
57 

Journal of 
Environmental 

Informatics 

  
ISEIS 

 
 
 

Journal of Environmental Informatics 16(2) 57-69 (2010) 
www.iseis.org/jei         

 
A Scale-Space Information Flux Approach to Natural Irregular Patterns:  

Methods and Applications 
 

C. Suteanu* 

 
Geography Department and Environmental Studies Program, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada 

 
Received 17 May2009; revised 15 July 2010; accepted 28 August 2010; published online 10 December 2010 

 
ABSTRACT.  The paper addresses problems related to information management when a multiscale approach is applied to 
environmental patterns, whether in space or in time. To support the decision-making process concerning the information to be handled 
on each scale, it introduces the concepts of spatial and temporal informational backbone, and defines the scale space information flux 
as a quantity that reflects the resolution dependence of the size of the informational backbone. Establishing the scale space information 
flux helps in the identification of self-affinity properties and the quantitative, scale-range-sensitive pattern evaluation: the information 
flux is constant on the scale ranges of self-affinity. Pattern change can thereby reliably be recognized and characterized. The introduced 
procedures support storage-saving data selection and provide a measure of data storage requirements as a function of scale, flexibly 
adapting the calculation algorithm to the scale ranges of interest to the user. The paper also specifies rules that can be used by 
geographic information management software for a fast assessment of changes in map connectivity as a function of changes in scale. 
Practical application examples include synthetic data (Levy flight, Brownian walk, cellular automata output) and real-world patterns 
(desiccation fracture sets, atmospheric temperature time series). The presented concepts and methods can be applied in environmental 
science, e.g. to spatial and temporal patterns of pollution, natural resources (spatial distribution of minerals, drainage basins, forests), 
natural hazards (airborne gamma ray spectrometry maps, earthquake patterns), etc., as well as in other disciplines, such as material 
science and medical imaging. 
 
Keywords: environmental patterns, geographic information, information flux, informational backbone, information management, 
multiscale approach, self-affinity

 
 

 

1. Introduction  

Information management may be considered among the 
fastest evolving human activities. The task of handling infor- 
mation is particularly difficult when the objects of study are 
complex, irregular, and subject to change, which is often the 
case in environmental science. Methodological progress and 
technological advances have led to an accelerated information 
collection rhythm such as has never been experienced before. 
Challenges related to environmental information management 
have been shifting from the formerly dominating problems of 
insufficient data to the need for increasingly effective proce- 
dures for the acquisition, transfer, storage and processing tech- 
niques able to address large amounts of information at high 
speeds and to support the understanding of the studied proce- 
sses.  

In this context, scale has changed from what was consi- 
dered to be a simple, obvious component of scientific data ac- 
quisition and processing, to an increasingly important – often 
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subtle – concept in environmental science. It has become ob- 
vious that changes in scale may lead to significant, nonlinear 
effects regarding our understanding of environmental patterns 
(Turner et al., 1989; Cain et al., 1997; Wilbanks, 2003). In fact, 
different categories of variability may be expressed on different 
ranges of scale (Wu et al., 2000; Oldeland et al., 2010), which 
is especially important for studies concerning pattern change 
(Gustafson, 2002). Understanding the relation between inter- 
related processes and scale is recognized as critical (Perveen 
and James, 2010). Such insights regarding the importance of 
scale are also reflected in recent changes in environmental re- 
search and education (NSF-AC-ERE, 2009). Simply switching 
to a multiscale approach is not enough either: one must study 
the implications of the available or selected scale ranges con- 
cerning the results and the implied uncertainties (Perveen and 
James, 2010).  

This paper refers to spatial and temporal aspects of envi- 
ronmental systems. It introduces concepts and techniques for 
the characterization of scale-related aspects of environmental 
patterns, and highlights implications concerning information 
management. Section 2 formulates the context and discusses 
definitions of notions used in this work, section 3 explores in- 
formational aspects of spatial and temporal analysis, and the 
last section is dedicated to conclusions. 
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2. Premises 

The aim of this section is to provide a brief overview of 
some concepts and their applications in the study of environ- 
mental systems, from the perspective applied in the paper. The 
selected concepts concern information, scale, affine transfor- 
mations, and fractals, including self-affinity and self-similarity. 

Given the topic of this paper, the first concept requiring 
definition is “information”. Despite the prominent role played 
by information in many areas of human endeavour, no consen- 
sus has been reached regarding such a definition (von Baeyer, 
2004). The situation regarding the notion of information is re- 
miniscent of the one pointed out by Augustine in Confessions 
(Book Eleven, Chapter XIV, Section 17), when he refers to ti- 
me: “surely we understand it when we speak of it; we under- 
stand it also when we hear another speak of it;” “if no one asks 
me, I know what it is. If I wish to explain it to him who asks 
me, I do not know” (Augustine, 2002). While undoubtedly im- 
portant, a discussion on the nature of information is beyond 
the scope of this paper: for the purpose of the present study we 
have chosen to refer to information in a concrete way, adopting 
Shannon’s (1948) technology-oriented approach, and addres- 
sing quantitative aspects of data handling rather than difficult 
to quantify and more elusive issues of significations carried by 
messages. 

An essential concept in the framework of this exploration 
is scale. Although less vague than information, this concept 
may involve ambiguities that should be addressed from the be- 
ginning. Scientists from different fields have distinct meanings 
for scale; even in the geosciences several different meanings 
are common (Bian, 1997). Perhaps the most important distinc- 
tion to be made here is the one that refers to the signification 
of “small” and “large” scales. In a cartographic sense, scale is 
defined as the ratio of the distance between two points on the 
map and the corresponding distance on the ground. Therefore, 
the scale – specified by a number, the “representative fraction” 
– is larger for maps that cover smaller areas in more detail. 
This stands in contrast to the way scale is used in physics, for 
instance, where by “large scale” and “small scale” processes 
one refers to large, and small areas, respectively.  

