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ABSTRACT.  An unstructured grid, finite-volume, and three-dimensional (3D) primitive equation ocean model has been developed 
to predict oceanic pollutant dispersions in depth and surface of the Caspian Sea for non-chemical reactions of dissolved constituents. 
The model consists of momentum, continuity, temperature, salinity, and density equations. Physical and mathematical closure has been 
achieved using Mellor and Yamada turbulent closure sub-models. Since determining a practical definition of salinity that enjoys 
acceptable accuracy is difficult; therefore, various definitions have been used in this work. A recent definition of salinity stated in the 
UNESCO Practical Salinity Scale of 1978, PSS78, defines salinity in terms of a conductivity ratio. However, this is dimensionless and 
is not useful for computational methods. The old definition of salinity is “Total amount of solid materials in grams dissolved in one 
kilogram of sea water when all the carbonate has been converted to oxide the bromine and iodine replaced by chlorine and all organic 
matter completely oxidized”. Although used here but it is difficult to be used routinely explanatory this definition for computational 
method. We assume S (Salinity) = ΣSi and ρt (total density) = ρ(Θ,Si) ≡ ρ(Θ, S1, S2, S3, …) where in ΣSi, and S1 just is supposed 
salinity and other S2, S3, … are considered as pollutants. The irregular bottom slope is represented by a sigma coordinate transfor- 
mation, and the horizontal grids comprise unstructured triangular cells. The finite-volume method (FVM) used in this model combines 
the advantages of a finite-element method (FEM) for geometric flexibility and a finite-difference method (FDM) for simple discrete 
computation. The model was applied to the southern Caspian Sea region; including a semi-enclosed coastal ocean and inputs of 
geographical southern Caspian Sea which include, wind forcing, heat fluxes, precipitation via evaporation, river discharge with pollu- 
tant data and temperature. The outputs of these equations were pollutant, velocity and temperature distribution in southern Caspian Sea. 
A software was developed for this model by the name of SPAUM (Sea Pollutant Azad University Model). 
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1. Introduction  

The Caspian Sea is the largest enclosed body of water on 
Earth, with a surface area of more than 373,000 square kilo- 
meters. It can be divided into three basins: northern, middle, 
and southern. In the northern part the average depth of water 
is less than 10 meters, whilst in the middle and southern parts, 
the maximum depths are 788 meters and 1025 meters respecti- 
vely. The Caspian Sea has two types of cyclonic eddy currents 
(counter-clockwise) in central and south-eastern regions. In the 
southern coastal regions of the Caspian Sea the currents are 
generally directed towards the northwest, north, south-east and 
south. Baroclinic, Seiches and inertial currents also play an im- 
portant role in the local circulation patterns. Due to the depth 
of water in the Caspian Sea, oceanic numerical methods may 
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be used for finding its currents and distribution of temperature 
and pollutant. 

Three numerical methods have been widely used in ocean 
models. A few examples are the finite difference method (Bl- 
umberg and Mellor, 1987; Haidvogel et al., 1991; Blumberg, 
1994), the finite element method (Lynch and Naimie, 1993; 
Naimie, 1996), and the finite volume method (Chen, 2002). All 
of these models use different mesh types and solve concurrent 
momentum, continuity, temperature, salinity, density and tur- 
bulence closure sub-model equations in order to find ocean 
currents and distributions of temperature and salinity. Howev- 
er, they can not analyze oceanic pollutant dispersions. All of 
these models use a simple definition for salinity which is 
the total amount of dissolved material in grams in one kilo- 
gram of sea water. However, this is not always practical since 
the dissolved materials (e.g. gasses) are almost impossible to 
be measured in reality. Sea-water could be evaporated to attain 
the derived dryness, because chlorides are lost in the last stag- 
es of drying (Sverdrup et al., 1942). 

To avoid these difficulties, the International Council for 
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the Exploration of the Sea set up a commission in 1889 which 
recommended that salinity be defined as the total amount of 
solid materials in grams dissolved in one kilogram of sea wa- 
ter when all the carbonate has been converted to oxide, the bro- 
mine and iodine replaced by chlorine and all organic matter 
completely oxidized. The definition was published in 1902. 

