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ABSTRACT.  A stochastic robust fuzzy interval linear programming (SRFILP) model was proposed for supporting municipal solid 
waste (MSW) management under multiple uncertainties. The method integrated stochastic robust optimization (SRO), interval linear 
programming (ILP) and fuzzy possibilistic programming (FPP) methods into a general framework and could simultaneously deal with 
uncertainties expressed as fuzzy sets, stochastic variables and discrete intervals. The SRFILP model was applied to a hypothetical 
problem of municipal solid waste management. The results demonstrated that flexible interval solutions under different α-cut levels 
could be generated, which could help decision makers gain an in-depth insight into system complexities associated with solid waste 
management. The waste-management alternatives could be generated by adjusting the decision-variable values within their solution 
intervals. In addition, the proposed method could be used to help evaluate the trade-off between solution robustness and model 
robustness, and help waste managers identify desired cost-effective policies considering environmental, economic, system-feasibility 
and system-reliability constraints. 
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1. Introduction  

In municipal solid waste (MSW) management, many para- 
meters such as waste-generation rate, facility capacity and ope- 
ration condition, diversion goal, and waste treatment cost may 
appear uncertain. These complexities and uncertainties could 
also be multiplied by dynamic features of the system and inter- 
active feature of the system components (Huang et al., 1993). 
Over the past decades, a number of inexact optimization meth- 
ods were used for dealing with the complexities and uncertain- 
ties associated with environmental management problems, such 
as fuzzy, stochastic and interval programming methods (Chang 

and Wang, 1997; Huang et al., 1992, 1993, 1995a, b; Chanas 
and Zielinski, 2000; Huang and Loucks, 2000; Maqsood and 

Huang, 2003, Yeomans et al., 2003; Yeomans and Huang, 2003; 
Qin et al., 2007; Li et al., 2006, 2009).  

Recently, the stochastic robust optimization (SRO), as pro- 
posed by Mulvey et al. (1995), Mulvey and Ruszczynski (1995), 
has received considerable attention. It was widely applied in 
many real-world problems, such as production planning, power 
capacity expansion, machine scheduling, telecommunication 
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capacity expansion and logistics (Yu and Li, 2000). However, 
applications of SRO in the environmental management field 
were relatively limited. For example, Watkins Jr. and Mckinney 
(1997) explicitly introduced concept and characteristics of SRO 
model, and applied SRO model to evaluate tradeoffs among ex- 
pected cost, cost variability, and risk of violating system cons- 
traints in water transfer planning and groundwater quality ma- 
nagement. Xu et al. (2009) proposed a hybrid stochastic robu- 
st chance-constrained programming (SRCCP) model to support 
municipal solid waste management under uncertainty. The SRO 
method could be used to evaluate the trade-off between system 
economy and stability, and it was especially useful for helping 
analyze the reliability of satisfying (or risk of violating) system 
constraints under complex uncertainties. However, as a discrete- 
time, scenario-based approach, the complexities of SRO would 
increase significantly as the amount of the designed scenarios 
increases (Mulvey et al., 1995). Moreover, the solutions obtai- 
ned by SRO model were fixed values, and could only provide 
limited information for decision makers.  

Fuzzy mathematical programming (FMP) was derived fr- 
om the incorporation of fuzzy set theory with ordinary mathe- 
matical programming framework. FMP could be classified into 
two categories: fuzzy flexible programming (FFP) and fuzzy 
possibilistic programming (FPP) (Zimmermann, 1985). In FFP, 
the flexibility in the constraints and fuzziness in the objective 
function, which were represented by fuzzy sets and denoted as 
“fuzzy constraints” and “fuzzy goal”, were introduced into or- 
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dinary programming models (Zimmermann, 1985). Applica- 
tions of FFP methods could be found in Huang et al. (1993, 
1995b), Maqsood et al. (2005), and Qin et al. (2007). In FPP, 
the fuzzy coefficients were regarded as possibility distributions. 
Compared with FFP, the applications of FPP methods were li- 
mited. This was due to the fact that FPP may lead to complica- 
ted intermediate models and variables, which were difficult to 
handle. 

