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ABSTRACT.  In this paper, solution methods for ILP are studied. First of all, the principals and assumptions of two-step method 
(TSM) are analyzed. Secondly, the definition of feasible decision space for ILP is introduced. Also the existence of infeasible solutions 
and how these solutions are generated in TSM is examined. Thirdly, new solution method named three-step method (ThSM) is 
developed for solving ILP models. It is based on three proposed steps: TSM, feasibility test, and constricting method. The main 
advantage of ThSM is that no infeasible solutions would be included in the obtained results. Moreover, ThSM can generated interval 
solutions and does not have high computational requirements. An example has been presented to explain in detail the solution process 
of ThSM. Fourthly, three scenarios of Monte Carlo simulations have been introduced to further explore the detailed solutions for ILP. 
The results demonstrate that when all coefficients of ILP are assumed to obey normal or uniform distribution the developed methods 
are applicable. Under other distribution assumptions for coefficients in ILP, further studies should be developed. 
 
Keywords: interval linear programming, approximate method, two-step method, three-step method, feasibility test, constricting method, 
Monte Carlo simulation

 
 

 

1. Introduction  

ILP is an effective tool for supporting decisions under un- 
certainty. Among methods for solving ILP problem, Huang 
(1994) proposed a two-step approach which was extensively 
used by many researchers (Nie et al., 2007; Maqsood et al., 
2005; Liu et al., 2009; Lv et al., 2010; Sun and Huang, 2010; 
Yan et al., 2010; Cao et al. 2011). The detailed algorithm and 
a demonstrating example were published in Huang et al. (1992, 
1995). In this study, an ILP model will be considered as follows: 

 
Min ± ± ±=f C X  (1a) 
 
Subject to 
 

± ± ±≤A X B  (1b) 
 

0± ≥X  (1c) 
 
where 

1[ , ..., ]nC c c± ± ±=  , 1[ , ..., ]nC c c− − −=  , 1[ , ..., ]nC c c+ + +=  ; 
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where , ,± ± ± ±∈j ij ic a b R , and R± denotes a set of interval num- 
bers. The lower and upper bounds of the intervals are assumed 
to hold the same sign. For example, an interval like [-2, 1] 
will not be considered in this study.  

To solve model (1), Huang (1992) developed an interactive 
approach named two-step method (TSM). The ILP model was 
transformed to two submodels with deterministic coefficients. 
For the convenience of further analyzing the TSM algorithm, 
we present the two submodels. The submodel corresponding 
to −f should be formulated first (assume 0± >ib and f ± > 0): 

1 1

Min − − − − +

= = +

= +∑ ∑
k n

j j j j
j j k

f c x c x ,                      (2a) 

Subject to: 

1 1

( ) ( )
+ −± ± − ± ± + +

= = +

+ ≤∑ ∑
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b 1, 2,...,=i m (2b) 
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0, 1, 2, ...,jx j k− ≥ =    (2c) 
 

0,+ ≥jx 1, 2, ...,j k k n= + +   (2d) 
 
Solutions of ( 1,  2,  ...,  )− =joptx j k and +

joptx ( j = k+1, k+2, …, n) 
can be obtained through solving submodel (2). Then the sub- 
model corresponding to f + can be formulated as follows 
(assume that 0± >ib and 0± >f ): 

 

1 1

Min + + + + −

= = +

= +∑ ∑
k n

j j j j
j j k

f c x c x    (3a) 

 
Subject to: 
 

1 1

( ) ( )
− +± ± + ± ± − −

= = +

+ ≤∑ ∑
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b 1, 2,...,=i m   

  (3b)
  

, 1,  2,  ...,  + −≥ =j j optx x j k  (3c) 
 
0 , 1,  2,  ...,  − +≤ ≤ = + +j j optx x j k k n   (3d) 

 
Hence, solutions of +

joptx ( j = 1, 2, …, k) and −
joptx ( j = k + 1, k + 

2, …, n) can be obtained through solving submodel (3). Thus, 
the final solution of [ ,  ]± − +=opt opt optf f f  and [ ,± −=jopt joptx x  

]+
joptx can be obtained. 

TSM has been applied for solving a number of ILP pro- 
blems (Huang 1998; Huang and Loucks, 2000; Huang et al., 
2001; Maqsood et al., 2005; Cheng et al., 2009; Cao et al., 
2010a, b; Gao et al., 2010; He et al., 2010). The application 
fields include municipal solid waste management, water re- 
sources allocation, air quality control planning, and energy 
systems planning. TSM was widely used due to its following 

advantages: (1) TSM did not lead to high computational re- 
quirement; (2) the interval solutions could help generate a 
series of decision alternatives. Thus, solutions of TSM were 
adjustable and were effective in reflecting complexities in 
real-world decision problems. However, results obtained th- 
rough TSM might contain solutions which violated the con- 
straints. This disadvantage might result in significant system- 
failure risk. 