The Caspian Sea is under the constant threat of pollution. 
There are various sources of pollution, which can be classified 
as follows: 1) river flow; 2) onshore industrial and municipal 
waste water; 3) offshore and onshore oil extraction; 4) sea 
level fluctuations, resulting in flooding of coastal zones, 
where many oil wells are still operating. Intensive oil and gas 
exploration and extraction in the Caspian Sea region have 
resulted in extensive air, water and land pollution, wildlife 
and plant degradation, exhaustion of natural resources, eco- 
system disturbance, desertification and considerable losses in 
biological and landscape diversity. The cost of incurred envi- 
ronmental damages often exceeds the revenues gained from 
exploitation of natural resources. Negative environmental 

changes cause growth of human morbidity and mortality. Life 
expectancy in the Caspian littoral states is lower by 15 ~ 20 
years than in developed countries.  

The present work was carried out to estimate the conta- 
mination in the south part of Caspian Sea. At the end, the quan- 
tity of each contamination was calculated and reported. The in- 
troduced model calculate the effect of contamination entering 
from different rivers to sea, considering other parameters like 
rain, evaporation, temperature and Carioles force, then shows 
the distribution for each contamination separately in the sea. 
At first the mathematical model was produced. By using the sig- 
ma coordination system, the model solved numerically with fi- 
nite volume method. In order to evaluate the results, the mo- 
del was checked in a controlled area. After the outputs were 
proved to be correct; the model was used for Caspian Sea to 
generate the required results. 

2. Governing Equations 

The model uses orthogonal curvilinear coordinates in the 
horizontal and the sigma coordinate system in the vertical di- 
rection (Mellor et al., 2002).  

Let x1 and x2 be the horizontal coordinates and z the verti- 
cal coordinate of a right handed orthogonal curvilinear coordi- 
nate system. 

The equations will be written in the z system before trans- 
forming to the sigma coordinate system in the vertical direc- 
tion. Let u1 and u2 be the velocities in the x1 and x2 directions 
and w be the velocity in the vertical direction. For increasing 
accuracy, equations are defined: 

 
1 1 1 2 2 2&h x x h x xδ δ= Δ = Δ                                   (1) 

 
where h1 and h2 are the metric coefficients and ds is the length 
of a segment in (xl, x2, z) space satisfying the identity: 

2 2 2 2 2 2
1 1 2 2ds h dx h dx dz= + +                                  (2) 

The governing equations are simplified by assuming that 
the fluid is incompressible. Consequently variations in density 
are ignored except when the density is multiplied by gravita- 
tional acceleration; thus retaining the important stratification 
(i.e. buoyancy) effects. This is the so-called Boussinesq appro- 
ximation. 

The governing equations consist of the following conti- 
nuity, momentum, temperature, salinity, and density equations: 
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( ), iSρ ρ= Θ                                     (13) 
 
where 11τ , 12τ and 22τ are the components of the symmetric Rey- 
nolds stress tensor in the horizontal plane and quantity AM is 
the horizontal diffusivity, while KM denotes vertical diffusivity. 
Both quantities are determined by turbulent mixing in the fluid 
column. The variable ρ is the fluid density, ρ0 the reference den- 
sity, g the gravitational acceleration, p the pressure, and f the 
Coriolis parameter. Note that 2 sinf φ= Ω , where Ω is the an- 
gular rotation of the Earth in radians andφ is the latitude. pa is 
the atmospheric pressure and η is the free surface height. The 
form of the Coriolis terms is general in the sense that no appro- 
ximations such as the f-plane or β-plane have been invoked. 
The former approximation ignores the latitudinal variations of 
f, while the latter makes a linear approximation f = 0f yβ+  
where β is /f y∂ ∂ and y is the coordinate in the latitudinal direc- 
tion equal to Rφ , where R is the radius of the Earth. KH is the 
vertical and AH the horizontal eddy diffusivities due to turbu- 
lent mixing of heat and salt and other in the water column. The 

density variations in the ocean are of fundamental importance 
in determining the ocean circulation.  