Interval linear programming (ILP) is another alternative 
for handling uncertainties which were expressed as interval nu- 
mbers (Yeomans and Huang, 2003). Previously, many applica- 
tions of ILP in dealing with environmental management proble- 
ms were reported (Huang et al., 1992, 1993, 1995a, b; Maqsood 
and Huang, 2003; Yeomans et al., 2003; Li and Huang, 2007). 
From these studies, it was demonstrated that ILP has a relati- 
vely low computational requirement and could be easily inte- 
grated with other inexact optimization methods (Huang et al., 
1995b). However, ILP was incapable of controlling solution 
deviations under the impacts of uncertainties (i.e. the ability 
of keeping solution robustness) and might become infeasible 
when the parameters of the right-hand-side constraints were hi- 
ghly uncertain (Yeomans and Huang, 2003).  

Therefore, as the first attempt in the related field, this stu- 
dy aims to develop a stochastic robust fuzzy interval linear pro- 
gramming (SRFILP) model for tackling multiple uncertainties 
associated with municipal solid waste (MSW) management. 
As an integration of SRO, FFP and ILP, this method can simul- 
taneously deal with uncertainties expressed as triangular fuzzy 
numbers, stochastic variables and discrete intervals. Moreover, 
it is capable of evaluating the trade-offs among the expected 
costs, cost variability, and risk of violating relax constraints. A 
hypothetical MSW management case will be used to demon- 
strate the applicability of the proposed method. 

2. Methodology 

2.1. Stochastic Robust Optimization 
According to the Mulvey et al. (1995b), Mulvey and Rus- 

zczynski (1995), an original stochastic robust optimization 
(SRO) model can be written as follows:  

 

  s
s s s s s s s it

s S s S s S s S
Minimize Z p p p pξ λ ξ ξ ω δ′ ′

′∈ ∈ ∈ ∈

= + − +∑ ∑ ∑ ∑    (1a) 

 
Subject to: 
 
Ax B≤                 (1b) 

 
s

s s s it sC x D y Eδ+ + = for all s ∈Ω                               (1c) 
 

0,x ≥ 0y ≥                (1d) 
 

where s
T T

s sc x d yζ = + , and sζ is the random objective function 
value corresponding to scenario s and occurring with probabi- 
lity sp ; sp is the associated probability of a scenario s, naturally 

1 1S
ss p

=
=∑ ; λ and ω are weight coefficients; x and y represent 

the structural variables and control variables, respectively.  
In Equation (1a), s s s ss S s Sp pξ ξ′ ′′∈ ∈

−∑ ∑ represents solu- 
tion robustness, and s

s its S p δ
∈∑  represents model robustness. 

The latter one is used to penalize violations of the control con- 
straints under different scenarios. The trade-off between solu- 
tion robustness and model robustness can be analyzed by fixing 
the expected cost at various levels and adjusting the ratio λ ω  

(Watkins and Mckinney, 1997). As for the three constraints, 
Equation (1b) is the structural constraint whose coefficients are 
fixed and free of noise. Equation (1c) is the control constraint 
whose coefficients are subject to noise. Equation (1d) ensures 
non-negative vectors.  

To avoid handling of the absolute item in Equation (1a), 
Yu and Li (2000) proposed an equivalent linear formulation, 
namely a transformed stochastic robust optimization (SRO) 
model. It can be written as follows (Yu and Li, 2000): 
 

 [( ) 2 ] s
s s s s s s s s it

s S s S s S s S
Minimize Z p p p pξ λ ξ ξ θ ω δ′ ′

′∈ ∈ ∈ ∈

= + − + +∑ ∑ ∑ ∑  

 (2a) 
   

Subject to: 
 

0s s s s
s S

pξ ξ θ′ ′
′∈

− + ≥∑                                   (2b) 

 
Ax B≤                         (2c) 

  
s

s s it sC x D y Eδ+ + = for all s ∈Ω                                (2d) 
 

0,x ≥ 0y ≥                  (2e) 
 

0sθ ≥                                                (2f) 
 

where Equation (2b) is a conversion constraint, and sθ is a sla- 
ck variable. 
 
2.2. Fuzzy Possibilistic Programming 

According to Lai and Hwang (1992), a general fuzzy po- 
ssibilistic programming (FPP) can be written as (Lai and Hwang, 
1992): 
 

1
  

n

j j
j

Maximize c x
=

∑                (3a) 

 

Subject to: 
 

1

n

ij j i
j

a x b
=

≤∑  i = 1, …, m            (3b) 

