 0.1).c = − In this case the so- lution 

of (6) requires only 4 seconds of CPU time but the search tree is 
composed of 25 nodes. In this test, the precision kδ =  0.1 
appears to be sufficient to estimate the model since the sum of 
the 500 squared differences is only 0.2957. Now, con- sider 

the following random perturbation of : n
j j j i

F F ε
=

= ∑  ft(i)(dij), 
jε being uniformly and randomly generated in the interval 

[0.8, 1.2]. With these values for the parameters, jF varies from 
2.67 to 22.33. The computational results obtained for different 
values of kδ are summarized in Table 1. 

With 0.1,kδ = the solution of (6) provides a solution of the 
estimation problem with one decimal for the value of the pa- 
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Figure 5. Model 1, Test 1: for each of the 500 measure 
points of Surface 1, the simulated measured value and the 
value predicted by the model are not far from each other. 
 
rameter kc . With 0.01,kδ = we get two decimals for this value. 
The optimal solution of (6) is quickly obtained for kδ 0.1=  
and 0.05kδ = . The solution of (6) with 0.01kδ = requires much 
more time. We see in Table 1 that increasing the precision does 
not improve significantly the optimal value, i.e. the sum of the 
squared differences. Thus, 0.1kδ = appears to be sufficient to 
estimate the model. Figure 5 illustrates the comparison between 
the values predicted by the model and the (simulated) measured 
values, when 0.1kδ = . We would obtain almost the same figure 
for 0.01kδ = . We also see in Table 1 that though the optimal 
values are very close for the three considered precisions, the 
estimated parameters are relatively different. For example, for 
objects of type 5, the estimated values of the three parameters 
are 5 5.41726,a = − 5b = 8.36779 and 5 0.1c = − when 0.1,kδ =  

and 5  53.98081, 7.02920a b= − = and 5 0.13c = − when kδ =  
0.01. The two corresponding functions are represented in Fi- 
gure 6 where we see that these different parameters define al- 
most identical influence functions. 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

 d i s t a n c e  (m)

 i 
n

 f 
l u

 e
 n

 c
 e

Distance (m) 

In
flu

en
ce

 

Figure 6. Model 1, Test 1: two almost identical individual 
influence functions for the objects of type 5. 

 
4.2. Test 2  
We consider Surface 2 where objects are trees, and the 
following individual influence functions proposed in (Kuulu- 
vainen and Pukkala, 1989) to simulate values of a hypothe- 
tical tree influence at the 500 points of the surface: ( )k ijg d = 

20 k ijb d
kg e− . These functions are based on an empirical analysis 

of the effect of Scots pine seed trees on the density of seedlings 
and understory vegetation on a certain site. We consider that 
the 5000 trees of the surface fall into five diameter size classes, 
0 ~ 10, 10 ~ 20, 20 ~ 30, 30 ~ 40 and 40 ~ 50 cm. There are 
thus five types of objects/trees. Moreover, we assume that the 
tree heights of each class are 5, 10, 15, 20, 30 m. Following 
(Kuuluvainen and Linkosalo, 1998), 0 /35k kg D= where kD is  

Table 1. Computational Results Regarding the Solution of (6) in the Test 1 with Different Values of kδ  

δk (k = 1, …, p) Optimal value of (6) CPU time in seconds # nodes a b c 
 
 
0.1 

 
 
862.23 

 
 
3.4 

 
 
46 

-0.11429   
-1.09745   
-0.83938   
-2.21894   
-5.41726   

0.69538    
2.62586    
3.44949    
4.77903    
8.36779    

-1.3 
-0.3 
-0.4 
-0.2 
-0.1 

 
 
0.05 

 
 
861.79 

 
 
6.3 

 
 
50 

-0.12198   
-1.09686   
-1.04708   
-3.16585   
-5.43106   

0.70734    
2.62378    
3.56280    
5.60733    
8.38810    

-1.25
-0.30
-0.35
-0.15
-0.10

 
 
0.01 

 
 
861.67 

 
 
248.0 

 
 