The objective of this study is to develop an improved so- 
lution method for the ILP problems so that the constraints will 
no longer be violated. In the second section, the principals and 
assumptions for formulating the two submodels in TSM will 
be analyzed. The definition of solving violation and how such 
violations are generated will be discussed. Consequently, an im- 
proved approach, named three-step method (ThSM) will be de- 
veloped. Solutions for ThSM will not violate the constraints. 
An example will be presented to explain in detail the process 
of ThSM . In the discussion section, three scenarios of Monte 
Carlo simulations will be introduced to further explore and de- 
monstrate the solutions. 

2. Analysis of Two-Step Method (TSM) 

2.1. Two Submodels in TSM 
2.1.1. The Meaning of Combinations f and bi 

When TSM is adopted to solve an ILP problem, it implies 
that the decision makers are optimistic about the studied case. 
The two submodels in TSM are not set in parallel since solu- 
tions of the first submodel should be incorporated within the 
second submodel as additional constraints. In other words, the 
first submodel holds priority. Take the case of MSW manage- 
ment as an example (Huang, 1994), the objective is to minimi- 
ze the total cost of waste transportation and disposal. When 
TSM is used to solve the formulated ILP model, the submodel 
corresponding to the lower bound of the total cost should be 
solved firstly. Thus the solutions will be used as new constraints 
in the submodel corresponding to the upper bound of the total 
cost. In this sense, the lower bound of system cost is considered 
more important than the upper one. 

Moreover, suppose landfill is one of the waste disposal fa- 
cilities. Its upper bound capacity is adopted in the first submo- 
del, implying a larger decision space. This means that decision 
makers are more interested in the solutions corresponding to 
the lower-bound cost. These demonstrate that TSM provided 
relatively optimistic solutions for ILP problem.  

 
2.1.2. Analysis of Combinations aijxj  

Interactivities exist between coefficients (aij) and decision 
variables (xj) in the left-hand sides of the constraints. For both 
submodels in TSM, we have the following combinations of 

them:  
 

, 0
( )

, 0

− + ±
−± ± +

+ + ±

⎧ ≥⎪= ⎨
<⎪⎩

ij j ij
ij ij j

ij j ij

a x a
a Sign a x

a x a
  (4a)

 
 

, 0
( )

, 0

+ − ±
+± ± −

− − ±

⎧ ≥⎪= ⎨
<⎪⎩

ij j ij
ij ij j

ij j ij

a x a
a Sign a x

a x a
  (4b)

 
 

Combinations − +
ij ja x and + −

ij ja x are used when 0± ≥ija , and 
+ +
ij ja x and − −

ij ja x are used when 0± <ija . When 0± ≥ija , their rela- 
tions should be ,− − − + + − + +≤ ≤ij j ij j ij j ij ja x a x a x a x . Combinations 

− +
ij ja x  

and + −
ij ja x are selected due to the assumption that ± ±

ij ja x  takes 
value randomly, and holds the following characteristics:  

1 2{ } { }= ≤ =r rP ax y P ax y , where ±∈ ija a , ±∈ jx x  and 1
− − ≤ij ja x y  

2 0.5 0.5− − + +≤ ≤ +j j j jy a x a x ;  

1 2{ } { }= ≥ =r rP ax y P ax y ,where ±∈ ija a , ±∈ jx x and 0.5 − −
j ja x

1 20.5 j j ij ja x y y a x+ + + ++ ≤ ≤ ≤ . 

A number of probability density functions (e.g. normal dis- 
tribution) hold the above characteristic. Figure 1 shows several 
examples of distribution types. Therefore, we have: 

{ } { }, { }− + − − + += ≥ = =r j j r j j r j jP ax a x P ax a x P ax a x  (5a) 
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ij ja x− −
ij ja x+ +

0ija± ≥

ax 
 

Figure 1. Distribution information of ax. 

 
{ } { }, { }+ − − − + += ≥ = =r j j r j j r j jP ax a x P ax a x P ax a x

 

(5b) 
 

The probability for ax to take values of − +
ij ja x and + −

ij ja x
 is larger than that to take values of + +

ij ja x and − −
ij ja x . In this sen- 

se, it is more significant to take values of − +
ij ja x  and + −

ij ja x to 
represent ax.  

On the other hand, when 0± <ija , relations among all pos- 
sible combinations for lower and upper bounds of ±

ija and ±
jx  

should be ,− + − − + + + −≤ ≤ij j ij j ij j ij ja x a x a x a x . Based on the same assum- 
ption of distribution type as considered in the case of 0± ≥ija , 
we have: 
 

{ } { }, { }− − − + + −= ≥ = =r j j r j j r j jP ax a x P ax a x P ax a x   (6a)
 

 
{ } { }, { }+ + − + + −= ≥ = =r j j r j j r j jP ax a x P ax a x P ax a x  (6b) 

 
where ±∈ ija a , ±∈ jx x . Therefore, the combinations of + +

ij ja x  
and − −

ij ja x are used to represent ax when 0± <ija .  
In general, the setting of relations between f and bi in TSM 

can be considered as an aggressive scenario when the decision 
makers are optimistic of the study problems. Other scenarios 
under different combinations for the bounds of f and bi can also 
be considered. In comparison, the combinations for the bounds 
of aij and xj are unique while the bases for the combination are 
assumptions (5a) to (6b). In other words, if aij xj did not follow 
inequalities (5a) to (6b), the interrelations between aij and xj in 
TSM would become meaningless.  