 
0jx ≥  j = 1, …, n             (3c) 
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where jc ( j = 1, …, n), b ( i = 1, …, m) and ija (i = 1, …, m; j = 
1, …, n) are imprecise fuzzy variables with possibilistic 
distribution functions. Among the various expression forms of 
fuzzy varia- bles, triangular fuzzy numbers are of the most 
important and are useful in solving FPP problems. Thus, we 
consider the fu- zzy variables as triangular fuzzy numbers. 
Let ( , , )l m u

j j j jc c c c= , where l
jc is the central value, m

jc  and u
jc  

are the left and right spreads, respectively. Similarly, ib = ( ,l
ib  

, )m u
i ib b and ( ,l

ij ija a= , )m u
ij ija a also represented triangular fuzzy 

numbers respectively. Referring to the (Lai and Hwang, 1992), 
the concept and algorithm of α-cut can be used to solve model 
(3). As a result, the transformed FPP model can be written as 
follows (Lai and Hwang, 1992):  
 

1
  (1 ) , (1 )

n
l m l u
j j j j j

j
Maximize c c c c xα α α α

=

⎡ ⎤+ − + −⎣ ⎦∑                               (4a) 

 
Subject to: 
 

1

[ (1 ) , (1 ) ] [ (1 ) ,
n

l m l u l m l
ij ij ij ij j i i i

j

a a a a x b b bα α α α α α α
=

+ − + − ≤ + − +∑
(1 ) ] u

ibα−   i = 1, …, m; j = 1, …, n                               (4b) 
 

0jx ≥  j = 1, …, n                                 (4c) 
 
where α-cut of a fuzzy set μ is a crisp subset of X and is deno- 
ted by: 
 

{ }| ( ) ,  AA x x x Xα μ α= ≥ ∈                                         (5) 

 
If X is a collection of objects denoted by x , then a fuzzy set 
in X is a set of ordered pairs: 
 

{ }( , ( )) |AA x x x Xμ= ∈                 (6) 

 
Obviously, the original fuzzy variables in the model (4) 

are expressed as intervals. Therefore, based on α-cut algorithm, 
the original FPP model can be transformed into the interval li- 
near programming (ILP), such that the interactive algorithm 
can be used to solve the model. 
 
2.3. Interval linear Programming 

Referring to Huang et al. (1992), an ILP model can be wri- 
tten as follows: 
 

  Maximize f C X± ± ±=                                 (7a) 
 
Subject to: 
 

A X B± ± ±≥                 (7b) 
 

0X ± ≥                  (7c) 
 

, 0C A± ± ≠                 (7d) 

 
where { }m n

A R
×± ±∈ , { }m l

B R
×± ±∈ , { }l n

C R
×± ±∈ , { }n l

X R
×± ±∈ , 

and R± denotes a set of interval numbers. 
As proposed by Huang et al. (1992, 1995b), the model (7) 

can be solved by an interactive algorithm. A sub-model corres- 
ponding to f + (when the objective function is to be maximized) 
is first formulated and solved, and then based on the obtained 
solution of the first sub-model, the relevant sub-model corres- 
ponding to f − can be formulated and solved. Finally, the objec- 
tive value and decision variables as discrete intervals can be 
obtained as ,opt opt optf f f± − +⎡ ⎤= ⎣ ⎦ and ,j optx± = , ,,j opt j optx x− +⎡ ⎤⎣ ⎦ respect- 
tively. 
 
2.4. Stochastic Robust Fuzzy Interval Linear Programming 
for Solid Waste Management 

Considering a problem wherein a manager is responsible 
for allocating solid waste from three municipalities to two treat- 
ment facilities (including landfill and incinerator) over several 
time periods. The objective of the study problem is to minimize 
the system cost with the optimal waste flow patterns (Li et al., 
2008). Based on investigation of historical record, public sur- 
vey, and expert consultation, we assume that the unit transpor- 
tation costs in three municipalities and the unit operational cos- 
ts for the two waste-handling facilities are of random natures 
and specific discrete scenarios are designed for representing 
possible future conditions.  

In a real-world MSW management system, the quality of 
available uncertain information is normally not good enough; 
these uncertainties could hardly be described as probability dis- 
tribution functions, and better be handled by fuzzy sets and/or 
discrete intervals (Li et al., 2008). For example, the uncertain- 
ties in revenues from energy sales and capacities of the landfill 
sites may be presented as discrete intervals. Because the pro- 
blems of traffic congestion and waste buildup at MSW recei- 
ving facilities may lead to the existence of the untreated amou- 
nt, a safe coefficient can be introduced to reflect such a fact. 
Due to lack of sufficient data, the safe coefficient, treatment ca- 
pacities of the incinerators, and waste-generate rates could be 
tackled as triangular fuzzy numbers (Li et al., 2008). Based on 
the integration of the SRO, FPP and ILP, a SRFILP model for 
the study case can be formulated as follows: 

