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ABSTRACT.  In this study, a dual interval probabilistic integer programming (DIPIP) model is developed for long-term planning of 
solid waste management systems under uncertainty. Methods of joint probabilistic programming and dual interval analysis are 
introduced into an interval-parameter mixed-integer linear programming framework. DIPIP improves upon the existing interval, 
chance-constrained and joint probabilistic programming approaches by allowing system uncertainties expressed as probability 
distributions as well as single and dual intervals. Highly uncertain information for the lower and upper bounds of interval parameters 
can be reflected. The developed method is applied to a case study of solid waste management. The results indicate that reasonable 
solutions of facility expansion schemes and waste-flow allocation patterns have been generated. A tradeoff exists between economic 
consideration and system stability. 
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1. Introduction  

Effective planning of solid waste management systems is 
important in facilitating sustainable urban development. Envi- 
ronmental protection and resources conservation are of major 
concerns along with increasing waste generation and decreas- 
ing waste-disposal capacity. In response to these, various opti- 
mization techniques were used for supporting effective mana- 
gement of the systems (Chang and Wang, 1997; Huang et al., 
2007; Ahluwalia and Nema, 2007; Li, 2007; He et al., 2008). 
At the same time, uncertainties exist in many system compo- 
nents (e.g. random waste generation rates, fluctuating disposal 
capacities) and their complex interactions, and thus affect the 
relevant decision.  

During the past decades, many efforts were made for dea- 
ling with uncertainties in municipal solid waste (MSW) mana- 
gement. They were mainly related to stochastic, fuzzy and inter- 
val mathematical programming methods (abbreviated as SMP, 
FMP and IMP). SMP and FMP would tackle probabilistic and 
possibilistic uncertainties, respectively; IMP could deal with 

uncertainties expressed as interval numbers, when distribution 
or membership information was unavailable (Lee et al., 1991; 
Chanas and Zielinski, 2000; Li, 2003; Huang et al., 1992, 1994, 
1995; Chang and Lu, 1997; Chi and Huang, 1998; Yeomans 
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and Huang, 2003; Yeomans et al., 2003; Wang, 2007). Com- 
pared with SMP and FMP, the IMP method had advantages in 
allowing uncertainties to be directly conveyed into the optimi- 
zation processes and resulting solutions without complex inter- 
mediate transformations. 

Meanwhile, several integrated IMP and SMP methods we- 
re developed to handle problems with their right-hand-side co- 
efficients being highly uncertain. For example, Maqsood and 
Huang (2003) introduced a two-stage interval-stochastic pro- 
gramming (TISP) model for the planning of solid waste mana- 
gement systems under uncertainty. Li (2004) improved on the 
TISP model through considering dynamic analysis for dispo- 
sal-capacity expansion, and thus proposed interval two-stage 
mixed-integer linear programming (ITMILP) model. In their 
studies, stochastic problems were tackled by two-stage stocha- 
stic programming (TSP) method within an IMP framework. In 
fact, the problems could also be handled through the chance- 
constrained programming (CCP) method. For example, a hy- 
brid inexact chance-constrained mixed-integer linear program- 
ming (ICCMILP) method was proposed by Liu et al. (2000) 
for nonrenewable energy resources management under uncer- 
tainty. Huang et al. (2001) developed an interval-parameter fu- 
zzy-stochastic programming model and applied it to the plan- 
ning of a MSW management system, where methods of CCP 
and FMP were incorporated within a general interval-parame- 
ter mixed-integer linear programming framework.  

Although CCP can reflect the reliability of satisfying in- 
dividual system constraints, it may encounter difficulties in an- 
alyzing interactions among multiple constraints, which are to 
be satisfied at a joint probability level. For example, waste ge- 
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neration rates in multiple cities each may be at high or low le- 
vels. They are required to be satisfied at a probability level, in 
case the waste generation rates are unacceptably high at the sa- 
me time (leading to overflow at receiving facilities). Such com- 
plexities can be tackled through joint probabilistic constraint 
programming (JPC) method (Miller and Wagner, 1965; Preko- 
pa, 1970, 1971, 1993, 1995; Beavis and Dobbs, 1990; Mayer, 
1992; Kall and Wallace, 1994). In addition, integration of IMP 
and SMP is based on known distributional information for 
random coefficients and/or known lower and upper bounds of 
interval parameters. However, in many real-world problems, 
the bounds of interval parameters could also be uncertain. For 
example, estimates of the waste transportation costs among 
transfer stations may roughly be $[a, c] to $[d, b] as a result of 
queuing delays, traffic congestions and/or other emergent even- 
ts. This leads to the presence of dual uncertainties, which can 
be expressed as dual intervals (e.g. [[a, c], [d, b]]).  