 
2.2. Feasible Decision Space for ILP 

Several definitions of feasible decision space for ILP have 
been developed based on analysis of the uncertainties (Naka- 
hara et al., 1992; Tong 1994). In this study, the feasible decision 
space for ILP model (1) is defined as follows: 

{ }, , 0− += ≤ ∈ ≥nQ X A X B X R X   (7) 

 
This implies that, once the solutions of ±X are given, then for 
any arbitrary value in ±X , all constraints can be tenable by 
means of adjusting the values of coefficients A and B within 
the ranges of ±A and ±B .  

Remark 1. Let the feasible decision spaces of models (2) 
and (3) be 1Q and 2Q . Then we have: 1 ⊆Q Q and 2 ⊆Q Q .For 

0 0 0 0
1 2[ , , ..., ]nX x x x∀ =  1∈Q ， ±∀ ija , i = 1, 2, …, m; j = 1, 2, …, 

n. Thus we have ( )
−− ± ± +≤ ≤ij ij ij ija a Sign a a , and

+

ij ija a Sign− ±≤
 ( )ij ija a± +≤ . Since 0 0≥X , we have 0 0( )ij j ij ij ja x a Sign a x

−− ± ±≤ ≤  
0

ij ja x+ , and 0
ij ja x− ≤

+

ija± 0 0( )ij j ij jSign a x a x± +≤ .Thus 0 0
1 1iA X a x− −=  

0 0 0

1 1

... ( ) ( )
k n

in n ij ij j ij ij j i
j j k

a x a Sign a x a Sign a x b
+ −− ± ± ± ± +

= = +

+ + ≤ + ≤∑ ∑ , i 
= 1, 2, …, m. This means 0− +≤A X B . Therefore we have 0X ∈  
Q , and 1 ⊆Q Q . Based on the same principle, we have 2Q  

Q⊆ . 
Therefore, solutions of the two submodels in TSM belong 

to the feasible decision space of ILP. In other words, assume 
that the solutions of models (2) and (3) are 1 1[ ,...,−= optX x

 
( 1), , ..., ]T

kopt k opt noptx x x− + +
+  and 2 1 ( 1)[ , ..., , ,...,opt kopt k optX x x x+ + −

+=  
 ]− T

noptx , respectively. Then we have 1 ∈X Q  and 2 ∈X Q .
 
Let 

the solutions obtained through TSM be ±
optX

 
+

1 1[[ , ],−= opt optx x
... 

2 2[ , ], ..., [ , ]]T
opt opt nopt noptx x x x− + − + .

 
Then

 
the

 
question

 
under

 
consi- 

deration
 
is whe- ther ± ⊆optX Q or ± ⊄optX Q . 

 
2.3. Violation Analysis 

The example in Huang et al. (1998) has proved that ±
optX  

⊆ Q could be true, which meant that solutions obtained through 
TSM could be within the feasible decision space. However, we 
cannot assure that ± ⊆optX Q  be always tenable. In some cases, 

± ⊄optX Q could be true (i.e. ±′∃ ∈ optX X , such that ′∉X Q ). 
This means that some solutions (i.e. ′X ) in ±

optX do not belong 
to the feasible decision space of ILP (i.e. Q) since they violate 
the constraint of − +≤A X B . In this study, such solutions (i.e. 

′X ) are denoted as violating solutions. The following nu- 
merical example is shown to demonstrate the above issue: 
 

1 2Max [3, 3.5] [1,1.2]± ± ±= −f x x  (8a) 

1 2(or Min [ 3.5, 3] [1,1.2] )± ± ±= − − +f x x  
 

Subject to 
 

1 2[1,1.1] [1.6,1.8] [11.6,12]± ±+ ≤x x  (8b) 
  

1 2[3, 4] [2, 3] [5, 7]± ±− ≤x x   (8c) 
 

1 2, 0± ± ≥x x   (8d) 
 

The following submodels are formulated according to 
TSM: 

Max +
1 23.5+ −= −f x x                           (9a) 



G. H. Huang and M. F. Cao / Journal of Environmental Informatics 17(2) 54-64 (2011) 

 

57 

Subject to 
 

1 21.8 12+ −+ ≤x x   (9b) 
 

+
1 23 3 7−− ≤x x   (9c) 

 

1 2, 0+ − ≥x x   (9d) 
 
Solution of model (9) is 1 [5.79, 3.45]= TX . 

Max 1 23 1.2− − += −f x x  (10a) 
 
Subject to 
 

1 21.1 1.6 11.6− ++ ≤x x   (10b) 
 

1 24 2 5− +− ≤x x   (10c) 
 

10 5.79−≤ ≤x   (10d) 
 

2 3.45+ ≥x   (10e) 
 
Solution of model (10) is 2 [3.63, 4.76]= TX . 