( )
3 2 3

2
1 1 1 1

  [ (
S

k s ijk ijks iks jk k
k s i j

Minimize f L p x TR OP x FE FT± ± ±

= = = =

= + +∑ ∑ ∑∑
3 2 3

1 2
1 1 1 1

)] {[ ( )
S

ks k k s ijk ijks iks jk
k s i j

OP RE L p x TR OP x FEλ ± ±

= = = =

+ − + + + ⋅∑ ∑ ∑∑
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( ) ( )
2 3

1 2
1 1 1

] [
S

k ks k s ijk ijks iks jk
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(2) Disposal capacity of landfill: 
 

( )
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1 2
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 k jk jk k
j k

L x x FE TL± ± ±

= =
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(3) Treatment capacity of WTE facility: 
 

3

2
1

(1 )   jk k k
j

x TEη±

=

+ ≤∑  i = 1, …, I; k∀                                                         (8d) 

 
(4) Disposal demand: 
 

2

1
ijk jks jks

i
x WGδ± ±

=

+ ≥∑   ,j k∀  s S∈              (8e) 

 
(5) Non-negativity constraints: 
 

, , 0ijk s jksx θ δ± ± ± ≥   , ,i j k∀  s S∈                                  (8f) 
 
where:  
f  = net system cost ($/d);  
ijkx  = waste flow from city j to facility i during period k (ton/ 

day);  
FE  = residue flow rate from incinerator to landfill (% of inco- 

ming mass to waste-to-energy facility);  
kFT  = unit transportation cost from waste-to-energy facility 

to landfill during period k ($/ton);  
iksOP  = unit operating cost of facility i under scenario s during  

period k ($/ton);  
kRE  = unit revenue from the waste-to-energy facility during 

period k ($/ton);  
kTE  = maximum treatment capacity of the waste-to-energy 

facility during period k (ton/day);  
kTL    = capacity of the disposal landfill during period k (ton);  
ijksTR = transportation costs from city j to capacity i under sce- 

nario s ($/ton), where i = 1 for the landfill capacity, and 
i = 2 for the waste-to-energy facility during period k;  

WGijk = waste generation rate in city j under scenario s during 
period k (ton/day), j = 1, 2, 3;  

sP        = fixed probability under each scenario S;  
sP ′  = fixed probability under each scenario S;  
kη  = safety coefficient for the incinerator facility during the 

period k; 
jksδ   = untreated waste amount in city j during period k under 

scenario s (ton/day), j = 1, 2, 3;  
Λ  = weight coefficient, it can be used to reflect system eco- 

nomy; 
ω    = weight coefficient, it can be used to reflect system 

stability;  
sθ     = slack variable under scenario s;  

Lk   = length of planning period k (d);  
i          = index of disposal facility ( i  = 1 and 2, where i  = 1 

for the landfill, and 2 for the incinerator); 
j   = index of city, j = 1, 2, 3;  
k   = index of planning period, k = 1, 2, 3;  
s       = index of scenarios, s = 1, 2,…, 9; 's = index of scenarios, 

's = 1, 2,… 9; S = set of scenario s. 
 In Equation (8), λ is the weight coefficient for reflecting 

the tradeoff between the mean and variance of the system cost. 
The weight coefficient ω is used to balance feasibility robust- 
ness of system cost. Based on the FPP algorithm, the triangular 
fuzzy numbers can be converted into discrete intervals, such 
that the original SRFILP model will become a general interval 
model, such that the transformed SRFILP model can be conver- 
ted into two sub-models by interactive algorithm (Huang et al., 
1992). The sub-model corresponding to the lower bound objec- 
tive f − can firstly be formulated as follows: 
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2

1
ijk jks jks

i
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, , 0ijk s jksx θ δ− − − ≥   ,i j∀  k∀  s S∈        (9f) 

 
Then, the sub-model corresponding to the upper bound ob- 
jective f + can be formulated as follows: 
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(1 )    jk k k
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=
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        , ,ijk ijkx x i j k+ −≥ ∀          (10f) 

 
s sθ θ+ −≥   s S∈                        (10g) 

 
jks jksδ δ+ −≥   ,j k∀  s S∈              (10h) 

 
Thus, the final solution can be obtained through solving 

sub-models (9) and (10). The final solution is [ , ]opt opt optf f f± − += , 
,opt opt optx x x± − +⎡ ⎤= ⎣ ⎦ , and ,opts opts optsδ δ δ± − +⎡ ⎤= ⎣ ⎦ . Figure1 shows the fra- 

mework of the SRFILP model. The proposed model can deal 
with uncertainties expressed as deterministic values under dif- 
ferent scenarios (i.e. in discrete probabilistic distributions), tri- 
angular fuzzy numbers and discrete intervals.  