In this paper the cartographic sense of scale will be adop- 
ted, mainly due to its rigorous definition. While the cartogra- 
phic sense of the scale has been precise and straightforward 
when referring to paper maps, the situation has changed with 
the advent of maps in digital form. In the case of a map that can 
be displayed on a computer screen, a scale indication based on 
“map distance” has become less relevant than the resolution 
that characterizes the digital map. Spatial resolution corres- 
ponds to the size of the spatial unit on the ground represented 
by one pixel (Haining, 2007). Since the significance of scale 
applied here is consistent with the concept of resolution (e.g. 
larger resolution and larger scale both mean a more detailed 
view of a smaller area), both concepts will be applied in this 
article; their use will depend on the role they play in each situ- 
ation. While “resolution” may be technically more precise in 
the digital realm, “scale” is more suggestive, especially in the 
framework of scientific reasoning about environmental struc- 
tures and processes. 

The entities to be discussed here are parts of the natural 
environment – possibly affected by anthropic activities. Many 
patterns of natural environmental systems and of their space- 
time behaviour exhibit properties that are relevant to studies 
concerning informational processes. In view of this explora- 
tion, several other concepts will be briefly specified. 

An affine transformation from ℜn to ℜn is based on a li- 
near combination of rotation, dilation, translation and reflec- 
tion, and has the general form: S(x) = T(x) + b, where T is a li- 
near transformation and b is a vector in ℜn (Falconer, 2003). 
For example, a point in a space of dimension n: x(x1, x2, ..., xn) 
can be mapped to the point x' (r1x1, r2x2, …, rnxn): different 
magnification ratios ri are used along the different axes. A fea- 
ture is called self-affine if its parts and the results of their affine 
transformations are similar to each other. Beyond the special 
mathematical appeal of self-affinity (Falconer, 2003), the con- 
cept – and the broad field of fractal theory, in which it plays a 
significant part – enjoy a particular interest in physics, the geo- 
sciences, the environmental sciences, etc. In fact, mathemati- 
cally rigorously self-affine sets do not exist outside the realm 
of mathematics, but there are numerous real features which 
emphasize self-affinity properties on a limited range of scales. 
Typical examples include topographic profiles, fault patterns, 
streams, etc.: similar shapes are repeatedly found after dilating 
the images in two directions, x and y, by factors rx and ry, res- 
pectively. A particular case of self-affinity is self-similarity 
(Falconer, 2003). In the latter case, parts look similar when they 
are subject to a scaling operation based on the same magnifi- 
cation for all axes, i.e. r1 = r2 = … = rn; also in this case, real 
features exist for which self-similarity can be identified for li- 
mited scale ranges; spatial distributions of minerals, earthqua- 
ke epicentres, stream patterns of drainage basins, etc. corres- 
pond to this latter category (Korvin, 1992; Turcotte, 1997). 

Self-affinity and its special case, self-similarity, represent 
forms of symmetry that are relevant to this investigation on 
environmental systems. Such properties are ubiquitous in na- 
ture: they characterize both the structural aspects of natural 
systems (shapes, sizes, relative positions of various features), 
and their temporal behaviour (Korvin, 1992; Takayasu, 1991; 
Turcotte, 1997). They have direct implications for informatio- 
nal aspects of features in the broad category of “fractals”, the 
objects or patterns characterized by self-affinity. Here again a 
clear, universally applicable definition is missing. Benoit Man- 
delbrot (1975), who initiated and developed the growing do- 
main of fractal theory, pointed out the absence of a proper, com- 
plete characterization of fractals (Feder, 1988). Actually, in the 
natural sciences one is confronting features that are not even 
real fractals, but fractal-like objects or patterns enjoying sca- 
ling properties on certain scale intervals. It is no surprise that 
a mathematician like Mandelbrot makes a statement as gene- 
ral as “a fractal is a shape made of parts similar to the whole in 
some way” (cited in Feder, 1988). An essential attribute that 
self-affine features have in common is the lack of a characteris- 
tic length scale. The relationships between scale and various 
parameters evaluated for the self-affine features are typically 
governed by power laws. Elegant and rigorous expositions of 
mathematical aspects of fractals and the implied practical cha- 
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llenges can be found in books such as those of Mandelbrot 
(1982, 1999, 2002), Barnsley (1988), and Falconer (2003). 

3. Informational Properties of Environmental 
Patterns 

Spatial and temporal environmental patterns are approa- 
ched in this section from a perspective based on the concepts 
discussed above. Quantities designed to characterize spatial 
and temporal aspects of patterns, and their relation to scale, 
will be defined. 

Features in the natural environment are characterized by 
a large diversity of patterns and a remarkable variability in spa- 
ce and in time. Backed by fast evolving technological perfor- 
mance, our need for more information leads to information 
quantities that become increasingly difficult to manage. An ef- 
fective selection of the appropriate aspects and levels of detail 
to be considered for every specific task and for every question 
is key to successful information management. 

Given the variety of features with self-affine properties, it 
is difficult to develop a rigorous definition suiting all possible 
situations. Among the definitions referring to fractals, there is 
at least one that makes an explicit reference to information: 
“A fractal is a mathematical construct that enjoys information 
conservation properties with respect to scale change” (Suteanu, 
2000). First, the definition makes it clear that real fractals are 
mathematical concepts; it is the responsibility of the researcher 
to identify aspects of real-world entities, which may corres- 
pond only to a limited extent to the mathematical properties of 
fractals. Second, although it does not specify the actual conser- 
vation properties, this definition may be useful as a starting 
point for the further exploration of the links between self-affi- 
nity properties and information. Such links will be studied here 
in relation to spatial and temporal environmental patterns. Qu- 
antities called the spatial and the temporal informational back- 
bone, respectively, will be defined; based on the relation be- 
tween scale and the size of the informational backbone, the sca- 
le space information flux will be established. 