Therefore, solutions obtained through TSM should be 
[[3.63, 5.79], [3.45, 4.76]]± = T

optX . The feasible decision space 
of model (8) can thus be presented as follows: Q = {X | [1, 1.6] 
X ≤ 12, [3, -3] 7, 0≤ ≥X X }. 
 

1 [5.79, 3.45]TX =

2 [3.63, 4.76]TX =

x1 

 x 2
 

Figure 2. Solutions obtained through TSM. 
 

This is shown in Figure 2, where solutions of models (9) 
and (10) and the zone of violation are also presented. It is indi- 
cated that part of the solutions ( ±

optX ) are not included within 
the feasible zone, which means violation of the constraints. Ta- 
ke the point of V = [5.79, 4.76] as an example. We have 1 × 
5.79 + 1.6 × 4.76 = 13.406 > 12. Therefore, V is not the feasi- 
ble solution for ILP model (8) although V ±∈ optX . 

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Values of

90%

5% 5%

rValue 

Figure 3. Information of r .
  

2.4. Monte Carcclo Simulation 
To further analyze the solutions obtained through TSM and 

to explore more robust solutions of ILP, Monte Carlo simula- 
tion is carried out (Carlin et al., 1992; Tierney and Mira, 1999; 
Ando et al., 2002; Chib et al., 2002; Fantazzini, 2009). In the 
data collection process, assume (i) all coefficients are random 
variables with normal distribution; (ii) the identified interval 
covers 90% of each random variable. For example, to indentify 
the daily waste generation rate of a community, a random varia- 
ble ( r ) which obeys N (3.5, 0.32) is acquired according to the 
historical waste generation records. Then interval [3, 4] which 
covers 90% of all possible values of r is used as the input for 
ILP model. Figure 3 shows the obtained distribution informa- 
tion of r and the corresponding interval.  

From application point of view, the above assumptions are 
reasonable, since values near the extremes hold low probability 
levels. Decision makers can join the process of identifying the 
representing intervals and determine the coverage rate. It is 
90% in the above case; however, such a rate can be adjusted to 
other levels (e.g. 80 or 95%) according to the practical 
conditions.  

A total of 10,000 Monte Carlo samples for each coefficient 
are generated and used as inputs for the linear programming 
model. Figure 4 shows the simulated values. Consistent with 
the above assumption, about 90% of the generated values lie 
within the given interval for each coefficient.  

The results obtained through the Monte Carlo simulation 
are presented in Figure 5. It is demonstrated that the definition 
of feasible decision space is reasonable. The overwhelming 
majority of the solutions lie in the feasible decision space. Al- 
though some solutions are out of the feasible decision space, 
the probability of their occurrences is low. The existence of 
constraint violation is related to data collection process. For 
each coefficient, its extreme values (10%) that are of low 
occurrences are excluded from consideration if it is presented 
as an interval. However, these extremes are considered in the 
Monte Carlo simulation, resulting in the constraint violation. 
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Figure 4. Simulated values for all the coefficients under 
normal distribution-assumption. 
 

Va
lu

e
of

x 2

 
Figure 5. Results of simulation under normal- distribution 
assumption. 
 

The detailed solutions from TSM also contain several poi- 
nts with violated constraints; however, the relevant probability 
level is low. Therefore, TSM is generally applicable to problems 
with their coefficients obeying normal distributions. Moreover, 
the simulation results indicate that inequalities (5a) to (6b) are 
tenable. Combinations aij and xj used in TSM are based on as- 
sumptions (5a) to (6b), which further demonstrates that TSM 
can be used when all coefficients obey normal distributions. 

3. Three-Step Method (ThSM) - an Improvement  
of TSM 

It is demonstrated that TSM, as an interactive algorithm 
for ILP, aims to generate interval solutions for decision varia- 
bles. The interval solutions can help decision makers generate 
a number of possible schemes and to identify desired policies 
based on further implicit information. The idea of generating 
interval solutions is one of the key innovations of TSM. How- 
ever, TSM cannot assure that the obtained solutions toile within 
the feasible decision space, which may affect its applicability. 
To deal with this issue, a ThSM approach will be developed. 
It includes TSM, feasibility test, and constricting method. 