 

3. Case Study 

In this study, a hypothetical MSW management case, pro- 
posed by Xu et al. (2009), will be used for demonstrating the 
applicability of the proposed method. The study system inclu- 
des three municipalities and two treatment facilities (consisting 
of landfill and incineration). The main task of the manager is 
how to effectively allocate the generated waste from various 
municipalities to waste treatment facilities in the next fifteen 
years (with three five-year stages), in order to meet the rising 
waste disposal needs but spend as little money as possible (Xu 
et al., 2009).  

 

Probability 
Distributions

Uncertainty 

Optimal solutions for SRFILP model 

Generation of  
Decision alternatives 

Possibilistic  
Distributions 

Discrete  
Intervals

Fuzzy Possibilistic 
Programming (FPP) 

Stochastic Robust 
Optimization (SRO) 

Interval Linear 
Programming (ILP) 

SRFILP 
Upper-bound submodel

SRFILP 
Model 

SRFILP 
Lower-bound submodel

 

Figure 1. General framework of the SRFILP model. 
 
The multiple uncertainties associated with the waste ma- 

nagement system will be expressed in different formats. The tr- 
ansportation costs from the three municipalities to waste-han- 
dling facilities and the operational cost for the two facilities in 
different periods would be described as deterministic values 
under different scenarios, respectively (Xu et al., 2009). The 
detailed scenarios and probability information are listed in Ta- 
bles 1 and 2. The waste-generation rates will be described as 
triangular fuzzy numbers (as shown in Table 3. The WTE faci- 
lity generates residues of approximately 30% (on a mass basis) 
of incoming waste stream, and its revenue from energy sale is 
$[15, 25] per ton of waste incinerated. The landfill is used to 
meet the demand of waste disposal or to receive residues from 
the incinerator, and it is described as discrete intervals. The la- 
ndfill has an existing capacity of [3.285, 4.198] × 106 t.  

For the incinerator, the random arrival and service times 
of waste delivery vehicles could lead to waste buildup. When 
the delivery vehicles arrive late in a previous day but early in 
the following day, a peak will occur such that the wastes can- 
not be treated timely as normal (Li et al., 2008). Thus, the peak 
flows originated from the random arrival and service times of 
waste-delivery vehicles may also raise a risk of contingent in- 
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Table 1. Transportation Costs from Municipalities to 
Treatment Facilities under Various Probability Levels 

Unit transportation cost ($/t) Municipalities Probability 
k = 1 k = 2 k = 3 

To the landfill: 
Municipality 1 

Low 0.2 10.1 11.3 12.6 
Medium 0.6 12.1 13.3 14.6 
High 0.2 14.1 15.3 16.6 

Municipality 2 
Low 0.2 8.5 9.6 10.8 
Medium 0.6 10.5 11.6 12.8 
High 0.2 12.5 13.6 14.8 

Municipality 3 
Low 0.2 10.7 12.0 13.4 
Medium 0.6 12.7 14.0 15.4 
High 0.2 14.7 16.0 17.4 

To the WTE facility: 
Municipality 1 

Low 0.2 7.6 8.6 9.7 
Medium 0.6 9.6 10.6 11.7 
High 0.2 11.6 12.6 13.7 

Municipality 2 
Low 0.2 8.1 9.1 10.2 
Medium 0.6 10.1 11.1 12.2 
High 0.2 12.1 13.1 14.2 

Municipality 3 
Low 0.2 6.8 7.7 8.6 
Medium 0.6 8.8 9.7 10.6 
High 0.2 10.8 11.7 12.6 

Note: The related data are referred to Xu et al. (2009). 

 
Table 2. Operational Costs of Two Facilities under Various 
Probability Levels 

Unit operational cost ($/t) Level of Operation cost Probability 
k = 1 k = 2 k = 3 

Landfill: 
Low 0.3 43 50 60 
Medium 0.4 50 58 68 
High 0.3 57 66 76 

Incinerator: 
Low 0.3 67 73 80 
Medium 0.4 74 81 88 
High 0.3 81 90 96 

Note: the related data are referred to Xu et al. (2009). 