From the point of view of terminology, we should empha- 
size that the concepts of informational backbone for spatial 
and temporal patterns as well as scale space information flux 
are used in this paper as defined below. Even if they may have 
common elements with similar phrases used in other works, 
their meaning may be very different from those. Perhaps the 
most widespread use of “information flux” is the one found in 
information technology and referring to information transfer. 
However, many other distinct meanings can be found in other 
fields. While Di Franco et al. (2007) introduce “information 
flux” to characterize the influence exerted on an element by 
other elements in the context of interacting many-body sys- 
tems, Cotsaftis (2009) applies it to information handling rela- 
ted to system control. The distinctive characteristic of the con- 
cept of information flux introduced here is the fact that it refers 
to the relation between the informational backbone and scale, 
which is the reason for its full name: scale space information 
flux. 

3.1. Spatial Aspects: the Informational Backbone 
Choices regarding spatial information representation in 

geographic information systems (GIS) are critical for the geo- 
graphic analysis, because they determine what and how can be 
represented: the very definition of entities and specification of 
relationships depend on these choices (Haining, 2007). The 
two main GIS data models – raster and vector – are characteri- 
zed by strengths and weaknesses that depend on the geographic 
reality to be modeled and the type of analysis to be applied. 
The present paper refers to raster data models, which are espe- 
cially suitable to the study of natural patterns involving field- 
based features – either continuous (e.g. temperature) or discrete 
(e.g. soil types) – and geometric sets including combinations 
of irregular shapes, branching features, complex point patterns, 
etc. (Pecknold et al., 1997). Raster data models are particularly 
useful due to their high flexibility and effectiveness in mode- 
ling: they suit especially surface-dominated features and pro- 
cesses, such as diffusion or dispersal events, hydrological flow 
modeling, etc; the availability of raster datasets from airborne 
and space-borne sensors also encourages the use of this data 
model (DeMers, 2002). According to raster data models, the 
geographic reality is divided up in discrete cells based on a grid 
of regular shapes (squares being the most common solution), 
so that the represented property is characterized quantitatively 
for each cell.  

Since the formulation of questions and the applicability 
of procedures designed for their approach are often scale rela- 
ted, it is desirable to make representations available at multi- 
ple scales. Relying on the same dataset, users may pursue di- 
fferent problems and follow distinct paths in their analysis; this 
requires information to be offered at different scales. The ge- 
neration of data on many scales starting from the same initial 
high-resolution dataset using aggregation involves major cha- 
llenges and sources of error (Bian, 1997; Haining, 2007; Peck- 
nold et al., 1997). The availability of datasets produced directly 
on multiple scales is becoming a required feature of geographic 
information databases, and effective solutions such as the quad- 
tree model have been designed for multiple scale information 
handling (DeMers, 2002). 

When the studied features such as streams, pollution pa- 
tterns, airborne gamma ray spectrometry maps in which the 
area of interest lies above a certain threshold, etc. are present 
only in certain areas of the map, it is not necessary to generate 
and store maps for the whole area on all considered scales. It 
is possible to decide for which individual area the scale increa- 
se would be useful. Such an example is shown in Figure 1. In 
this case, the point pattern corresponds to a Levy flight (Man- 
delbrot, 1975).  

The approach to this pattern starts from an initial map or 
“cell”, called the root representation. This cell is divided in 
other four equal cells; for simplicity, a square image is used 
here as a root representation, which does not affect the genera- 
lity of the outcome. Some of the resulting cells may include a 
part of the studied feature, while others may not. The cells that 
include the feature and thus contain relevant information are re- 
tained for further zoom-in: for those cells the scale is increased 
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(b) 

(c) 

 
Figure 1. Iterative selection of the relevant cells for a point 
pattern: a) the resulting cells after six iterations; b) and c): the 
spatial informational backbone for two different scales. 
 
until they become the size of the initial cell – the root represen- 
tation. Only these retained cells are stored on this scale; they 
are then further divided in four cells each, and again the resul- 
ting cells containing the feature of interest are retained, the sca- 
le for these cells is increased, and the resulting cells are stored. 
The operation of recursive division continues until the desired 
maximum resolution is attained. One can recognize the princi- 
ple of the quadtree model in this process. The approach presen- 
ted here represents an information selection algorithm, which 
can be used as a starting point for data compression; in fact, 

various compression techniques are based on quadtree models 
(Zhang and Xi, 2007). 

Figure 1a shows the resulting cells after six iterations. 
The square represented to the right of the main image shows a 
fragment of the initial point pattern.  

On each scale the set of retained cells, which constitute 
the information-bearing parts regarding the studied feature, 
will be called the spatial informational backbone (SIB) of the 
feature. Figures 1b and 1c present the SIB for two distinct sca- 
les. The procedures applied above and their implications can 
be summarized as follows. 

Generation. The spatial informational backbone (SIB) of 
a feature represented on a map is obtained by recursive appli- 
cation of the division of every area, starting with the initial map 
(the root representation), in a number of congruent sub-cells. 
On each scale the SIB consists of the set S of cells that contain 
the studied feature. Following each division stage, the resulting 
sub-cells that make up the set S are increased in scale, so that 
their area becomes equal to the area of the root representation.  

Size. The size of the SIB, denoted by |S|, is equal to the 
number of cells in the set S and provides a measure of the am- 
ount of information to be stored for the studied feature on each 
scale. The amount of required storage space is a linear function 
of the size of the SIB; the exact function depends on the stora- 
ge format and the information specified for each pixel. 