Density ρ is a complex function of the temperature T, sa- 
linity (pollutants) S and the pressure (or equivalently depth z). 
It is common to take pressure effects into account by consider- 
ing ρ to be potential density, which is only a function of the po- 
tential temperature Θ and salinity (pollutants) Si, where w is 
the index of pollutant. The potential temperature Θ is usually 
referred to the atmospheric pressure, meaning that it is the tem- 
perature attained by a fluid parcel of in-situ temperature T and 
salinity (pollutants) Si brought adiabatically from depth z to the 
surface. The baroclinic pressure gradient terms in the momen- 
tum equations and the vertical stability of the fluid column can 
be evaluated accurately using the horizontal and vertical gra- 
dients of potential density ρ , which can be regarded as a func- 
tion of Θ and Si. The turbulence in the so-called level 2.25 mo- 
dels is characterized by two quantities, the turbulence kinetic 
energy q2/2 and the turbulence macro-scale l. These two-equa- 
tion models of turbulence are governed by the following equa- 
tions: 
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Vertical mixing coefficients MK  and HK  in the fully tur- 

bulent mixed layers at the surface and the bottom are obtained 
by second order closure model of turbulence based on the work 
of Mellor and Yamada (1982). 

Second order closure relates the vertical mixing coeffici- 
ents KM, KH and Kq to the turbulence scales q and l as follows: 

 
 M MK lqS=  

 
 H HK lqS=                                          (16) 

 
q qK lqS=  

 
where MS , HS  and qS  are stability functions determined by 
algebraic relations derived analytically from simplifications 
made to the full second momentum closure model: 
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1A , 2A , 1B  and 2B  are constants that determine the ra- 

tios of various turbulence length scales to the turbulence ma- 
cro-scale l. The turbulence closure assumes that all turbulence 
length scales are proportional to one another. 

MS  and HS  are functions of HG , which is in turn a func- 
tion of the buoyancy gradient. The term multiplying 1

3 / Bq  
in Equation (14) is a wall proximity function inserted empiri- 
cally to assure log-law behavior near solid boundaries and L is 
given: 

( ) 11 1L z D z −− −= + +                                (21) 
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where D is the depth of the fluid column. 
 

1 2 1 2 1 1 2 3( , , , , , , , ) (0.92, 0.74, 16.6, 10.1, 0.08, 1.8,A A B B C E E E =  
1.8, 1.33)                                             (22) 

 
Terms 1C , 1E , 2E and 3E are empirical constants determin- 

ed by appealing to well-known laboratory experiments on tur- 
bulence, as are constants 1A , 2A , 1B and 2B . 

κ is the well-known von Karman constant (= 0.4) that oc- 
curs in the log-law governing the velocity profile adjacent to a 
boundary in a turbulent boundary layer. 

3. Free Surface Boundary Conditions  

Free surface is a material surface: 
 

1 2
1 2

w u u
t x x
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= + +
∂ ∂ ∂

                              (23) 

 
where ),( 21 xxz η= . 

Momentum and buoyancy fluxes (comprised of heat, salt 
and other fluxes) at the free surface are the driving mechani- 
sms for the ocean and must satisfy following equations: 
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where 01τ and 02τ are the wind stress components, and ,  

iSQ QΗ , 
... are the heat and salt and other pollutant fluxes at the surfa- 
ce. QΗ is the result of energy balance at the ocean surface in- 
volving the impinging short and long wave solar radiation, the 
back radiation from the ocean, and the sensible latent heat flu- 
xes from the ocean to the atmosphere: 

 

( ) 41H W W S S LQ S L T H Hβ α εσ= − + − − −                  (25) 
 

WS is the short-wave solar radiation flux, WL is the longwa- 
ve solar radiation flux, α is the albedo, ε the emissivity of the 
ocean surface, σ is the Stefan-Boltzmann constant, ST is the sea 

surface temperature, and SH and LH are the sensible and latent 
heat fluxes. If β is put equal to unity, then QS in Equation (11) 
must be put to zero, implying that all the incident shortwave 
radiation is absorbed at the surface and there is no penetrative 
heating of the ocean. The salt flux SQ at the ocean surface is: 

 

( )S sQ S E P= −                                     (26) 

 
Surface salinity E is of course related to the latent heat 

flux HL. 

If the sea surface temperature and salinity are known, then 
an alternative to Equation (26) would be: 

( ) ( ), ,( )i S i SS T SΘ =                                     (27) 
 
Another alternative is to damp the surface values of Θ 

and Si to the sea surface values with a time lag tl: 

 

( ) ( ) ( )1, , ( )i S i i S
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S T S S
t t
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                 (28) 

 
Conditions (27) and (28) are most often used in climato- 

logically simulations, while Equation (26) is useful for driving 
the ocean with synoptic momentum and buoyancy fluxes. The 
conditions on q2 and l at the free surface are: 

 
2 2 / 3 2
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2
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where 0*u is the friction velocity at the free surface. 