 

sufficiency in the receiving facility. The introduction of the sa- 
fety coefficient would help reflect such uncertainties and ass- 
ures reliability of the system, even under the worst case due to 
the variety of uncertainties in waste generation and facility ope- 
ration (Nie et al., 2006). Usually, this coefficient is estimated 
empirically and is thus of fuzzy nature. Similarly, the incinera- 
tor capacities could also be described as fuzzy sets (Nie et al., 
2006). The safe coefficient and incinerator capacities under va- 
rious α-cut level are provided in Tables 4 and 5. 

Table 3. The triangular Fuzzy Sets and Discrete Intervals 
under Different α-cut Levels of Uncertain Easte-generation 
Rates for Three Municipalities 

Waste-generation rate Level of waste-
generation k = 1 k = 2 k = 3 
Municipality1: 

TFS* (237,282,337) (287,332,388) (335,380,435)
α = 0.2 [246,326] [296,377] [344,424] 
α = 0.5 [260,310] [310,360] [358,408] 
α = 0.8 [273,293] [323,343] [371,391] 

Municipality2: 
TFS (135,180,235) (158,203,260) (185,230,285)
α = 0.2 [144,224] [167,249] [194,274] 
α = 0.5 [158,208] [181,232] [208,258] 
α = 0.8 [171,191] [194,214] [221,241] 

Municipality3: 
TFS (247,292,357) (282,327,382) (317,362,417)
α = 0.2 [256,344] [291,371] [326,406] 
α = 0.5 [270,325] [305,355] [340,390] 
α = 0.8 [283,305] [318,338] [353,373] 

TFS: Triangular fuzzy sets. 
Table 4. The Triangular Fuzzy Sets and Discrete Intervals 
under Different α-cut Levels of Safe Coefficients over Three 
Periods 

Safe coefficient Level of Safe 
coefficient K = 1 K = 2 K = 3 
TFS (0.15,0.2,0.25) (0.1,0.15,0.2) (0.05,0.1,0.15)
α = 0.2 [0.16,0.24] [0.11,0.19] [0.06,0.14] 
α = 0.5 [0.175,0.225] [0.125,0.175] [0.075,0.125] 
α = 0.8 [0.19,0.21] [0.14,0.16] [0.09,0.11] 
Note: The related data are referred to Nie et al. (2006). 

Table 5. The Triangular Fuzzy Sets and Discrete Intervals 
under Different α-cut Levels of Incinerator Capacities  

Level of incinerator  
capacities 

Operation capacity  
of the facilities (t/d) 

TFS (400,580,700) 
α = 0.2 [436,676] 
α = 0.5 [490,640] 
α = 0.8 [544,604] 
 

From above description, it can be seen that uncertainties 
may exist as discrete probability distributions, triangular fuzzy 
sets and interval numbers; moreover, due to the importance of 
the system stability, the tradeoffs among system economy and 
stability are also desired to be addressed in the management 
model. To tackle such a problem, the proposed SRFILP will be 
used. 

4. Result Analysis 

Table 6 demonstrates the results of the objective function 
values and the non-zero decision variables at different ω values 
and α-cut levels. Since SRFILP is an integration of SRO, FPP 
and ILP, such that the obtained solutions should reflect charac- 
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Table 6a. Solutions from the SRFILP Model under Different 
ωi Levels (α = 0.2) 

F M P ω = 120 ω = 160 ω = 200 ω = 240 
1 1 1 [246,326] [246,326] [246,326] [246,326]
1 1 2 0 [296,377] [296,377] [296,377]
1 1 3 0 0 344 344 
1 2 1 [144,224] [144,224] [144,224] [144,224]
1 2 2 0 [167,249] [167,249] [167,249]
1 2 3 0 0 [194,203] [194,274]
1 3 1 [256,344] [256,344] [59, 147] 0 
1 3 2 0 [291,371] [291,371] [210,277]
1 3 3 0 0 0 0 
2 1 1 0 0 0 0 
2 1 2 0 0 0 0 
2 1 3 0 0 0 0 
2 2 1 0 0 0 0 
2 2 2 0 0 0 0 
2 2 3 0 0 0 0 
2 3 1 0 0 197 [256,344]
2 3 2 0 0 0 [81, 94] 
2 3 3 0 0 0 326 
Untreated 
amount (t/d) 

(1618, 
2101) 

(864, 
1104) 

(326, 
557) 

(0, 
160) 

Total cost 
 (×106 $) 

(73.1, 
101.0) 

(171.0, 
230.5) 

(262.6, 
324.7) 

(338.9, 
421.1) 