Uniqueness. The SIB for a given feature represented on a 

map is uniquely defined, as long as the recursive division pro- 
cess is specified. The same feature represented on different 
maps may correspond to different informational backbones. 

Connectivity. This property of the SIB is particularly im- 
portant for certain spatial analysis operations: it is useful to 
know whether it is possible to cover the SIB by navigating di- 
rectly from one cell to another, or if the backbone is composed 
of isolated groups of cells, since different analysis strategies 
may be applied in these two cases. For applications involving 
spatial pattern analysis it is often critical to take in considera- 
tion edge effects, which makes the connectivity property par- 
ticularly relevant. Digital geometry offers a useful theory and 
tools for the further development of this direction of study; a 
thorough discussion on this subject is provided in the classic 
book by Rosenfeld, (1979); a more recent synthesis is presen- 
ted by Klette and Rosenfeld (2004). According to the theory 
of digital geometry, considering a 4-adjacency neighbourhood 
– which consists of the vertical and horizontal neighbours of 
the cells – a set of cells S is connected if one can reach all the 
cells of S by a path involving only adjacent cells (Acharya and 
Ray, 2005); if S has no holes, it is considered simply connec- 
ted (Klette and Rosenfeld, 2004). Applying these concepts to 
the spatial informational backbone, one can notice, for exam- 
ple, that the SIB in Figure 1b is not just connected, but also sim- 
ply connected; in contrast, the SIB in Figure 1c is not connec- 
ted. It is useful to note some connectivity properties of SIBs 
produced from the same root representation; such properties 
can be applied when designing software for the management 
of geographic information represented at different scales. 
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If the SIB is connected – or simply connected – on a cer- 
tain scale, it is connected – or simply connected, respectively 
– on any smaller scale. Similarly, if the SIB is disconnected on 
a certain scale, it is disconnected on any larger scale. Indeed, 
the SIB on a scale u’ > u retains only a fraction of the SIB pro- 
duced on the scale u, or it covers at most the same area as the 
latter. Therefore, removing areas from an already disconnected 
set will keep the set disconnected; on the contrary, integrating 
in larger cells those that make up a connected set preserves 
connectivity. 
 

 
Figure 2. Depending on the actual map, the same pattern may 
lead to a connected or a disconnected spatial informational 
backbone: two examples referring to the same pattern. 
 

If the SIB is connected on a scale u, it may be either con- 
nected or disconnected on a scale u’ > u. a) Indeed, any selec- 
tion of cells on a larger scale u’, which corresponds to a redu- 
ced total selected area for the SIB compared to scale u, can lead 
to a disconnected SIB. b) To show that the SIB on a larger sca- 
le can still be connected, one can proceed as follows. It has 
been proven (Rosenfeld, 1979) that any connected set of cells 
S has at least a cell whose deletion does not disconnect S. One 
can start with the SIB on the scale u, represented by the set 
S(u); producing a map on a larger scale u’ > u and selecting 
the SIB on that scale leads to the set S(u’). The set S(u’) either 
includes the whole area of S(u), or it leaves one or more cells 
of the SIB on scale u’ unselected. Since removing a whole cell 
of S(u) may still leave S connected, so does the removal of a 
sub-cell of S(u), which is a cell of S(u’). Similarly, if the SIB 
is disconnected on a scale u, it may be either connected or dis- 
connected on a scale that is smaller than u. 

The connectivity properties of the SIB on any scale pro- 
duced from the same root representation are uniquely defined, 
as long as the iterative division algorithm is specified. However, 
different maps of the same feature may lead to distinct connec- 
tivity properties; an example is provided in Figure 2. 

3.2. Spatial Aspects: the Scale Space Information Flux 
The connectivity properties of the SIB discussed in sec- 

tion 3.1 support a fast identification of implications of scale 
change from the point of view of the applicability of spatial 
analysis methods. It would be useful to find a quantity that 
would not refer only to a certain map and a specific scale, but 
rather characterize the studied feature. Given the ubiquity of 
self-affinity properties of environmental systems (Feder, 1988; 
Korvin, 1992; Mandelbrot, 1975, 1982, 1999, 2002; Sornette, 
2006; Takayasu, 1991; Turcotte, 1997), this section will refer 
to patterns characterized by such properties. 

Let us consider a self-affine feature, such as the spatial 
distribution of rivers in a drainage basin, an environmental dis- 
tribution pattern like a pollutant in soil, a gamma ray spectro- 
metry map, etc. The scale of the root representation is specified 
by the representative fraction u0. Let us suppose that, in order 
to have access to more details, we divide it – as shown above 
– in four equal-sized cells, and increase their area by changing 
the scale to make them equal to the root representation; these 
views correspond to a representative fraction u1 = 2u0. If we 
continue this process for each cell and go iteratively deeper to 
more and more details, after n iterations we obtain views at the 
representative fractions: 
 
un = u02n (1) 

 
The total area A (to be recorded, transferred and stored) 

corresponding to these views increases according to: 
 
An = A04n (2) 
 
where A0 is the area of the root representation. The information 
to be stored for the whole area would thus increase fast with 
the iteration number. However, if one collects on a given scale 
only the SIB, and the feature is self-affine, one may get amoun- 
ts to be stored that increase at a different rate. The specific rate 
depends on the self-affinity properties of the studied pattern. 
Allotting, for simplicity, a value of 1 to the representative frac- 
tion of the root representation, we can write the total number 
of cells N as a function of the scale u as: 

 
N(u) = u2 (3) 
 
whereas the number k of cells containing the self-affine feature 
(Falconer, 2003), and therefore the size of the SIB, written as: 

k(u) = |S(u)| (4) 

corresponds to: 

( ) vk u u⎢ ⎥= ⎣ ⎦  (5) 

 
where x⎢ ⎥⎣ ⎦ is the greatest integer less than or equal to x; the 
exponent v depends on the self-affine properties of the analyzed 
configuration. 