4. Ocean Bottom Boundary Conditions 

At the ocean bottom, z = −H, there can be no flux of heat, 
salt or other fluxes:  
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S
z z
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                                 (30) 

 
where the subscript b denotes the lower boundary. There can 
also be no mass flux through the bottom leading to: 
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The remaining boundary conditions are: 
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where 1bτ and 2bτ  are the shear stress components at the bot- 
tom and 2 2 2 1/ 4

* 1 2 01[( ) / ]b b bu τ τ ρ= + is the friction velocity at the 
bottom. The bottom stresses are determined by matching the 
velocities 1bu and 2bu at the lowest grid point bz to a logarithmic 
law of the wall: 

 

( ) ( )1/ 22 2
1 2 0 1 2 1 2, ,b b D b b b bC u u u uτ τ ρ ⎡ ⎤= +⎣ ⎦                         (34) 

 
where the drag coefficient CD is determined from log-law: 
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where 0z is the roughness scale, of the order of a centimeter or 
so for moderately rough bed. 

Equations (34) and (35) assume that the lowest grid point 
is in the log layer. If the model vertical resolution is not ade- 
quate to satisfy this condition, the drag coefficient is set to a 
value of 0.0025 which results in a conventional quadratic drag 
law. The model algorithm chooses the larger of this value and 
the value given by Equation (35) in order to satisfy this pre- 
scription. 

5. Lateral Boundary Conditions 

For a closed basin, the lateral boundary conditions are str- 
aightforward. The conditions of zero mass, momentum, heat, 
salt and turbulence fluxes must be satisfied at a solid lateral 
boundary. However, at open boundaries, the influence of the 
region exterior to the model domain must be specified. 

When there is inflow, Θ and Si need to be prescribed, whi- 
lst for outflow, Θ and Si need to be adverted out: 

 

( ) ( ), , 0i n iS u S
t n

∂ ∂
Θ + Θ =

∂ ∂
                            (36) 

 
where n denotes the coordinate normal to the lateral boundary. 
In relation to q2 and I, it is possible to ignore any advection at 
the lateral boundaries without affecting the overall accuracy. 

Prescription of mass and momentum conditions at an open 
boundary are more difficult since these are really a function of 
the interaction with the exterior domain and unknown a priori 
modeling of a limited region. Nevertheless, inflow and outfl- 
ow must somehow be specified as functions of time. The most 
important requirement is to satisfy the mass balance. Thus open 
boundary conditions must be specified such that there is no net 
mass increase over a specified period of time. For tidal (or ba- 
rotropic) calculations the free surface elevation [η(t)] may be 
prescribed on the boundary. Often a Summerfield radiation con- 
dition is of the form: 

 

0c
t
φ φ

η
∂ ∂

+ =
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                                     (37) 

 
whereφ is any quantity such asη , 1u , … and c is the phase sp- 
eed of a disturbance approaching the boundary from the interi- 
or of the domain. 

6. Transformation from Cartesian to 
Sigma Coordinate 

As discussed earlier, a topographically conformal vertical 
coordinate system has many advantages in dealing with an oc- 
ean basin with wide disparities depth, although this has its own 

drawbacks. We will now transform the governing equations 
from z coordinate to Sigma-coordinate by following equations 
(Figure 1): 

 
z ησ

η
−

=
Η +

                                        (38) 

 

 
Figure 1. Sigma coordinate system. 

 
Formally, we transform the equations from a (x1, x2, z, t) 

coordinate system to the (x1, x2,σ, t) system, where x1, x2, and t 
are not changed. Let t be a dependent variable that denotes any 
quantity represented from ocean properties. Then the derivati- 
ves of this quantity are related as follows (Mellor, 1998): 
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Substituting the above statements in equations of conti- 

nuity, momentum, temperature, salinity, density and turbulen- 
ce in Section (2) results in the follows: 
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where w  is a pseudo-vertical velocity in the new coordinate 
system given by: 

 
0w =  at 0σ =  and 1σ = −              (51) 

 
The pressure gradient terms are: 
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The horizontal viscosity terms are: 
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The horizontal diffusion terms are: 
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7. Design of the Unstructured Grids 

The horizontal grids comprise unstructured triangular cells 
which similar to the finite-element method. The horizontal nu- 
merical computational domain is subdivided into non-overlap- 
ping cells. An unstructured triangle comprises three nodes, a 
centroid, and three sides (Figure 2). The irregular bottom slope 
is represented using a Sigma coordinate transformation. 