747 

-0.11617   
-1.09416   
-1.00158   
-2.93124   
-3.98081   

0.70304    
2.61969    
3.53737    
5.39637    
7.02920    

-1.28
-0.30
-0.36
-0.16
-0.13
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Figure 7. Model 1, Test 2: the five individual influence 
functions. 
 
the middle of the class k, and 1/(0.4 )k kb h= where kh is the hei- 
ght of the trees in class k. Thus 0g = (5, 15, 25, 35, 45)/35 and 

(1/ 2,  1/ 4,  1/ 6,  1/8,  1/12).b = These individual influence fun- 
ctions are represented in Figure 7 where the tree class is indi- 
cated next to each curve. We consider that maxd = (3, 5, 6, 7, 9). 
In this test, the global influence at poin jP , ( )1

( )n
j t i iji

F f d
=

= ∑ , 
varies from 0.44 to 8.64, the minimum, average and maximal 
number of objects that influence a measure point is equal to10, 
29.1 and 50, respectively.  

In the solution of (6), the minimal and maximal values of 
kb , kc and kd are fixed as follows: min 0kb = , max 100kb = , min

kc = 
−3, max

 0 ( 1,  ...,  )kc k p= = . The computational results obtained 
for different values of kδ are summarized in Table 2. 

The optimal solution of (6) is quickly obtained for kδ =  
0.1  and 0.05kδ = . The case 0.01kδ = requires much more time. 
We see that increasing the precision slightly improve the opti- 
mal value, i.e. the sum of the squared differences. Figure 8 il- 
lustrates the comparison between the predicted values and the 
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Figure 8. Model 1, Test 2: For each of the 500 measure points 
of Surface 2, the simulated measured value and the value 
predicted by the model are not far from each other. 
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Figure 9. Model 1, Test 2: two almost identical individual 
influence functions for the objects of type 5. 
 

Table 2. Computational Results Regarding the Solution of (6) in the Test 2 with Different Values of kδ  

δk (k=1,…,p) Optimal value of (6) CPU time in seconds # nodes a b c 
 
 
0.1 

 
 
51.71 

 
 
3.8 

 
 
4 

-0.20808
-1.79367
-3.04724
-4.09745
-5.22673

0.30713 
2.09220 
3.59506 
4.91254 
6.40614 

-0.4 
-0.1 
-0.1 
-0.1 
-0.1 

 
 
0.05 

 
 
47.55 

 
 
6.3 

 
 
1 

-0.25790
-3.78862
-6.39257
-8.59500
-10.9524

0.35992 
4.08826 
6.94054 
9.40830 
12.1214 

-0.35 
-0.05 
-0.05 
-0.05 
-0.05 

 
 
0.01 

 
 
45.26 

 
 
292.9 

 
 
38 

-0.36094
-19.7116
-33.1201
-44.5294
-56.6930

0.46493 
20.0117 
33.6675 
45.3401 
57.8522 

-0.27 
-0.01 
-0.01 
-0.01 
-0.01 
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simulated measured values, when 0.1kδ = . We would obtain 
almost the same figure for 0.01kδ = . 

Though the optimal values are close for the three consi- 
dered precisions, the estimated parameter values may be very 
different. For example, for objects of type 5 the estimated va- 
lues of the three parameters are 5 5.22673a = − , 5 6.40614b =  
and 5 0.1c =− when 0.1kδ = , and 5 56.6930a = − , 5 57.8522b = and c5 

0.01= − when 0.01kδ = . The two functions are represented in 
Figure 9. We see that these very different parameter values de- 
fine almost identical influence functions (both curves are su- 
perposed). 

Figure 10 presents the simulated individual influence 
function,

20( ) k ijb d
k ij kg d g e−= and the estimated individual influen- 

ce functions, kc
k k ija b d+ , for 1,  3,  5.k =  
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Figure 10. Model 1, Test 2: comparison of the simulated 
individual influence function with the estimated individual 
influence functions for the objects of types 1, 3 and 5. 