By considering only the SIB of the feature emphasizing 
self-affinity, we handle a significantly lower amount of infor- 
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mation. Figure 3 shows an example involving an exponent v 
equal to 1.7, which is a value consistently found in the case of 
river networks (Clap and Oliveto, 1996). 
 

Scale 

St
or

ed
 a

re
a 

(a
.u

.) 

 
Figure 3. Stored area (in arbitrary units) vs. scale for the 
process of iterative scale increase: the full line shows the total 
area and the dotted line represents the area of the spatial 
informational backbone for a self-affine feature corresponding 
to an exponent v = 1.7. 
 

We can determine the amount of uncertainty removed in 
each iteration stage based on a result of Shannon’s theory of 
communication (Shannon, 1949). For example, for a self-affine 
feature such as the point distribution corresponding to a pollu- 
tion pattern, we know how many cells will be included, statis- 
tically, in the SIB on each scale, but we do not know which 
ones. We will have k(u) cells eventually selected from the to- 
tal of N(u) cells, which results in a number of possible selec- 
tions given by the combinations: 

( )
( )

( )
N u

T u
k u

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6) 

 
Here the number of cells k(u) corresponds to the integer given 
by Equation (5). Since for equal probabilities pi the entropy 
corresponding to the removed uncertainty amounts to the ma- 
ximum value: 

Hmax(u) = log[T(u)] (7) 

the maximum entropy for the iteration regarding the scale u 
will be, in the general case: 

max

( )
( ) log

( )
N u

H u
k u

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8)

  
For a self-affine feature, the maximum entropy on the scale u 
will be: 
 

2

max ( ) log v

u
H u

u

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (9) 

 
Equation (9) indicates the amount of uncertainty removed by 
the choice of the SIB on a scale u. The value of H(u) for any 
concrete case can be calculated using the Stirling approxima- 
tion. If the different possible choices of the k(u) cells are not 
equally probable, the entropy H(u) has a lower value, which 
depends on the probabilities corresponding to each selection 
of the cells. 
 

lo
g 

(k
) 

log(u) 
 

Figure 4. The relation between k (the size of the SIB), and u 
(the scale) for a self-affine feature identified between the scale 
limits ua and ub, in logarithmic coordinates. 
 

Generalizing the procedure described above, we may use 
a succession of scale values ui so that ui+1 /ui = m, with m > 1, 
and follow the multiscale analysis algorithm discussed above. 
Again, we retain at each stage the k cells that include the SIB. 
Supposing that the self-affine character of the studied spatial 
distribution is valid over a scale range delimited by ua and ub, 
we obtain the power law dependence given by Equation (5) 
for this interval. If we represent log(k) vs. log(u), we obtain a 
straight line segment defined by: a) the slope v corresponding 
to the k vs. u relationship; b) the limits between which this re- 
lation is found, namely ua and ub. The slope v between two poi- 
nts 1 and 2 is: 

2 1
12

2 1

log log
log log

k kv
u u

−
=

−
 (10) 

 
and thus the dimensionless expression: 
 

2

1
12

2

1

log

log

k
kv u
u

=  (11) 

 
characterizes the interval u1, u2 (Figure 4). 
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Since according to its definition the spatial informational 
backbone represents the relevant information regarding the stu- 
died feature, and k is the size of the backbone, given by Equa- 
tion (4), we will call v12 the scale space information flux cor- 
responding to the studied feature for the interval u1, u2. In fact, 
the scale space information flux shows the change in the size 
of the informational backbone with scale. In other words, it re- 
flects the resolution dependence of the amount of information 
required for the storage of a self-affine feature, on a given re- 
solution interval. In this paper reference will be made to the in- 
formation flux only in the sense specified above, even if we 
will avoid repeating the phrase “scale space” every time infor- 
mation flux is mentioned. 

Equations (3) and (5) do not depend on a particular map. 
While the spatial informational backbone is map-specific, the 
information flux is statistically independent from the map, and 
characterizes the actual pattern. If scale values are chosen follo- 
wing a geometric progression with the ratio 2, base 2 logari- 
thms can be used and therefore: 
 

2
12 2

1

log kv
k

=  (12) 

 
In other words, the information flux provides the logarithm of 
the number of times the informational backbone increases when 

the scale changes by a factor of two. It should be noted that the 

value v12 would be valid for the scale interval u1 to u2. 
In the case of self-affine patterns, the scale space infor- 

mation flux is constant on the interval of self-affinity. This co- 
rresponds to the fact that over this interval, the scale cannot be 
distinguished based on the represented features: although the 
details differ from one scale to another, one sees, on each scale, 
the same kind of pattern. Constant information flux can only 
be found over limited scale intervals. For example, different 
physical processes involved in the pattern formation may do- 
minate different scale intervals. Departures from the scaling 
behaviour that occur on smaller scales can be the result of limi- 
tations regarding the access to a statistically relevant number 
of large features in the studied map, while deviations on lar- 
ger scales can be a consequence of the fact that small features 
are not properly recognizable, which leads to biased informa- 
tion acquisition and incomplete data sets. Detailed analyzes re- 
garding sampling effects and scaling regimes related to pattern 
generation processes have been completed in different domains 
(examples include Meakin, 1998; Needham et al., 1996; Wojtal, 
1996; van der Zee and Urai, 2005). 

In summary, the information flux for a self-affine pattern 
is constant as long as the informational process is not pertur- 
bed due to changes either in pattern-forming processes, or in 
aspects of information handling. 