Delaunay Triangulation method is used for the horizontal 
grids and Laplacian Smoothing method is subsequently used 
for mesh smoothing. Delaunay Triangulation is the most wi- 
dely used triangulation method in unstructured mesh genera- 
tion. It is one of the fastest triangulation methods with relati- 
vely easier implementation, giving excellent results for most 
applications. 

In Delaunay Triangulation, the boundary triangulation is 
not difficult. Although it should be noted that placing the inte- 
rior points at inappropriate places may result in bad meshes, 
even though the Delaunay criterion is satisfied. 

8. Numerical Method 

The finite-difference method is the simplest discrete sche- 
me with the advantage of computational efficiency. Introduc- 
ing an orthogonal or non-orthogonal curvilinear coordinate tr- 
ansformation into a finite-difference model can provide a mo- 
derate fitting of coastal boundaries, but these transformations 
are incapable of resolving the highly irregular estuarine geo- 
metries characteristic of numerous barrier islands and tidal cre- 
ek complexes (Blumberg, 1994; Chen et al., 2001; Chen et al., 
2003). The most important advantage of finite-element method 
is its geometric flexibility. Triangular meshes at an arbitrary 
size are used in this method which provides an accurate fitting 
of the irregular coastal boundary. 

The P-type finite-element method (Maday and Patera, 
1989) or discontinuous Galerkin method (Reed and Hill, 1973; 
Cockburn et al., 1990) has been introduced into the updated 
finite-element model to improve computational accuracy and 
efficiency. The finite-volume method has been received consi- 
derable attention in the numerical computation of fluid dyna- 
mics (Dick, 1994). The dynamics of oceanography comply wi- 
th conservation laws. The governing equations of oceanic mo- 
tion and water masses are expressed by the conservation of 
momentum, mass, and energy in a unit volume. When the equ- 
ations are solved numerically, these laws cannot always be gua- 
ranteed, especially in situations with sharp thermo clines or 
discontinuous flow. Unlike the differential form, the finite vo- 
lume method discretizes the integral form of the equations ma- 
king it easier to comply with the conservation laws.  

Since these integral equations can be solved numerically 
by the flux calculation used in the finite-difference method ov- 
er an arbitrarily sized triangular mesh (like those in a finite- 
element method), the finite-volume method seems to combine 
the best attributes of the finite-difference method for simple di- 
screte computational efficiency and the finite-element method 
for geometric flexibility. 
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A three-dimensional (3D), unstructured grid, primitive eq- 
uation, finite-volume ocean circulation model can be consider- 
ed as a new approach in the oceanographic community. Also 
some efforts have been made to develop a finite-volume for- 
mulation of the two-dimensional, barotropic shallow water equ- 
ations (Ward, 2000). The MIT General Circulation model (Mar- 
shall, et al., 1997a and 1997b) was the first 3D finite-volume 
ocean model. However, since this model currently relies on 
rectangular structure grids for horizontal discretization, it is 
not suitable to be used for coastal ocean and estuarine domains 

with complicated geometries. 
Due to the special features and nature of this subject, the 

method of unstructured grids has been selected to use in this 
research. The numerical model solves for prognostic variables 
η , 1u , 2u , Θ , S, …, q2

 and l as a function of time, starting from 
a specified set of initial conditions, forced by the wind stress 
and buoyancy flux at the ocean surface, and prescribed trans- 
ports at open lateral boundaries. These prognostic variables are 

staggered not only in the horizontal, but also in the vertical di- 
rection. In fact, q, l, w, MK and HK are located at σ levels, while 
variables such as 1u , 2u , Θ , S, and ρ are staggered in vertical, 
located between two correspondingσ levels. Note that w, q, l, 
Θ , Si, ρ , MK and HK are located at the nodes of the grid, whe- 
reas 1u , 2u are staggered horizontally as described before. Sh- 
ear stresses 1τ and 2τ are staggered in the horizontal, located at 
sigma levels (Figure 2). 