Therefore, incorporation of the joint probabilistic constr- 
aint programming (JPC) method and the dual-interval concept 
within an interval linear programming framework would be 
helpful for reflecting such dual uncertainties. Although sever- 
al approaches were reported on dealing with uncertainties in 
the boundaries of interval inputs (Cai et al., 2007; Nie et al., 
2007; Guo et al., 2008; Lu et al., 2008; He et al., 2008), limi- 
tations existed when the quality of information was not satis- 
factory enough to be presented as probability and/or possibili- 
ty distributions for the boundaries. Few previous reports could 
be found on the development of a hybrid inexact probabilistic 
model that can simultaneously handle joint probabilistic cons- 
traints and dual uncertainties.  

The objective of this study is to develop a dual interval 
probabilistic integer programming (DIPIP) approach and apply 
it to municipal solid waste management. The developed DIPIP 
method is formulated by incorporating the concepts of dual in- 
tervals, joint-probabilistic constraint programming (JPP) and 
mixed-integer linear programming (MIP) within a general fra- 
mework. The DIPIP has advantages in exhibiting imprecision 
via intervals and randomness via probabilities. Its applicabili- 
ty will be demonstrated through a case study of MSW mana- 
gement planning. 

2. Development of the DIPIP Model 

Consider random coefficients in the right-hand side (B) in 
a linear programming (LP) problem. The problem can be for- 
mulated as follows (Charnes and Cooper, 1965): 
 
Min C X              (1a) 
 
subject to: 
 
P(AX ≥ B) ≥ 1 − q            (1b) 
 

0X ≥               (1c) 
 
where B may have all their elements as random variables, whi- 
ch are assumed to be uncorrelated; 1 − q is a probability the 

constraint should be satisfied with, and q is the admissible risk 
of violating the constraint. If the entire set of constraints in (1b) 
are required to be satisfied with at least a joint probability le- 
vel of 1 − q, a JPC model can be formulated as follows (Mil- 
ler and Wager, 1965): 
 
Min C X               (2a) 
 
subject to:  
 
P(Ai X ≥ bi, i = 1, …, r) ≥ 1 − q           (2b) 
 
At X ≥ bt, t ≠ i              (2c) 
 

0X ≥               (2d) 
 
where the random variables are independent of each other; q 
is the admissible risk of violating the entire set of constraints. 
To solve the problem, Lejeune and Prekopa (2005) proposed 
an approximation scheme by replacing the JPC model with a 
set of individual constraints and reinforcing the requirements 
in the above model. Model (2) can be rewritten as follows (Le- 
jeune and Prekopa, 2005): 
 
Min C X              (3a) 
 
subject to:  
 

, 1, 2, ...,iq
i iA x b i r≥ =               (3b) 

 

1
( )

r

i
i

q q
=

≤∑              (3c) 

 
At X ≥ bt, t ≠ i             (3d) 
 

0X ≥               (3e) 
 
where bi

(qi) = Fi
-1(qi), given the cumulative distribution func- 

tion of bi, and the probability of violating constraint i (qi). The 
problem with (3) is that the left-hand side coefficients and the 
objective functions are deterministic. In fact, the available in- 
formation in many practical problems is not satisfactory enou- 
gh to access probability distributions, as planners and engine- 
ers typically find it more difficult to specify distributions than 
to define fluctuation ranges. Thus, to address this, one poten- 
tial approach is through the introduction of interval parameter 
programming method into the above JPC framework, conside- 
ring continuous and binary variables. This produces an inter- 
val-parameter probabilistic integer programming (IPIP) model 
as follows (Huang et al., 1992, 1995): 
 