 
3.1. Feasibility Test 

In order to identify whether all the solutions obtained th- 
rough TSM belong to the feasible decision space, the following 
method of feasibility test is developed. For constraint i (i = 1, 
2, …, m), the idea of feasibility test is to find X*∈ ±

optX , such  
that *

1 1
max{ }− − ±

= =

= ∈∑ ∑
n n

ij j ij j j j
j j

a x a x x x . Then if *

1

− +

=

≤∑
n

ij j i
j

a x b  is  

tenable, we have ± ⊆optX Q , which means that ±
optX pass the fea- 

sibility test. Otherwise, it means that constraint violation will 
be generated from ±

optX . 
Assume that n0 (≤ n) of the n decision variables have inter- 

val solutions through TSM. Without loss of generality, assume 
that solutions for the last n - n0 decision variables are determi- 
nistic numbers (i.e. joptx ), and the first n0 decision variables 
hold interval solutions. For the n0 decision variables, assume 
that pi (pi ≤ n0) of the corresponding −

ija are positive, and n0 - pi 
of −

ija are negative. Here we assume that the first pi of −
ija are 

positive numbers. In other words, we have 0− ≥ija , j = 1, 2, …, 
pi; and 0− <ija , j = pi +1, …, n0. Thus, for ±∈j joptx x , we have 

ij ja x−
ij jopta x− +≤ , j = 1, 2,…, pi, and − − −≤ij j ij jopta x a x , j = pi + 1,…,  

n0. For 1, 2,...,=i m ,
0

1 1
1 1

...
i

i

p n

i in n ij jopt
j j p

A X a x a x a x− − − − +

= = +

= + + ≤ +∑ ∑  

0 1

n

ij jopt ij jopt
j n

a x a x− − −

= +

+ ∑ .  

For constraint i, we have *
1 ( 1)[ ,..., , ,...,

i iopt p opt p optX x x x+ + −
+=   

0 0( 1), ,..., ]T
n opt n opt noptx x x−

+ . Therefore, if (A-)iX*
 ≤ +

ib , i = 1, 2, …, 
m, we have ± ∈optX Q and ±

optX pass the feasibility test. Otherwi-  
se, if (A-)iX* > +

ib , then infeasible solutions will be included 

in ±
optX . At least X*

 will violate the constraints. Therefore, solu- 
tions obtained through TSM ( ±

optX ) need to be revised. 

 
3.2. Constricting Method 
3.2.1. Definitions 

For solutions which do not pass the feasibility test, the fo- 
llowing constricting method should be adopted: Let M( ±

optX ) 
= 1 1[0.5( ), ..., 0.5( )]T

opt opt nopt noptx x x x− + − ++  + , D( ±
optX ) = 1[0.5( +

optx  
1 ), ..., 0.5( )]T
opt nopt noptx x x− + −−  − , and Q = [q1, q2, …, qn]T where 

0 ≤ qj ≤ 1, ∈jq R , j = 1, 2, …, n. 
For the convenience of expressing formulas in the follo- 

wing parts, we further define the following:  
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M = [m1, m2, …, mn]T = M( ±
optX ), where mj = 0.5( )− ++jopt joptx x , 

j = 1, 2, …, n;  (11a) 
 
D = [d1, d2, …, dn]T = D( ±

optX ), where dj = 0.5( )+ −−jopt joptx x , j 
= 1, 2, …, n; (11b) 
 

±Y = ( ±
jy )n×1, where ±

jy  = [mj－qjdj, mj + qjdj], j = 1, 2, …, 
n. (12) 

Remark 2. M( ±
optX )∈Q  (M∈Q ). 

 

M( ±
optX ) ≥ 0 is straightforward For 1, 2,...,=i m , we have 

1 1 1
1

(0.5 0.5 ) ... (0.5 0.5 ) 0.5
k

i opt opt in nopt nopt ij jopt
j

a x x a x x a x− − + − − + − −

=

+ + + + = ∑

1 1 1 1

0.5 0.5 0.5 0.5[
k n n k

ij jopt ij jopt ij jopt ij
j j k j k j

a x a x a x a Sign
+− + − − − + ±

= = + = + =

+ + + ≤∑ ∑ ∑ ∑
( )ij jopta x± − +

1

−±

= +
∑

n

ij
j k

a ( ) ]± +
ij joptSign a x 0.5 0.5+ − +≤ + ≤i i ib b b There-

fore, −A M( ±
optX ) ≤ +B , and thus M( ±

optX )∈Q is tenable. 
Obviously, mj is the center of the obtained ±

joptx  for the 
jth decision variable, and dj is named as radius since it equals 
half-width of ±

joptx . In other words, dj shows the distance betw- 
een the endpoint and the center of ±

joptx . Accordingly, M and D 
respectively present the center and radius of ±

optX . As defined 
in formula (12), ±Y stands for the constricted interval of ±

optX . 
Obviously, when Q = [1, …, 1]T, then ±Y = ±

optX ; when Q = 
[0, …, 0]T, then Y± = M. According to Remark 2, we then 
know M∈Q. The larger the value of Q, the wider of ±Y ; this 
results higher possibility for ±Y to contain infeasible solutions. 
Therefore, the objective of the constricting method is to identi- 
fy the value of Q, so that the corresponding ±Y  could lie within 
the feasible decision space. In detail, ±

jy is the shrunk interval 
of ±

joptx , and the constricting rate depends on the value of qj. 
When qj = 1, it indicates that ±

jy = ±
joptx , which means that 

±
joptx  is not constricted at all. When qj = 0, it shows that ±

jy = 
mj, which means that interval ±

joptx is constricted into a deter- 
ministic number, i.e. its central value.  