The scale space information flux defined here is not an en- 
tirely novel variable. In fact, the procedure starts from a quad- 
tree algorithm, and its numerical result is the same with the box- 
counting dimension used in fractal analysis (Falconer, 2003). 
What distinguishes the scale space information flux from other 
modes of characterizing irregular features consists mainly of 

its interpretation in terms of its relation to the size of the infor- 
mational backbone, and the way in which it is used. There are 
numerous methods for the evaluation of a fractal dimension, 
characterized by strengths and weaknesses regarding their ca- 
pability of grasping properties of the analyzed features (Feder, 
1988); however, their numerical equivalency – even if establi- 
shed, in theory, for mathematical patterns – is not always true 
in the case of real-world systems (Ioana et al., 1997; Takayasu, 
1991); therefore, the statements made here about the informa- 
tion flux may not always correspond to other “equivalent” frac- 
tal dimensions. From a practical point of view, the information 
flux v provides a way to determine quickly and in a simple way 
the expected information storage and transfer effort implied 
by a change in scale. It also specifies the scale limits between 
which one can reliably apply this evaluation of information sto- 
rage/transfer effort. We suggest a compact representation of 
the information flux, presented in the following examples: 

 
g = [ua, vA, ub] (13) 
 
g = [ua, vA, ub, vB, uc] (14) 

 
g = [ua, vA, ub, vB, uc] (15) 

 
g = [ua, vA, ub] ,[uc, vC, ud] (16) 

 
The scale space information flux is thus written as a series 

of terms between brackets. The odd terms represent limits of 
the scale intervals, and the even terms represent the information 
flux values corresponding to these scale intervals. The example 
in Equation (13) expresses the fact that there is a constant in- 
formation flux vA between ua and ub, but not outside of this sca- 
le interval. Equation (14) shows that, in addition, there is con- 
stant information flux vB between ub and uc. The brackets to 
the left of ua and to the right of uc show that the constant infor- 
mation flux intervals have been found to reach only up to tho- 
se scale limits. In contrast, if one finds from the available data 
that there is no proof for constant information flux to end on a 
given scale, one uses round parentheses instead, as shown in 
Equation (15): in this case, the information flux vB has been 
found to reach at least up to the scale uc, but it is expected to 
be valid also beyond that scale. Finally, if two scale intervals 
with constant information flux are not adjacent, one can spe- 
cify this by using the form shown in Equation (16).  

Figure 5 shows an example related to a crack pattern pro- 
duced experimentally (axes are represented in base 2 logari- 
thms). Starch suspension in water, poured on glass plates, was 
subject to dessication, and the resulting crack pattern was ana- 
lyzed; details regarding the experimental conditions can be 
found in Suteanu et al., 2000. The points connected with a full 
line lead to vF = 1.58 ± 0.06. The other group of points, connec- 
ted with a dotted line, corresponds to an exponent vE = 2 ± 0.2, 
which simply shows that on this scale interval the SIB consists 
of all the available cells. The information flux will be thus wri- 
tten as follows:g = (u1, vE, u2] ,[u3, vF, u4), and numerically: (4, 
2 ± 0.2, 16] , [32, 1.58 ± 0.06, 256). All the scale values ui > 1 
because the image of the crack pattern has been magnified for 
the purpose of the analysis.  
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Figure 5. Application example concerning an experimentally 
obtained fracture pattern. The full line corresponds to v = 1.58 
±0.06. The dotted line connects the points in the interval 
where the SIB consists of all the cells on each scale (v ≈ 2). 
 

(a) 

(b) 

 
Figure 6. Two representations of the recording of variable y 
(arbitrary units): a) original series, b) series from which 
multiple occurrences of the same value have been removed. 
 
3.3. Temporal Aspects 

Let us suppose that we are recording a certain environ- 
mental variable at a given location, at equally spaced moments 

in time. We denote the variable by y, expressed in arbitrary 
units (one may think of it, for example, as daily maximum tem- 
perature in degrees Celsius). We may obtain a series of succe- 
ssive numbers such as: 2, 0, 11, 9, 9, 9, 9, 9, 3, 0, 5, 5, 5, 2, 9, 
11, 0, 1. This series shows that a certain resolution (integers in 
degrees Celsius) was used for the representation of tempe- 
rature values. It can be noticed that some of the values are re- 
peated on successive days. When the same value is repeated, 
there is no new information for those days other than the fact 
that the recorded value has not changed. This, however, can 
be expressed in a more compact way, for example following 
an idea of Bigerelle and Iost (2007): 2, 0, 11, 9(4), 3, 0, 5(2), 
2, 9, 11, 0, 1. The numbers in parentheses show that four other 
instances of the number 9 and two other instances of the num- 
ber 5 are present on successive days. The resulting non-repea- 
ting values represent another time series: 2, 0, 11, 9, 3, 0, 5, 2, 
9, 11, 0, 1. The new series consists of 12 numbers, while the 
length of the initial series was 18. The graphs of the two series 
are shown in Figure 6. 

By dividing the available value range of the signal in a 
number of intervals and by specifying for each sample only 
the interval to which it belongs, one obtains a “coarser” time 
series, and the way the signal is transformed by this operation 
depends on the signal pattern (Munteanu, 1990).  