Min C± X±              (4a) 
 
subject to: 
 

( , 1,  ...,  ) 1i iA X b i r q± ±Ρ ≥ = ≥ − , r∈ M, r ≠ t       (4b) 
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At
± X ≥ bt

±, t ≠ i             (4c) 
 
X± ≥ 0 or integer            (4d) 
 
where A±

 ∈ {R±}m×n, bt
±

 ∈ {R±}
mx1

, C±
 ∈ {R±}1×n, X±

 ∈ {R±}n×1, 
and R± means a set of interval numbers; the “−” and “+” su- 
perscripts represent lower and upper bounds of the interval pa- 
rameters or variables, respectively. In the solution process, the 
IPIP model can be transformed into two deterministic submo- 
dels, corresponding to the lower and upper bounds of the desi- 
red objective; the two submodels will then be solved sequen- 
tially (Huang et al., 1992, 1995).  

In model (4), uncertain inputs are expressed as probability 
distributions and intervals (with crisp lower and upper bounds). 
In many cases, the two bounds of the input intervals (e.g., a 
and b for interval [a, b]) may be uncertain and associated with 
various impact factors such that the crisp values may be unavai- 
lable. This leads to the presence of dual uncertainties. One po- 
tential way of describing such uncertainties is through the in- 
troduction of the concept of dual intervals (expressed as [[a, 
c], [d, b]]) (Joslyn, 2003; Liu et al., 2009). The dual intervals 
are interval-boundary intervals, where lower and upper bounds 
are expressed as intervals (i.e., [a, c] and [d, b], respectively). 
To interpret such dual intervals, a method was proposed by Jo- 
slyn (2003) through an equivalence class of random intervals. 
The detailed elicitation algorithm can be found in the papers 
of Joslyn (2003) and Liu et al. (2009). For dual uncertainties 
in cost/revenue parameters in the objective function, an exten- 
ded consideration is the incorporation of the dual-interval con- 
cept into the IPIP framework, producing a dual interval proba- 
bilistic integer programming (DIPIP) model as follows: 
 
Min [ ]C X± ± ±              (5a) 
 
subject to:  
 

( ,  1,  ...,  ) 1 ,i iA X b i r q± ±Ρ ≥ = ≥ −  r∈ M, r ≠ t        (5b) 
 

,t tA X b± ± ±≥  t∈ M, t ≠ r            (5c) 
 

0X ± ≥  or integer             (5d) 
 
where [ ]C± ± ∈ {R±}1×n, and R± means a set of dual intervals. In 
addition, 1 − q is a pre-regulated parameter, imposing that a 
set of constraints are satisfied with at least a joint probability 
of 1 − q. 

Solutions for the DIPIP model are based on the transfor- 
mation of random and single/dual interval inputs. With a mini- 
mized objective function, each joint probabilistic constraint 
will be first substituted by a set of individual constraints th- 
rough the preceding approximation scheme. Second, a class of 
random intervals (interval-valued random variables) can be de- 
rived or simulated from dual intervals (e.g. [[a, c], [d, b]]), ac- 
cording to information from the dual intervals, as provided by 
decision makers (Joslyn, 2003; Liu et al., 2009). The mean 

value of such random intervals is then obtained. Thirdly, the 
DIPIP model will be solved through the interactive algorithm 
of Huang et al. (1992, 1995). 

3. Application to Solid Waste Management 

3.1. Overview of the Study System 
A hypothetical system is considered to demonstrate appli- 

cability of the DIPIP method for solid waste management, wh- 
ere the technical data are based on the MSW management li- 
terature (Baetz, 1990; Huang et al., 1992, 2001). In the system, 
three periods (5 years for each) are considered in a 15-year plan- 
ning horizon. There are three MSW management facilities [an 
existing landfill and two waste-to-energy (WTE) facilities] av- 
ailable for three cities (as shown in Figure 1), where cities 2 
and 3 are developing and city 1 is an overdeveloped site. The 
landfill has an existing capacity of 2.75 to 3.05 × 106 tonne. 
Residues from the facilities will be shipped to the landfill di- 
rectly. Revenues from their energy sales are approximately $15 
to $25 per tonne of waste treated.  