 

5. Estimating Model 2 by Convex Quadratic 
Programming  

Here, we consider that individual influence functions de- 
pend in a continuous way on a certain parameter characteri- 
zing these objects (See Section 2.2). For example, if objects 
are trees, in the first model these trees are distributed in vari- 
ous classes: the class 1 corresponds to the trees which diame- 
ters is between 20 and 30 cm, the class 2 corresponds to the 
trees which diameter is between 30 and 40 cm, etc. In this mo- 
del, we consider influence functions depending in a continu- 
ous way on the diameter. We choose to consider functions of 
the form 
 

3/ ( ) max
1 2( ) ( ) ( )  ( ,   ;  )ic s D

i ij i i ij ij if d a s D b s D d i j d d= ⋅ + ⋅ ⋅ ∀ ≤  
 

max( ) 0                                            ( ,   ;  )i ij ij if d i j d d= ∀ >    (7) 
 
where ( )i ijf d is the individual influence of the tree iO over the 

point of measure jP , iD is the diameter of the tree iO , ( )t is D (t 
1,  ...,  3)= is any real-valued function of iD , and ijd is the dis- 

tance from the tree iO to the point of measure jP . A tree iO  has 
an influence over a point jP if the distance between iO and jP  
is less than or equal to max

id . The parameters a, b and c are the 
unknowns. By using the same idea as in the previous model, 
we choose a precision δ  and discretize the variable c in the 
following way:

max
min

0

r
rr

c c r wδ
=

= + ⋅∑ with 
max max min[( )r c c= −  

/ ],δ max
 ( 0,  ...,  )rw r r= being Boolean variables subject to the 

constraint
max

0
1r

rr
w

=
=∑ . By substituting in (7)

max
min

0

r
rr

c r wδ
=

+ ⋅∑  
to c we get 
 

max min
3( ) / ( ) max

1 2 0
( ) ( ) ( ) , ,   ; i

r c r s D
i ij i i r ij ij ir

f d s D a s D b w d i j d dδ+
=

= + ∀ ≤∑  
max( ) 0, ,   ; i ij ij if d i j d d= ∀ >                 (8) 

 
 

The expression of ( )i ijf d is not linear because of the pro- 
ducts rb w⋅ . In order to get a linear expression, we substitute, 
as in Section 3, the variable rv  to the product rbw  ( 0,r =  

max...,  )r and add the set of linear constraints ( ,  ,  ,r rC v b w  
max )b  that force the equality r rv bw=  max( 0,  ...,  )r r= : 

 
max max( ,  ,  ,  )( 0,..., )r rC v b w b r r= : 

 
max

r rv b w≤  
 

rv b≤  
 

max (1 )r rv b b w≥ − −  
 

0rv ≥                    (9) 
 
For max

ij id d≤ we then obtain the following expression of ( )i ijf d : 
 

max min
3( ) / ( )

1 2 0
( ) ( ) ( ) i

r c r s D
i ij i i r ijr

f d a s D s D v d δ+
=

= ⋅ + ⋅∑            (10) 
 

Estimating Model 2 can thus be formulated by the mixed- 
integer program (11) where the objective function is quadratic 
and convex, and all the constraints are linear. To sum up, an 
optimal solution ( ,  ,  )a b c  of (11) defines the estimated mo- 
del when the possible values of c are min min min,  ,  c c cδ+ +  

min max2 ,  ...,  c rδ δ+ : 
 

2
1

min ( )m
j jj

F F
=

−∑                 (11) 

 
max min

3( ) / ( )
1 2 0

s.t. ( ( ) ( ) ),  1,  ...,  i

j

r c r s D
j i i r iji I r

F as D s D v d j mδ+
∈ =

= + =∑ ∑
(11.1) 

max
min

0

r
rr

c c r wδ
=

= + ⋅∑         (11.2) 

max

0
1r

rr
w

=
=∑           (11.3) 
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max max( , , , ),  0,  ...,  r rC v b w b r r=        (11.4) 
 

{ } max,  ,  0,  0,1 , 0,  ...,  ra b R b w r r∈ ≥ ∈ =      (11.5) 
 
with { }{ }max1,  ...,  :j ij iI i n d d= ∈ ≤ .  