However, solutions of some decision variables obtained 
through TSM are deterministic numbers. In other words, these 
solutions do not hold any capacity/space to be constricted. Th- 
erefore, the constricting method cannot be applied to such varia- 
bles. Without loss of generality, assume that solutions for the 
last n - n0 variables are deterministic numbers (i.e. mj), and the 
first n0 decision variables are intervals. This means that qj = 0 
and ± =j jy m when 0 01, 2, ...,j n n n= + +  . Thus, the problem un- 
der consideration is to generate appropriate values for qj, where 

01,2, ...,j n=  . Then the values for ±Y can be calculated accor- 
ding to formula (12).  

 
3.2.2. Constraints 

In order to indentify the values for qj ( j = 1, 2, …, n0), a 
new programming model will be formulated. Constraints for 
qj depend on constraints of Y±, since Y± should lie within the 
feasible decision space of the ILP problem. This means that the 
following inequality should be held: 

,− + ±≤ ∀ ∈A Y B Y Y  (13) 

In detail, we have:  

1 1 2 2 ...− − − ++ + + ≤i i in n ia y a y a y b   (14) 

where ±∈j jy y , 1,2, ...,i m=  , 1,2, ...,j n=  .  
As mentioned in section 3.1, we need to find * ±∈Y Y , such  

that *

1 1
max{ }− − ±

= =

= ∈∑ ∑
n n

ij j ij j j j
j j

a y a y y y . Constraints (13) and (14)  

will be tenable only if *

1

− +

=

≤∑
n

ij j i
j

a y b is tenable. Assume that the  

first pi of −
ija are positive numbers and the remaining n0 - pi of 

−
ija are negative ones in the ith constraint. Then we have: 

1

ip

ij
j

a−

=
∑  

1

ip

j ij j
j

y a y− +

=

≤ ∑ , and
0 0

1 1i i

n n

ij j ij j
j p j p

a y a y− − −

= + = +

≤∑ ∑ . Therefore, 1 1 ...ia y− + +  

0

01 1 1

i

i

p n n

in n ij j ij j ij j
j j p j n

a y a y a y a m− − + − − −

= = + = +

≤ + +∑ ∑ ∑ .  

For constraint i, we have *
1 ( 1)[ , ..., , , ...,

i iopt p opt p optY y y y+ + −
+=    

0 0( 1), , ..., ]T
n opt n opt nopty m m−

+  . Let _ *( ) +≤i iA Y b , we have: 

0

01 1 1
( ) ( )− − − +

= = + = +

+ + − + ≤∑ ∑ ∑
i

i

p n n

ij j j j ij j j j ij j i
j j p j n

a m q d a m q d a m b  (15)
 

To express constraints (15) briefly, we have: 

0

1 1 1

− − + −

= = + =

− ≤ −∑ ∑ ∑
i

i

p n n

ij j j ij j j i ij j
j j p j

a q d a q d b a m  (16) 

Thus the constraints for solving qj ( j = 1, 2, …, n0) have 
been formulated. In the next step, the objective function will 
be established.  

 
3.2.3. Objectives 

The constricting method is based on the solutions obtained 
through TSM. Since the interval solution for each decision 
variable will be constricted, the corresponding solution for the 
objective function value (1a) will be constricted as well. There- 
fore, the obtained value of objective (1a) in the constricting 
method will be included within the interval of TSM solution.  

Assume the value of objective (1a) obtained through the 
constricting method is [ 1 1,− +f f ]. Then we have 1

− −≤ ≤optf f
 

1
+ +≤ optf f , where[ ,− +

opt optf f ] is the solution obtained through 
TSM. Thus, it is not meaningful to use the original objective 
in the constricting method. Moreover, if the objective of model 

(2) is used in the constricting method, we then have: 

1 1 1 1 1

− − − − + − − −

= = + = = = +

= + = − +∑ ∑ ∑ ∑ ∑
k n n k n

j j j j j j j j j j j j
j j k i i i k

f c x c x c m c d q c d q (17) 

To minimize −f , we will get 0=jq where j = k + 1, k + 
2, …, n. This means that the values of qj for the decision varia- 
bles with negative coefficients will be zero, and thus such deci- 
sion variable will be deterministic numbers. Similarly, if the 
objective of model (3) is used, we will have:  

1 1 1 1 1

+ − + − − − − −

= = + = = = +

= + = + −∑ ∑ ∑ ∑ ∑
k n n k n

j j j j j j j j j j j j
j j k i i i k

f c x c x c m c d q c d q (18) 
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To minimize +f , we will get 0=jq where j = 1, 2, …, k. 
In this case, the values of qj for decision variables with positive 
coefficients will be zero, and thus such decision variable will 
be deterministic numbers. 

If objective (2a) or (3a) is used in the constricting method, 
the number of interval solutions for decision variables will be 
reduced. Due to the above reasons, a new objective function 
should be developed in the constricting method. 