 

 

Figure 1. Overview of the study system. 
 
Over the planning horizon, the WTE facilities can adopt 

any of the three expansion options in each of the three time pe- 
riods (Table 1). The Table also shows capital costs of capacity 
expansions for the WTE facilities. Table 2 contains waste 
generation rates in the three cities, with an assumption of 
known normal distributions for the random generation rates in 

cities 2 and 3. In addition, as rapid economic development is 
taking place in cities 2 and 3, their waste generation rates may 
be high at the same time. Thus, the waste from both cities 
must be handled at a joint probability level of 95% over the 
entire planning horizon. Table 3 shows operation costs of the 
three facilities and transportation costs for shipping waste 
from the city to the facilities. Table 4 lists costs for residue 
transportation from the WTE facilities to the landfill, which 
are represented as dual intervals, accounting for the effects of 
queuing delay and variations of the energy price. Suppose the 
outer-layer values of the dual intervals could receive more 

confidence from decision makers. According to the elicitation 
algorithm, the dual intervals can be transformed into a series  
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Table 1. Capacity Expansion Options and Their Costs for 
WTE Facilities 

Time period  

k = 1 k = 2 k = 3

Capacity expansion for WTE facilities, i = 2, 3 (t/day) 

Option 1 50 50 50 

Option 2 100 100 100 

Option 3 150 150 150 

Capital cost of WTE facility expansion, i = 2, 3 ($106) 

Option 1 10.5 8.3 6.5 

Option 2 15.2 11.9 9.3 

Option 3 19.8 15.5 12.2 

 
Table 2. Waste Generation Rates 

Time period  

k = 1 k = 2 k = 3 

Waste generation rate (t/day) 

City 1 [175, 225] [200, 250] [225, 275] 

City 2 N(300, 102) N(350, 102) N(400, 102) 

City 3 N(300, 202) N(300, 202) N(350, 202) 

 
of random intervals (Liu et al.,2009). Generally, the rates of 

waste generation and the costs for waste transportation and trea- 
tment/disposal may vary temporally and spatially. The problem 
under consideration is how to effectively allocate the waste 
flows (subjected to a class of environmental, economic, 

treatment/disposal and technical constraints) from the city to 
the facility and minimize the overall system cost. A DIPIP 
model for the study system can then be formulated. 
 
3.2. DIPIP Model for Solid Waste Management 
 

3 3 3 3

1 1 1 2

3 3 3

2 1 1

Min 1825 { ( )

[ ([ ] ) ]}

ijk ijk ik ijk
j k i i

ik ik ik imk imk
i m k

f x TR OP x

FE FT OP RE FTC Z

± ± ± ± ±

= = = =

± ± ± ± ± ± ±

= = =

= ⋅ ⋅ + + ⋅

⋅ + − +

∑∑ ∑ ∑

∑∑∑
     (10a) 

 
subject to: 
 

3 3 3

1
1 1 2

1825 ( )jk ijk
j k i

x x FE TL± ± ± ±

= = =

⋅ + ⋅ ≤∑∑ ∑         (10b) 

(Landfill capacity constraint) 
 

3 3 3

2 2 2 2
1 1 1

,jk mk mk
j k m

x TE TE Z± ± ± ±

= = =

≤ + Δ∑ ∑∑  j∀        (10c) 

(WTE facility 2 capacity constraints) 

Table 3. Transportation and Operation Costs 

Time period  

k = 1 k = 2 k = 3 

Cost of transportation to landfill ($/t) 

City 1 [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

City 2 [10.5, 14.0] [11.6, 15.4] [12.8, 16.9] 

City 3 [12.7, 17.0] [14.0, 18.7] [15.4, 20.6] 

Cost of transportation to WTE facility 2 ($/t) 

City 1 [9.6, 12.8] [10.6, 14.1] [11.7, 15.5] 

City 2 [10.1, 13.4] [11.1, 14.7] [12.2, 16.2] 

City 3 [8.8, 11.7] [9.7, 12.8] [10.6, 14.0] 

Cost of transportation to WTE facility 3 ($/t) 

City 1 [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

City 2 [12.8, 17.1] [14.1, 18.8] [15.5, 20.7] 