 
 

Si, θ, q2, q21
u, v, w 

 
Figure 2. Locations of the parameters on the mesh. 

 
The governing differential equations are in flux-conserva- 

tive form, hence mass and energy are conserved when the equ- 
ations are discretized. Therefore, finite volume approximations 
can be derived by use of a control volume approach.  

The external mode equations are also cast in similar finite 
volume forms, which are omitted for brevity. The external and 
internal mode of finite volume equations are solved in a split- 
mode method to obtain solutions for the prognostic quantities 
as a function of time. The external mode is solved using expli- 
cit difference techniques. The internal mode equations are sol- 
ved implicitly in the vertical direction and explicitly in the ho- 
rizontal. The finite volume equations for the internal mode are 
cast as a tri-diagonal matrix form, which are then solved using 

well-known techniques such as Thomas tri-diagonal algorithm. 
Close synchronization between external and internal modes, is 
ensured by utilizing the internal mode bottom friction and also 
the density field pressure gradient component, in the external 
mode. In turn, the external mode supplies the internal mode 
with the sea surface elevation and vertically averaged currents 

information. This interaction takes place at each internal time 

step. The procedure then is to start with one external mode 
calculation and then pass on the needed information to the 
internal mode and take one time step with it. The internal 
mode then passes on the needed information to the external 
mode and the entire process is repeated until the end of the 

calculation is reached. The continuity equations for numerical 
solution are as follows: 
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Also, the momentum equations for numerical solution are ob- 
tained from (44): 
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                (81) 

9. Description of Procedures 

The model has been developed in two separated parts in 
order to simplify the simulations. The first part is devoted to 
simulate the simple geometries, and the second part devoted 
to simulate the southern Caspian Sea which has more compli- 
cated geometry. 

First part of geometries, which is not complicated, is used 
for simple validation of the equations. We assume four simple 
geometries in rectangular shapes (Figure 3). In Figures 3(a) and 
3(b), the domain shapes are different. In Figures 3(c) and 3(d), 
we assume two different islands configurations.  

 
 

(b)

(c) (d)

(a) 

  
Figure 3. Grid mesh generation for different types of 
geometries to test model verification: (a) Rectangular Shape; 
(b) Semi Rectangular Shape; (c) Rectangular Shape with One 
Island; and (d) Semi Rectangular Shape with Five Island. 

 

 
Figure 4. Southern Caspian Sea Domain. 

 
These geometries (a, b, c, d), with 50 km width, 20 km 

length and constant depth of 16m, are located in Noshahr in 
south of Caspian Sea. It should be noted that the effects of Co- 
riolis force are used in calculations.  

For the second part (Figure 4), we assume the Caspian Sea 
in its real location (latitude and longitude): 

At first, unstructured grid, finite-volume, ocean circulation 
model is applied in geometries mentioned in Figure 3. The pro- 
cedure has two parts:  

I) Circulation, 
II) Pollutant distribution.  
For both parts, we assume water is stationary, there is no 

tidal elevation, precipitation and evaporation are equal, and dis- 
tributed temperature and pollutant are constant. Also the initial 
temperature of water and rivers input is 20 °C.  

In part (I), different conditions are supposed as below: 
I-1) Coriolis force,  
I-2) Wind force,  
I-3) Both Coriolis and wind forces, 
I-4) River inputs, 
I-5) Conditions (I-3) and (I-4) together. 
For part (II), the conditions are: 
II-1) Pollutant from rivers, 
II-2) Pollutant from rivers with Coriolis force,  
II-3) Pollutant from rivers with wind force,  
II-4) Conditions (II-2) and (II-3) together, 
II-5) Condition (II-4) with many pollutant sources.  