The number of repeated values also depends on the reso- 
lution applied in the information acquisition process. The ques- 
tion we are interested in is whether we can characterize the re- 
corded data by the way in which the presence of multiple suc- 
cessive occurrences of values depends on resolution. To app- 
roach this question, we may apply more than just one resolu- 
tion – like in the case of the map study discussed above. To this 
end, we can divide the range of data of the time series in a num- 
ber of q intervals (for example, 2, 4, 8, 16, 32, 64, etc.), allot to 
each sample one of the q possible values depending on the in- 
terval to which it belongs, and then suppress multiple occurren- 
ces, as shown in the example provided above. This procedure 
is exemplified in Figure 7 (details regarding the algorithm used 
to produce the time series are given below). The resulting series 
which do not contain multiple occurrences will be called the 
temporal informational backbone (TIB) of the pattern. Similar- 
ly to the case of the SIB, the size of the resulting TIB for the 
resolution q, denoted by T(q), can be written as: 
 
p(q) = |T(q)| (17) 

   
and is equal to the number of values retained in the TIB for that 
resolution. Like its spatial counterpart, the TIB specifies – for 
a given resolution – how many elements of the pattern provide 
relevant (in this case, non-repetitive) values. The amount of 
stored information is – in this case too – a linear function of the 
size of the informational backbone. If one specifies the number 
of occurrences for each of the values in the TIB of the series, 
the stored quantity increases proportionally to the size of the 
TIB; however, even the simple example shown above offers a 
more efficient storage format: in fact, this selection algorithm 
may represent only a starting point for the development of ef- 
fective compression techniques. 
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Figure 7d shows the TIB for a resolution q = 8 levels: the 
similarity between the pattern in Figure 7d and those in 7a, 7b, 
and 7c can be noticed, as well as the contrast between 7d and 
the other three images from the point of view of the number 
of samples. 

Like in the case of the spatial approach, the informational 
backbone corresponding to a certain scale is unique as far as 
we consider one and the same way to “frame” the studied fea- 
ture: for the spatial approach, it was the map of the feature that 
was subject to the iterative partition process, which had to be 
specified; for the temporal approach, it is the value range to 
which one applies the iterative partition process.  

When considering temporal environmental patterns, one 
is interested also in a frame-independent way to characterize 
them. Therefore, it is useful to see if and how the size of the 
TIB depends on the resolution q. Based on the way the TIB 
was introduced above, and analogously to the spatial approach, 
we can approach time series with a set of distinct resolutions 
and identify the TIB.  

Similarly with spatial features, time series can be characte- 
rized by self-affinity (Kantz and Schreiber, 2004): if one chan- 
ges the scale for the two coordinates (time and the represented 
parameter) by different factors, one obtains another curve that 
is similar to the original one. Numerous processes in the natu- 
ral environment represented as time series enjoy self-affinity 
properties. Radiances in the atmosphere, for example, which 
are strongly coupled with atmospheric dynamics, have been 
found to emphasize scaling over many orders of magnitude 
(Lovejoy et al., 2009); scaling aspects have also been found in 
studies regarding stream flow (Koscielny-Bunde et al., 2006; 
Sauquet et al., 2008), atmospheric temperature (Kurnaz, 2004; 

Yu, 2006), sea surface temperature (Monetti et al., 2003), so- 
lar wind (Riazantseva and Zastenker, 2008), return intervals 
between extreme events (Bunde et al., 2005), etc.  

This evaluation procedure will be applied to three differ- 
rent features: the output of a computer model with well-studied 
scaling properties, Brownian walks, and real data from the na- 
tural environment. The first example is a time series produced 
by a cellular automaton working according to the Bak-Tang- 
Wiesenfeld (BTW) model (Bak et al., 1987). A cellular auto- 
maton is a discrete mathematical model based on a uniform set 
of locally-connected identical cells (Adamatzky et al., 2008). 
It is defined by the cells composing it, the set of allowed states 
for each cell, the cell neighbourhood, and the transition rules 
according to which the state of the automaton is updated si- 
multaneously at discrete time intervals (Schiff, 2007). In its si- 
mplest form, the BTW model starts with a plane divided in a 
set of adjacent square cells capable of hosting a number of 
“grains”: individual grains are added to randomly chosen cells; 
if the total number of grains in a cell reaches the threshold va- 
lue of four, a discharge process takes place: the grains are equa- 
lly distributed to the 4-adjacent neighbours. If the neighbours 
to which grains are transferred reach in this way their 4-grain 
threshold, they are subject to discharge in their turn; this pro- 
cess continues until all the cells remain with a number of grains 
lower than four. At this point, a new random cell is chosen, a 
grain is added to it, etc. Grains leave the plane of the automa- 
ton if they reach its edges. The described processes lead to a 
“critical” state, when grain avalanches of all sizes form. The 
model produces patterns with scaling properties which have 
been extensively studied (Bak, 1996); there are also numerous 
implications of this model regarding natural and human-made  

(b) (a) 

(c) (d) 

 

time step time step  
Figure 7. Fragment of an analyzed time series (a), its transformation following a change in resolution to q 
= 16 (b) and q = 8 (c), and the TIB corresponding to q = 8 (d). 
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(c)

(a)

(b)

Figure 8. Time series corresponding to the number of "grains" 
in a cellular automaton functioning according to the Bak- 
Tang-Wiesenfeld model: (a) original time series, (b) the TIB 
for a resolution q = 32 (note the different number of time 
steps), (c) the graph showing the resolution dependence of the 
temporal informational backbone. 
 
systems (Sornette, 2006). The time series analyzed in this stu- 
dy represents the variation of the total number of “grains” on 
the plane of an automaton of 1600 cells; time series data con- 
sist of 180,000 successive samples collected after the model 
reached its critical state (Figure 8a).  