In fact, the smaller the value of qj, the less possible for 
±Y  [ ±Y = 1( )±

×j ny ] contain infeasible solutions. On the other 
hand, considering the convenience of decision makers, the lar- 
ger the width of Y± is, the more flexible of the generated sche- 
mes are. Thus, a large value of qj is preferred. Figure 6 shows 
the obtained Y± under different values of qj. The assumption 
of q1 = q2 = q is used in the example. Since constraint (16) have 
assured that the obtained Y± belongs to a feasible zone the ob- 
jective is then to maximize the value of Q.  

 

1.0

Figure 6. Solutions under different q-levels. 
 

Two types of objective expressions are considered. One is 
to assume that qi = qj = q, where i, j =1, 2, …, n0, and i ≠ j. The 
other is to maximize

0 01 1 2 22 2 ... 2× × × n nq d q d q d which can be re- 
placed by

01 2 ...× × × nq q q . For the linear programming problem 
with two decision variables having interval solutions, the objec- 
tive of 1 1 2 22 2×q d q d  [ 1 1( )+ −−y y 2 2( )+ −× −y y ] means to maxi- 
mize the area of the obtained solution. Thus, the linear progra- 
mming models for solving qj (j =1, 2, …, n0) can be presented 
as follows: 
 
Max q (19a) 
 
Subject to 
 

0

1 1 1

− − + −

= = + =

− ≤ −∑ ∑ ∑
i

i

p n n

ij j ij j i ij j
j j p j

a qd a qd b a m   (19b) 

 
0 1≤ ≤q   (19c) 

where i = 1, 2,…, m; j = 1, 2, …, n0. 
 
Max

01 2 ...× × × nq q q   (20a) 
 
Subject to 
 

0

1 1 1

− − + −

= = + =

− ≤ −∑ ∑ ∑
i

i

p n n

ij j j ij j j i ij j
j j p j

a q d a q d b a m   (20b) 

 
0 1≤ ≤jq   (20c) 

 
where i = 1, 2,…, m and j = 1, 2, …, n0. 

Solutions of qjopt (j = 1, 2, …, n) can be obtained through 
solution of model (20). Then according to formula (12), we 
have ±

optY = ( ±
jopty )n×1. The solution method with the objective 

being expressed as (19a) is named ThSM-I, while the one with 
objective (20a) is named ThSM-II. 

 
3.3. Numerical Example 

A simplified example is introduced to show the solution 
processes of ThSM-I and ThSM-II in detail: 
 
Max 1 2 3[2, 2.4] [1,1.3] [1.5,1.8]± ± ± ±= − +f x x x  (21a) 

(Min 1 2 3[ 2.4, 2] [1,1.3] [ 1.8, 1.5]± ± ± ±= − − + + − −f x x x ) 
 
Subject to 
 

1 2 3[2.6, 3.5] [2, 2.4] [3.2, 3.8] [18, 22]± ± ±+ + ≤x x x   (21b) 
 

1 2 3[4.6, 5.5] [3, 3.6] [1.3,1.6] [8, 9]± ± ±+ − ≤x x x   (21c) 
 

1 2 3[1,1.3] [6, 6.5] [2, 2.5] [2.2, 2.6]± ± ±− + ≤x x x   (21d) 
 

1 2 3, , 0± ± ± ≥x x x   (21e) 
 

Step 1. Two-step method (TSM) 
Through TSM, we can obtain the following solutions: 

1
±
optx = [1.56, 2.18], 2

±
optx = 1.22, and 3

±
optx = [2.66, 4.18]. The 

corresponding objective function value is ±
optf = [5.51, 11.55]. 

 
Step 2. Feasibility Test 
The following inequalities should be tested: 

 

1 2 32.6 2 3.2 22+ + ++ + ≤opt opt optx x x   (22a) 
 

1 2 34.6 3 1.6 9+ + −+ − ≤opt opt optx x x   (22b) 
 

1 2 31 6.5 2 2.6+ − +− + ≤opt opt optx x x   (22c) 
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Take the results obtained through the TSM as inputs of in- 
equalities (22a) to (22c), we find inequality (22b) is not tenable. 
Thus, the solutions of TSM do not pass the test. The 
constricting method should then be used to revise the results. 

 
Step 3. Constricting Method  
According to the solutions of TSM, we have: M = M( ±

optX ) 
= [1.87, 1.22, 3.42]T, and D = D( ±

optX ) = [0.31, 0, 0.76]T. As- 
sume that 1 2 3[ , , ]± ± ± ±= TY y y y is the new solution, where y1 = 
[1.87 - 0.31q1, 1.87 + 0.31q1], y2 = 1.22 (q2 = 0), and y3 = [3.42 
- 0.76q3, 3.42 + 0.76q3]. Then, according to ThSM-I [model 
(19)], we have: 
 
Max q  (23a) 
 
Subject to 
 
2.6 0.31 3.2 0.76 22 (2.6 1.87 2 1.22 3.2× + × ≤ − × + × + ×q q   
3.42)  (23b) 
 