City 3 [4.5, 5.6] [4.6, 6.2] [5.1, 6.8] 

Operation cost ($/t) 

Landfill [30, 45] [40, 60] [50, 80] 

WTE facility 1 [55, 75] [60, 85] [65, 95] 

WTE facility 2 [55, 70] [60, 80] [65, 85] 

 
Table 4. Cost of Residue Transportation from the WTE 
Facilities to the Landfill ($/t) 

Time period  

k = 1 k = 2 k = 3 

From WTE 

facility 2 to 

the landfill  

[[4.5, 4.8],  

[6.1, 6.4]] 

[[5, 5.3],  

[7.4, 7.7]] 

[[5.5, 5.8],  

[7.4, 7.7]] 

From WTE 

facility 3 to 

the landfill 

[[13.1, 13.5], 

[17.6, 18]] 

[[14.4, 14.8],  

[19.4, 19.8]] 

[[15.9, 16.3],  

[21.4, 21.8]] 

3 3 3

3 3 3 3
1 1 1

,jk mk mk
j k m

x TE TE Z± ± ± ±

= = =

≤ + Δ∑ ∑∑  j∀         (10d) 

(WTE facility 3 capacity constraints)  

3

1 1
1

,i k k
i

x WG± ±

=

≥∑  ∀ k            (10e) 

(Waste disposal demand constraints) 

3

2 2
1

3

3 3
1

1 ,
i k k

i
k

i k k
i

x WG
q

x WG

± ±

=

± ±

=

⎧ ⎫≥∑⎪ ⎪
Ρ ≥ −⎨ ⎬

⎪ ⎪≥∑
⎩ ⎭

 ∀ k          (10f) 

(Waste disposal demand constraints) 
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Table 5. System Costs under Different Scenarios with 
Different Combined qjt Levels 

f±($106)  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

WG3\ q21 = 0.001 q22 = 0.005 q23 = 0.010 q24 = 0.025

q31=0.025 [286.99, 

532.22] 

[286.90, 

532.01] 

[286.80, 

531.80] 

[286.51, 

531.17] 

q32=0.010 [287.61, 

533.40] 

[287.51, 

533.19] 

[287.40, 

532.98] 

[287.11, 

532.35] 

q33=0.005 [287.82, 

533.80] 

[287.72, 

533.59] 

[287.62, 

533.43] 

[287.31, 

532.74] 

q34=0.001 [288.03, 

534.19] 

[287.93, 

533.98] 

[287.83, 

533.77] 

[287.52, 

533.14] 

 

1
0

integer 2,  3;   ,  
imkZ

i m k

±

≤⎧
⎪≥⎨
⎪ = ∀⎩

         (10g) 

(Non-negativity and binary constraints) 
 

3

1
1,imk

m
Z ±

=
≤∑  2,  3,i =  ∀ k          (10h) 

(WTE facilities expansion may occur in any given time 
period) 
 

0ijkx± ≥ , ∀ i, j, k            (10i) 
(Non-negativity constraints) 
 
where: 
FE± residue flow from the waste-to-energy facility to the 

landfill (% of incoming mass to waste-to-energy fa- 
cility); 

[FTik
±]± transportation costs of waste flow from the waste-to- 

energy facility to the landfill in period k ($/t); 
imkFTC±  capital cost of expanding waste treatment facility i 

by option m in period k ($/t), and i = 2, 3; 
OPik

± operating costs of facility i in period k ($/t); 
REk

±  revenue from the waste-to-energy facility in period k 
($/t); 

TEik
± maximum capacity of the waste-to-energy facility (t/ 

day); 
TL± capacity of the landfill (t); 
TRijk

±  transportation costs from city j to facility i during pe- 
riod k ($/t); 

WGjk
±  waste generation rate in city j to facility i during pe- 

riod k (t/day); 
xijk

±  waste flow rate from city j to facility i in period k (t/ 
day), i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3; 

i  index for facility (i = 1 for the landfill, and i = 2, 3 
for the waste-to-energy facility); 

j  index for the three cities (j = 1, 2, 3); 
k  index for the time period (k = 1, 2, 3); 
1 − qk  joint probability level during period k; 

Zimk
± binary decision variable for treatment facility i with 

expansion option m at the start of period k, and i = 2, 
3; 

ΔTEimk
± level of capacity expansion option m for facility m at 

the start of period k (t/day), and i = 2, 3. 
 