An example TIB is shown in Figure 8b. Figure 8c shows 
the way in which the size of the TIB varies with resolution 
(base 2 logarithms were used here too, since resolution values 
were chosen as powers of 2). The graph shows that a power 

law governs the relation between the resolution q and the size 
of the TIB: 
 
p(q) = qw (18) 

 
with w = 0.85 ± 0.01. This relation holds for all the resolution 
values used in the analysis. The consistent relation between 
log(p) and log(q) allows us to find the scale space information 
flux as: 
 

1

1

log

log

i

i

i

i

p
pw q
q

+

+

=  (19) 

Analogously to the spatial context, the information flux shows 
the way in which the size of the informational backbone chan- 
ges with scale. If the resolution values are chosen according to 
powers of 2, the information flux is: 

1
2log i

i

pw
p

+=  (20) 

 
which means that also in this case the scale space information 
flux provides the logarithm of the number of times the infor- 
mational backbone increases when the scale changes by a fac- 
tor of two. In accordance to the format proposed in section 3.1, 
the scale space information flux is written as: g = (2, 0.85 ± 
0.01, 256); the round parentheses show that neither the lower 
nor the upper limit of the scaling interval have been reached 
for these resolution values. 

Brownian walks have been studied in detail from the point 
of view of their mathematical properties (Malamud and Tur- 
cotte, 1999), and have been used for the testing and evaluation 
of time series analysis methods (Ioana et al., 1997). For this 
study, the data were generated as running sums over series of 
time series representing white noise; an example of one of the 
analyzed Brownian walks is provided in Figure 9. A Monte 
Carlo experiment based on 100 time series produced in this 
way, with 40,000 samples each, led to g = (2, 0.99 ± 0.09, 64]. 
In other words, the information stored simply doubles with the 
doubling of the scale. 

As an example of application to real data from the envi- 
ronment, we have used this approach to analyze time series re- 
presenting temperature patterns: maximum daily values recor- 
ded in Yarmouth, Nova Scotia, Canada, between 1942 and 2002 
(Environment Canada Climate Archive, 2008). Seasonal trends 
were removed by subtracting from each day’s value the avera- 
ge temperature of that specific day of the year (Monetti et al., 
2003). Figure 10 shows the evaluation of the information flux 
(as base 2 logarithms). The resulting value of the information 
flux is g = [4, 0.94 ± 0.02, 256). 

These studies show that while in the case of Brownian 
walks the resulting value of the information flux is trivial, di- 
fferent fractional values are obtained for time series from mo- 
dels and real-world data. Further studies on these and other  
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Figure 9. Example of a Brownian walk used for the analysis. 
 

 
Figure 10. The TIB analysis applied to daily temperature time 
series collected in Yarmouth, Nova Scotia, between 1942 and 
2002. 
 
categories of time series will better reveal the potential of this 
approach to add to the meaningful description of temporal en- 
vironmental patterns. 

4. Discussion and Conclusions 

Spatial and temporal patterns have been studied here from 
the point of view of the scale dependence of the information to 
be handled. We have shown that a scale-related informational 
backbone (in space or in time) can be identified. For patterns 
with self-affine properties, like those often found in the natural 
environment, one can establish the scale space information flux 
that characterizes the way in which the amount of information 
to be handled depends on scale, usually as a function of the 
considered scale interval. Furthermore, evaluating the amount 
of information to be stored, transmitted and analysed when 
applying a multiscale approach represents an important aspect 
of information management. The concepts of spatial and tem- 
poral informational backbone can be useful in the process of 
deciding upon the information that should be managed on each 

scale. The information flux provides a quantitative way of eva- 
luating the scale or resolution dependence of the size of the in- 
formational backbone. The process of establishing it supports 
the identification of self-affinity properties of environmental 
patterns, which are characterized by constant information flux 
over certain ranges of scale.  

For spatial features, the procedure introduced here suppor- 
ts storage-saving data selection, and also provides a measure 
of data storage requirements as a function of scale, flexibly 
adapting the calculation algorithm to the scale ranges of inter- 
est to the user. On the other hand, map module connectivity 
properties for the scale-dependent data selection are important 
for pattern analysis. Therefore, the paper also specifies rules 
that can be used by geographic information management soft- 
ware for a fast assessment of changes in connectivity as a func- 
tion of changes in scale. Furthermore, the scale dependence of 
the spatial informational backbone is used for the characteri- 
zation of the pattern for each scale interval of interest. A wri- 
tten form designed to specify the scaling properties correspon- 
ding to different scale ranges is introduced and exemplified 
for different categories of practical situations. 

Similarly, for temporal patterns a resolution-dependent 
data selection algorithm is introduced; as in the case of spatial 
patterns, a storage-saving procedure is presented. Based on the 
resolution dependence of the stored temporal informational 
backbone, the introduced method leads to quantitative, scale- 
range-sensitive pattern characterization. 

We have not discussed here implications of i) varying the 
information carried by one pixel, and ii) changing the sampling 

rate of the time series, since these operations lead to changes in 
information quantity that are, in principle, simpler to foresee; 
the study of techniques to optimize acquisition methods from 
this point of view, considering their implications for data com- 
pression algorithms, are beyond the scope of this paper. On the 
other hand, one can naturally develop this approach by inclu- 
ding both the spatial and the temporal resolutions in a single 
integrated space-time informational backbone. 

The introduced concepts and methods can be applied to a 

wide spectrum of situations in environmental science and en- 
vironmental management; examples include spatial and tem- 
poral patterns of pollution, natural resource patterns (spatial 
distribution of minerals, drainage basins, forests), natural ha- 
zards (airborne gamma ray spectrometry maps, earthquake pa- 
tterns), etc. They are also applicable to features from other dis- 
ciplines, such as material science and medical imaging. Sup- 
ported  by accumulating achievements in fields such as geo- 
graphic information science, fractal theory, digital geometry, 
and time series analysis, the information-focused approach to 
environmental patterns represents a promising direction of re- 
search regarding both theoretical and practical aspects of en- 
vironmental science. 
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