 
Table 6b. Solutions from the SRFILP Model under Different 
ωi Levels (α = 0.5) 

F M P ω = 120 ω = 160 ω = 200 ω = 240 
1 1 1 [260,310] [260,310] [260,310] [260,310]
1 1 2 0 [310,360] [310,360] [310,360]
1 1 3 0 0 [297,347] [358,408]
1 2 1 [158,208] [158,208] [158,208] [158,208]
1 2 2 0 [181,232] [181,232] [181,232]
1 2 3 0 0 [208,258] [208,258]
1 3 1 [270,325] [270,325] [0,55] [0,55] 
1 3 2 0 [305,355] [305,355] [72,122] 
1 3 3 0 0 [0,50] [0,50] 
2 1 1 0 0 0 0 
2 1 2 0 0 0 0 
2 1 3 0 0 0 0 
2 2 1 0 0 0 0 
2 2 2 0 0 0 0 
2 2 3 0 0 0 0 
2 3 1 0 0 270 270 
2 3 2 0 0 0 233 
2 3 3 0 0 0 340 
Untreated 
amount (t/d) 

(1702, 
2003) 

(906, 
1056) 

401 0 

Total cost 
 (×106 $) 

(77.8, 
95.3) 

(181.2, 
218.2) 

(271.8, 
333.3) 

(365.8, 
431.2) 

 
teristics of above the three methods. The main procedure of sol- 
ving SRFILP model is to determine the specific ω value and 
α-cut level. According to the related reference and the obtain-  

Table 6c. Solutions from the SRFILP Model under Different 
ωi Levels (α = 0.8) 

F M P ω = 120 ω = 160 ω = 200 ω = 240 
1 1 1 [273,293] [273,293] [273,293] [217,237]
1 1 2 0 [323,343] [323,343] [323,343]
1 1 3 0 0 [215,235] [371,391]
1 2 1 [171,191] [171,191] [171,191] [171,191]
1 2 2 0 [194,214] [194,214] [194,214]
1 2 3 0 0 [221,241] [221,241]
1 3 1 [283,305] [283,305] [0, 22] [0, 22] 
1 3 2 0 [318,338] [318,338] [0, 20] 
1 3 3 0 0 [0, 20] [0, 20] 
2 1 1 0 0 0 56 
2 1 2 0 0 0  
2 1 3 0 0 0  
2 2 1 0 0 0  
2 2 2 0 0 0  
2 2 3 0 0 0  
2 3 1 0 0 283 283 
2 3 2 0 0 0 318 
2 3 3 0 0 0 353 
Untreated 
amount (t/d) 

(1780, 
1900) 

(945, 
1005) 

509 0 

Total cost 
 (×106 $) 

(82.2, 
89.2) 

(190.7, 
205.4) 

(271.6, 
297.3) 

(390.9, 
421.6) 

ed results, we consider ω values of 120, 160, 200 and 240, α- 
cut levels of 0.2, 0.5 and 0.8 as representative. 

Firstly, From Table 6, a majority of solutions would prese- 
nt as discrete intervals. For example, the scheme for the lower 
bound of the objective function represents an optimal decision 
scheme with the lowest possible cost ($338.9 × 106, ω = 240 
and α = 0.2) for waste treatment; this corresponds to the lower 
bounds of xijk, and they are preferable under advantageous con- 
ditions. Conversely, the scheme for the upper bound leads to 
the highest possible cost ($421.1 × 106, ω = 240 and α = 0.2) 
and this corresponds to the upper bounds of xijk. The obtained 
solution intervals reflect the impact of uncertainties and provi- 
de a spectrum of decision alternatives for waste managers. 

Since FPP method is incorporated into the SRFILP model, 
the solutions under different α-cut levels can be obtained. When 
α-cut level increases, the solutions would vary even under fixed 
values of weight ω. For example, when ω equals 120 in period 
1, the waste amount from municipality 1 to the landfill at the 
significance levels of 0.2, 0.5 and 0.8 are [246, 326], [260, 310] 
and [273, 293] t/d, respectively. Similarly, the waste amount 
from municipality 2 at the significance levels of 0.2, 0.5 and 0.8 
are [144, 224], [158, 208], and [171, 191], respectively. The re- 
sults demonstrate that the upper bounds of the treated waste 
amount would decrease with the increase of significance levels; 
however, the lower bounds would increase instead. Moreover, 
the varying trends of both upper and lower bounds reveal that 
the obtained solution intervals would become narrower as signi- 
ficance levels are higher.  