3.3. Result Analysis 

 
Table 5 presents the solution for system cost, obtained th- 

rough the DIPIP model , under different scenarios with given 
qjt levels (j = 2, 3; t = 1, 2, …, 4, where j is an index for the 
cities and t is for the scenarios). A series of solutions (16 sets) 
under different combinations of qjt levels can be obtained (with 

a joint probability level of 95% in terms of satisfying waste 
disposal needs in cities 2 and 3). Four scenarios (when q21 = 
0.001, q22 = 0.005, q23 = 0.010, and q24 = 0.025, respectively) 
are inves- tigated and each is embedded with four 
sub-scenarios. Analysis of the modeling solutions (when q31 = 
0.025, and q21 = 0.001, q22 = 0.005, q23 = 0.010, q24 = 0.025) 
are provided below, with local minimum-costs. 

For the facility expansion, there is no difference between 
the schemes under the four scenarios. Facility 2 would adopt 
an expansion scheme of [0, 50] t/day in period 2, and facility 
3 would have an increment of [0, 100] t/day in period 1. It 
means that when the decision scheme tends toward f − under 
advantageous conditions, no expansion would exist; however, 
facilities 2 and 3 would adopt expansion schemes of 50 and 
100 t/day under demanding conditions (f +), respectively.  

As for waste flow allocation solutions (Table 6), a simila- 
rity can be found under the four scenarios. City 1 would ship a 
large portion of its waste to the landfill, and divert the rest to 
the WTE facilities due to its close proximity. Waste from city 
2 would be mainly allocated to the landfill and facility 2, 
while waste from city 3 would be mostly shipped to facility 3 
due to an apparent closeness effect. For example, under scena- 
rio 1, city 1 would ship [140, 157.5], 35 and [0, 32.5] t/day wa- 
ste in period 1 to the landfill, facility 2 and 3, respectively. Wa- 
ste from city 2 to the landfill and facility 2 in period 1 would 
be 264 and [66, 90] t/day, respectively. Waste from city 3 in 
period 1 to facility 3 and the landfill would be 275 and 82 t/ 
day, respectively. In addition, the system costs under the four 
scenarios would be $[286.99, 532.22] ×106, $[286.90, 532.01] 
× 106, $[286.80, 531.80] × 106 and $[286.51, 531.17] × 106, re- 
spectively. They would vary under different waste flow allo- 
cation patterns. Adjusting waste flows could reflect variations 
of system conditions due to the existence of uncertainties. In 
addition, the qjt levels represent probabilities at which the 
constraints are violated. A raised qjt level implies an increased 
risk of constraint violation (i.e. a decreased strictness for the 
constraints, and thus an expanded decision space). A higher qjt 
level would correspond to a lower system cost, but it may not 
guarantee environmental regulations and waste management 
requirements are met. In comparison, under a lower qjt level, 
the requirements would be met (at a higher system cost due to 
a higher waste generation rate).  

Replacing the JPC with the CCP, the study problem would 

WG2 
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then be formulated as a dual interval chance-constrained inte- 
ger programming (DICCIP) model. The random waste gene- 
ration rates in cities 2 and 3 will each be treated at a proba- 
bility level of 0.95 (instead of at a joint probability of 0.95 in 
the DIPIP problem). This implies there would be an increased 
chance of the constraints being violated from a probability of 
0.05 all of the time (under the JPC) to 0.05 each time (under 
the CCP). The increased chance of constraint violation would 
correspond to a lower cost due to a decrease in the projected 
waste generation rates, but it may mean a reduced probability 
for satisfying environmental regulations and waste manage- 

ment requirements. 
Table 6 also shows the solutions from the DICCIP model. 