Remark. In this estimation problem we discretize only 
one variable, the variable c. If the possible values of c belong 
to a large interval min max[ ,  ]c c , compared to the discretization 
step, one can speed up the solution of (11) by solving succe- 
ssively several instances of (11 ), each instance corresponding 
to a subinterval of min max[ ,  ]c c . 
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Figure 11. Model 2: for each of the 500 measure points of 
Surface 1, the simulated measured value and the value 
predicted by the model are not far from each other. 

6. Experiments in Estimating Model 2 

We consider the following (known) individual influence 
functions ( / )1.32( ) ic D

i ij i i ijf d D a D bd= + to simulate values of a hy- 
pothetical object influence at the 500 points of Surface 1, with 

0.029,a = − 0.15,b = 5.12c = − . For each tree iO , the value of 
iD is uniformly and randomly generated in the interval [10, 50]. 

These influence functions are represented in Figure 3. In this 
test, we consider that the influence is null when its value is less 
than 0.01. Therefore, we get

1.32( / 5) log(0.01 0.029 ) / 0.15max .i i iD D D
id e− ⋅ +=  

With these values of the parameters, jF ranges from 1 to 13.4. 
The minimum, average and maximum number of objects that 

influence a measure point is equal to 9, 27.8, and 48, respecti- 

vely. In the solution of (11) we fix, for each object iO , minb = 0, 
max 100,b = min 10c = − and max 1c = − . In this test, the optimal 

value of (11) with δ = 0.01 is equal to 0 as expected and the 
corresponding solution provides exactly the coefficients chos- 
en to test the approach, i.e. 0.029,a = − 0.15,b = and 5.12.c = −  

The solution requires 202.5 seconds of CPU time and 135 no- 
des in the search tree. The optimal value of (11) with 0.1δ =  
is equal to 0.01 and the corresponding solution provides the fo- 
llowing coefficients:  0.0291057, 0.150283a b= − = and c =  
−5.1. The solution requires 2.1 seconds of CPU time and 52 
nodes in the search tree. Now, consider the following random 
perturbation of jF :

1
( )n

j j i iji
F f dε

=
= ∑ , jε being uniformly and 

randomly generated in the interval [0.8, 1.2]. The computa- 
tional results obtained for different values of δ are summarized 
in Table 3.  

The optimal solution with 0.1δ = is very quickly obtained 
(4.2 seconds). With the precision 0.01,δ = 238.4 seconds are 
required but the optimal value does not change significantly.  

We see in Table 3 that the estimated values of the three 
parameters a, b and c do not practically vary with the chosen 
precision contrary to what happens in Tables 1 and 2. More- 
over, the CPU times required for determining the best parame- 
ter values are comparable in the three tables. However, we see 
in Table 3 that an alternative approach to solve (11) allows to 
significantly speed up the estimation. That is possible because 
in the model associated with Table 3, only one variable is dis- 
cretized. That is not the case in the model associated with Ta- 
bles 1 and 2, where the p variables kc are discretized. 

7. Conclusions  

In this paper, we have considered the problem of estimat- 
ing two spatial influence models by the least-squares criterion. 
We have formulated the problem by mathematical program- 
ming. In the obtained programs, the objective function is qua- 
dratic and convex, the constraints are linear and the variables 
are real or integer. This formulation is based on a discretiza- 
tion of some variables and on the linearization of quadratic 
terms. We did not study the pertinence of the obtained model; 
we only proposed an original method to estimate the parame- 
ters of a nonlinear function, in the least-squares framework. 
The method allows us to obtain the best parameter values (with 
the lest-squares criterion). The experimental results have sh- 
own the effectiveness of the method since we could easily sol- 
ve the problems for large instances including up to 5000 in- 
fluent objects and 500 points of measure. The results show the 
power of the mixed-integer quadratic programming technique 
for solving a problem with difficult nonlinear expressions. Solv- 
ing this problem by mixed-integer quadratic programming has  

Table 3. Computational Results Regarding the Solution of (11) with Different Values of δ  

δ Optimal value of (11δ) CPU time in seconds # nodes a b c 
0.1 292.2 4.1 94 -0.0267468 0.143138 -5.5 