10. Simulation Results 

In this section, from all simulations, we select some typi- 
cal ones to illustrate the results. All simulations are applied to 
third domain of (Figure 3c). In Figure 5, the condition (I-1) is 
applied to the discussed domain, with σ = 1 and time duration 
of two weeks. In Figure 6, the condition (I-4) with σ = 1 and 
time duration of two weeks is applied. The flow rate for two 
rivers (Northwest-input, Southeast-output) is 5 m3/s. Result of 

experimental run of condition (I-5) with time duration of two 
weeks, two 5 m3/s river inputs (northwest and southeast), 1 m/s 
north wind and σ = 1 is in Figure 7. Result of experimental run 
of condition (II-4) with time duration of two weeks, same con- 
ditions for river inputs and wind as previous run, 30 ppm sali- 
nity rivers contain (domain does not have initial salinity) and 
σ = 1 is shown in Figure 8. Result of experimental run of con- 
dition (II-5) with time duration of one week, three 5 m3/s river 
inputs, three 15, 30, 40 ppm multi-pollutant sources (the domain 
has initial pollutants of 10, 25, 35 ppm), 8 m/s west to east wind 
and σ = 1 is shown in Figure 9. If all input sources are closed, 
after one week, the simulation result is as shown in Figure 10. 
Subsequently, Caspian Sea is simulated with real boundary con- 
ditions such as wind forcing, heat fluxes, precipitation via eva- 
poration, river discharge with pollutant data and temperature. 
To verify the experimental results, there are compared with real 
conditions. In fact, for data and boundary conditions, CEPO (Ca- 
spian Environment Program Organization) and NOAA are used. 

The Caspian Sea Oceanographic and Environmental Data Inv- 
entory from CEPO are shown in Figure 11. In Figures 12 and 
14, the results of simulations with data and boundary conditions 
from CEPO and NOAA are shown. Figures 13 and 15 show the 
real conditions in Caspian Sea. It is obvious from figures that 
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Figure 5. Velocity distribution for condition (I-1) with a circular island in the center of domain. 

  
Figure 6. Velocity distribution for condition (I-4) with a circular island in the center of domain. 

  
Figure 7. Velocity distribution for condition (I-5) with a circular island in the center of domain. 
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the obtained simulation results are so close to the real condi- 
tions. 

11. Conclusions 

After numerous trials, it was discovered that those tidal ele- 
vations, precipitation and evaporation have little effect on pol- 
lutant distribution in Southern Caspian Sea. However, sea dep- 
th, the rate of discharge from incoming rivers, Coriolis force, 
wind force, cyclonic eddy currents and temperature changes 
were found to have a huge impact on the pollutant dispersion, 
especially in regions close to shore which have slow currents. 

The aggregated metal pollutant mostly consist of Aluminum 
case terrigenous material and the amount of fine-grained ma- 
terial present. An exception to this is Barium (Ba), for which 
the abnormal high concentrations are probably from drilling 
mud. Several metals such as Arsenic (As), chromium (Cr), and 
Nickel (Ni) exhibit concentrations sufficiently high to exceed 
sediment quality guidelines. Such metals undoubtedly have a 
high natural background in this mineral-rich region. However, 
anthropogenic activities such as mining, may have further en- 
hanced the metal burdens in the sediments of the Caspian Sea. 
This might explain apparent hotspots for Copper (Cu) and Zinc 
(Zn) in Azerbaijan and Iran. Uranium (U) levels are generally 

  
Figure 8. Salinity distribution for condition (II-4) with a circular island in the center of domain. 

 

 
Figure 9. Velocity and pollutant distribution for condition (II-5) with a circular island in the center of domain. 
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Figure 10. Velocity and pollutant distribution of domain after two weeks: one week with condition (II-5) and one week 
without any sources.  

 

 
Figure 11. The Caspian Sea Oceanographic and Environmental Data Inventory. 



M. Abbaspour and M. H. Nobakhti / Journal of Environmental Informatics 14(1) 51-65 (2009) 

 

63 
 

 
Figure 12. Circulation experimental run result for Caspian Sea after six months, zoom of middle region, σ=1 and only 
Coriolis force. 

 

 
Figure 13. Schematic map showing the water circulation in the Caspian Sea (Apollov et al., 1969) 1: Bandar Anzali, 2: 
Anzali Lagoon, 3: Sefid River, 4: Astara River, 5: Kura River, 6: Keiranchai River, 7: Samur River, 8: Terek River, 9: 
Volga River, 10: Ural River. 
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low (less than 3 μg⋅g-1), except for a couple of sites in the cen- 
tral eastern Caspian Sea, where the concentration reaches 11.1 
μg⋅g-1. Some other metals such as Silver (Ag), Cadmium (Cd), 
and Lead (Pb) have relatively low levels that pose no environ- 
mental concerns. 
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