Table 6 also demonstrates that, as the significance level 
increases, the varying trends of the treated amount under fixed 
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ω values would be similar to each other. Figure 2 shows the 
varying trend of the allocated waste amounts from three muni- 
cipalities to the landfill under different α-cut levels at ω = 200. 
Obviously, when the significance level increases, the solution 
intervals would decrease, implying that the system stability 
would become higher. The introduction of the FPP method cou- 
ld reflect uncertainties that cannot be described by simple inter- 
vals; it could help managers to gain an in-depth insight into the 
complexities of a MSW system.  
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Figure 2. Optimized allocation amounts from the three 
municipalities to landfill under different α-cut levels (ω = 
200). 
 

Due to integration of SRO algorithm, the trade-off between 
solution robustness and model robustness could be evaluated. 
From Table 6, it is demonstrated that the solutions under any 
fixed α-cut level have considerable temporal and spatial varia- 
tions when the ω level increases. For example, at a significance 
level of 0.2, the total expected system cost would be [73.1, 
101.0], [171.0, 230.5], [262.6, 324.7], and [338.9, 421.1] ×106 

$ under ω levels of 120, 160, 200 and 240, respectively. The 
results demonstrate that the lower and upper bounds of the ex- 
pected total cost would increase with the increase of the ω value. 
The expected untreated waste amount would be [1618, 2101], 
[864, 1104], [326, 557] and [0, 160] t/d, respectively. This im- 
plies that the lower and upper bounds of the untreated waste 
amount would decrease as the weight ω increases; the treated 
waste amount would increase correspondingly. Similar trends 
of both the total expected system cost and the untreated waste 
amount could be observed at significance levels of 0.5 and 0.8, 
respectively.  

Figures 3 and 4 present the varying trends of the expected 
untreated waste amount and the expected total cost under 
different ω values and α-cut levels, respectively. As the weight 
ω increases, the system cost would increase considerably. This 
demonstrates that both the solution robustness (i.e. closeness 
to an optimal solution) and system economy would become lo- 
wer. Conversely, the untreated waste amount would decrease 
with the increase of ω level; the model robustness (closeness 
to a feasible solution) and system stability would increase inst- 

0

500

1000

1500

2000

2500

120 160 200 240 120 160 200 240 120 160 200 240

Lower bound Upper bound

E
xp

ec
te

d 
un

tre
at

ed
 a

m
ou

nt
 (t

/d
) 

 α = 0.2 α= 0.8 α = 0.5 
Values ofω 

Figure 3. Expected untreated waste amount under different ω 
and α-cut levels. 
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Figure 4. Expected total cost under different ω and α-cut 
level. 

ead. The comparison results demonstrate that the weight ω can 
be used to help analyze the trade-off between model robustness 
and solution robustness, and offer waste managers more options 
to generate final management scheme based on the their prefe- 
rence on system benefit and risk. 

Generally, the study results demonstrate that the propo- 
sed SRFILP model owns advantages of SRO, FPP and ILP 
models. It can be used to: (i) evaluate balances among system 
economy and stability; (ii) generate solutions under different 

α-cut levels and offer more decision space to waste managers; 
(iii) obtain interval solutions where decision alternatives can 
be generated by adjusting decision variable values within their 
solution intervals; (iv) help MSW managers to identify desired 
waste mana- gement strategies under complex uncertainties. 

5. Conclusions 

In this study, a stochastic robust fuzzy interval linear pro- 
gramming (SRFILP) was developed for supporting municipal 
solid waste management under multiple uncertainties. As an in- 
tegration of stochastic robust optimization (SRO), fuzzy possi- 
bilistic programming (FPP) and interval linear programming 
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(ILP), it can simultaneously deal with uncertainties expressed 
as triangular fuzzy numbers, stochastic variables and discrete 
intervals. Moreover, it is capable of evaluating trade-offs among 
the expected costs, cost variability, and risk of violating relax 
constraints. 

The results demonstrated that the model could be used to 
evaluate tradeoff between system economy and stability; it cou- 
ld help waste managers identify desired policies under various 
environmental, economic, system-feasibility and system-relia- 
bility constraints. Although this study is the first attempt for pl- 
anning waste-management system through the proposed appr- 
oach, the study result suggests that such an integrated techni- 
que is also applicable to other environmental problems. In ad- 
dition, the proposed method can be coupled with other uncer- 
tainty-analysis techniques (such as two-stage programming and 
nonlinear programming) for tackling more complicated proble- 
ms.  
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