0.01 292.1 330.9 822 -0.0269857 0.143704 -5.45
0.01* 292.1 7.1 9 -0.0269857 0.143704 -5.45
*Three equal subintervals of δ are considered. 
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many advantages. First of all, for a researcher or a practitioner 
in environmental modeling, the approach is easy to understand 
and also easy to implement since it uses exclusively a stand- 
ard, commercially available, software. The implementation of 
this approach becomes even easier if one uses a tool of model- 
ing such as, for example, AMPL (Fourer et al., 1993). Second- 
ly, least-squares minimization on large sets of data can be sol- 
ved to optimality with a good precision in short computing 
times. In comparison, the time required by the Hooke-Jeeves 
algorithm (Hooke and Jeeves, 1961) used in (Kuuluvainen 
and Linkosalo, 1998) for estimating parameter values on data 
sets of comparable size varies from a few hours to several 
dozens of hours. However, for a fair comparison one must 
take into account the great computer power increasing during 
the last decade. The proposed method is particularly efficient 
if we know small intervals, compared to the discretization 
step, for the unknown parameter values to be estimated. The 
method could be immediately adapted to the estimation of the 
parameters when the criterion is the sum of the absolute 
values of the differences between measured values and pre- 
dicted values. Future research would consist in trying to apply 
quadratic mixed-integer programming to the estimation of 
other pertinent environmental models. 
 
Appendix: Mixed-integer Programming 

Here we consider the minimization of a linear or convex 
quadratic function subject to linear constraints when some va- 
riables are real while others must take only integer values. In 
a general way, this optimization problem can be stated under 
the mixed-integer mathematical program P, given below, wh- 
ere R is the set of real numbers, and Z, the set of integer num- 
bers: 
 

1 2min  ( , ,..., )nf x x x                 (P) 
 

1
s.t. , 1,  ...,  n

ij j ij
a x b i m

=
≤ =∑  

 
,  1,  ...,  jx R j p∈ =  

 
,  1,  ...,  jx Z j p q∈ = +  

 
If the objective function is affine, i.e. if 1 2( , ..., )nf x x x =  

0 1

n
j jj

c c x
=

+ ∑ with  ( 0,  ...,  ),jc R j n∈ = then P is a mixed-inte- 
ger linear program; if the objective function is quadratic and 
convex, i.e. if 1 2 01 1

( , ,..., ) n n n
n i i ij i ji i j i

f x x x c x c x x c
= = =

= + +∑ ∑ ∑  
with   ( 0,  ...,  ),  ( 1,  ...,  ; ,  ...,  )i ijc R i n c R i n j i n∈ = ∈ = = and

1

n

i=∑  
0n

ij i jj i
c x x

=
≥∑ for all nx R∈ , then P is a convex mixed-integer 

quadratic program. All the coefficients in the constraints of P, 
( 1,  ...,  ; 1,  ...,  )ija i m j n= = and  ( 1,  ...,  )ib i m= , are real num-  

 

bers. When in P the integer variables can only take binary va- 
lues { }[ 0, 1  ( 1,  ...,  )jx j p q∈ = + in place of ]jx Z∈ , P becomes 
a mixed-0/1 program. Mixed-integer programming has nume- 
rous applications in operations research and engineering design 
applications, and has been widely studied. There exist very ef- 
fective algorithms to solve P when the objective function is lin- 
ear or quadratic convex, and numerous commercial and acade- 
mic software packages based on these algorithms are available. 

The most widely used method for solving linear or qua- 
dratic mixed-integer programs is branch and bound. Subpro- 
blems are created by restricting the range of the integer vari- 
ables. For binary variables, there are only two possible restric- 
tions: setting the variable to 0, or setting the variable to 1. More 
generally, a variable with lower bound l and upper bound u 
will lead to two problems with ranges l to q and q+1 to u, res- 
pectively. Lower bounds are provided by relaxing integrality 
restrictions to derive a convex program that can be solved ef- 
ficiently. If the optimal solution to a relaxed problem is inte- 
gral, it is an optimal solution to the subproblem, and the value 
can be used to eliminate subproblems whose lower bound is 
higher. For more details about mixed-integer programming the 
reader can consult, for example, (Nemhauser and Wolsey, 1988), 
(Wolsey, 1998) and (Vanderbei, 2008). 
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