They are different from those obtained through the DIPIP mo- 
del. Facility 2 would adopt an expansion scheme of [0, 50] t/ 
day in period 3, and facility 3 would have an increment of [0, 
100] t/day in period 1. Facility 2 would be expanded in period 
3 is because the management capacity would be higher than 
that from the DIPIP model (due to the increased chance of con- 
straint violation). Cities 1 and 2 would ship more waste to the 
landfill and less to the other two facilities. City 3 would divert 
a portion of its waste from facility 3 to the landfill and facility 

Table 6. Solutions of the DIPIP and DICCIP Models 

Models 
Waste flow (t/day) Facility i City j Period k 

Scenario 1 (DIPIP) DICCIP 

X111
± 1 1 1 [140, 157.5] [140, 157.5] 

X112
± 1 1 2 [160, 175] [160, 175] 

X113
± 1 1 3 [180, 192.5] [180, 192.5] 

X121
± 1 2 1 264 261.6 

X122
± 1 2 2 304 301.6 

1 2 3 344 341.6 X123
± 

X131
± 1 3 1 82 79 

X132
± 1 3 2 51.8 73.3 

X133
± 1 3 3 113 109.4 

X211
± 2 1 1 35 35 

X212
± 2 1 2 40 40 

X213
± 2 1 3 45 45 

X221
± 2 2 1 [66, 90] [65.4, 90] 

X222
± 2 2 2 [76, 104.8] [75.4, 79.4] 

X223
± 2 2 3 [86, 91.5] [85.4, 90.6] 

X231
± 2 3 1 0 0 

X232
± 2 3 2 30.2 5.7 

X233
± 2 3 3 19 19.6 

X311
± 3 1 1 [0, 32.5] [0, 32.5] 

X312
± 3 1 2 [0, 35] [0, 35] 

X313
± 3 1 3 [0, 37.5] [0, 37.5] 

X321
± 3 2 1 [0, 9] [0, 8.1] 

X322
± 3 2 2 [0, 9.2] [0, 33.8] 

X323
± 3 2 3 [0, 37.5] [0, 37.5] 

X331
± 3 3 1 275 275 

X332
± 3 3 2 275 275 

X333
± 3 3 3 275 275 

f± ($106)    [286.99, 532.22] [285.02, 526.59] 
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2. The system cost would be $[285.02, 526.59] × 106, which is 
less than that from the DIPIP model.  

Generally, solutions from the DICCIP present a preference 
of shipping the waste to the landfill. The system is in a more 
risky condition (with a raised chance of overloaded waste fl- 
ows). In other words, the plan, based on the DIPIP solution, is 
more reliable than that of the DICCIP solution. In DIPIP, the 
risk of constraint violation is lower than a joint level. It add- 
resses a situation where the waste generation rates in cities 2 
and 3 could be unacceptably high at the same time (leading to 
overflow at receiving facilities). Capable of providing a desired 
compromise between economic consideration and system sta- 
bility, the DIPIP would be more realistic in reflecting the sys- 
tem complexity. The main advantage of DIPIP is its joint con- 
sideration of multiple interactive conditions for satisfying the 
constraints. Due to its capacity for reflecting dual uncertainti- 
es, the DIPIP is capable of providing more robust solutions. 

4. Conclusions 

A dual interval probabilistic integer programming (DIPIP) 
method has been developed for MSW management planning. 
The method improves upon the existing probabilistic progra- 
mming and integer programming approaches by incorporating 
the concept of dual intervals within the optimization frame- 
work. The DIPIP addresses system uncertainties expressed as 
probability distributions and single, dual intervals. It can ef- 
fectively reflect highly uncertain information for boundaries 
of the input intervals and system dynamics. The DIPIP can 
jointly consider multiple interactive conditions for satisfying 
the constraints and be more realistic in reflecting the system 
complexity. The obtained interval solutions can be used to ge- 
nerate decision alternatives. 

To demonstrate applicability of the method, a hypotheti- 
cal planning problem has been employed regarding waste ma- 
nagement facility expansion and waste flow allocation within 
a MSW management system. The results indicate that reason- 
able solutions of facility expansion schemes and waste-flow 
allocation patterns have been generated. Tradeoffs between sy- 
stem cost and stability are analyzed. A willingness to pay hi- 
gher operation costs will guarantee system reliabilities. How- 
ever, a desire to reduce the costs will potentially run into sys- 
tem disruptions. 
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