4.6 0.31 ( 1.6) 0.76 9 (4.6 1.87 3 1.22 1.6× − − × ≤ − × + × − ×q q  
3.42)  (23c) 
 
1 0.31 2 0.76 2.6 (1 1.87 6.5 1.22 2 3.42)× + × ≤ − × − × + ×q q (23d) 
 
0 1≤ ≤q   (23e) 
 

Solutions of model (23) are q = 0.84. Thus we can get the 
revised solutions for model (21): 1

±
opty = [1.61, 2.13], 2

±
opty = 1.22, 

and 3
±
opty = [2.78, 4.06]. The corresponding objective function 

value is ±
optf = [5.804, 11.2]. According to ThSM-II [model 

(20)], we have: 
 
Max q1q3  (24a) 
 
Subject to 
 

1 32.6 0.31 3.2 0.76 22 (2.6 1.87 2 1.22 3.2× + × ≤ − × + × + ×q q  
3.42)  (24b) 
 

1 34.6 0.31 ( 1.6) 0.76 9 (4.6 1.87 3 1.22 1.6× − − × ≤ − × + × −q q  
3.42)×  (24c) 

 
1 31 0.31 2 0.76 2.6 (1 1.87 6.5 1.22 2 3.42)× + × ≤ − × − × + ×q q  

 (24d) 
 

1 30 , 1≤ ≤q q   (24e) 
 
Solutions of model (24) are q1 = 0.77, q3 = 0.91. Thus we 

have 1
±
opty = [1.63, 2.11], 2

±
opty = 1.22, and 3

±
opty = [2.73, 4.11]. 

The corresponding objective function value is ±
optf = [5.769, 

11.242]. 

Interval solution for the objective function obtained by 
ThSM-II (i.e. [5.769, 11.242]) holds a larger width, compared 
with that of ThSM-I (i.e. [5.804, 11.2]). Moreover, the constric- 
ting ratio for each decision variable can be adjusted indepen- 
dently considering its contribution to the objective in ThSM-II. 
Therefore, a larger value of f + can be obtained, although ThSM- 
II results in a relatively smaller −f than ThSM-I. Since the ob- 
jective is to maximize the objective function, +f is considered 
more important than −f . Thus, the algorithm of ThSM-II is pre- 
ferred. However, it is assumed that decision variables with in- 
terval solutions hold the same constricting ratio in ThSM-I; th- 
erefore, the formulated model for qj is linear. Thus, the advan- 
tage of ThSM-I is its low computational requirement.  

Another important feature of ThSM-I and ThSM-II is that 
their solutions are included within those of TSM. In detail, the 
value for each decision variable obtained through TSM covers 
those of ThSM-I and ThSM-II; the objective function value of 
TSM covers those of ThSM-I and ThSM-II. If decision makers 
prefer obtaining interval solutions with large widths, TSM can 
be used. However, a potential system-failure risk may exist sin- 
ce infeasible solutions may be included. All schemes generated 
from solutions of ThSM-I and ThSM-II are feasible, although 
the obtained interval for each decision variable is narrower than 
that of TSM. In real-world cases, decision makers can select 
appropriate solution methods according to their preferences and 
practical conditions.  

4. Discussions 

The results of Monte Carlo simulation with the assump- 
tion of normal distribution demonstrate that solution of TSM 
is applicable to real-world cases where uncertain input coeffi- 
cients obey normal distribution. However, no distribution infor- 
mation of the parameters is available in ILP. In other words, an 
arbitrary type of distribution function could be possible for the 
coefficients. To explore the solutions of ILP, model (8) is fur- 
ther examined. The simulation is based on two assumptions. 
Firstly, it is assumed that all of the coefficients in the ILP 
model are random variables, although their distribution fun- 
ctions are unknown. Secondly, it is assumed that the random 
variables take values from the given intervals. For example, 
when a parameter is assumed to obey a uniform distribution, 
random variable c1 could take any value in [3.0, 3.5] with the 
same probability.  

A total of 10,000 samples for each coefficient are genera- 
ted and used as inputs for model (8). Three scenarios corres- 
ponding with three assumed distribution functions are intro- 
duced, besides the normal distribution-assumption. In scenario 
1, all input coefficients obey uniform distribution; in scenarios 
2 and 3, all input coefficients obey chi-square distribution and 
con-chi-square distribution, respectively. Take a21 as an exam- 
ple. Figure 7 shows the three types of simulated samples for 
a21 corresponding with three distribution functions. It indicates 

that the considered distribution functions are typical. In scena- 
rio 1, all values within the interval hold similar probability 

levels; in scenario 2, the values approaching the left endpoint 
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  (a)

(b)

(c)

Samples for chi - square distribution 

Samples for con - chi - square distribution
 

Figure 7. Samples under different distribution assumptions: (a) 
samples under Scenario 1; (b) samples under Scenario 2; (c) 
samples under Scenario 3. 
 
hold higher probabilities. Meanwhile, the values approaching 
the right endpoint hold higher probabilities in scenario 3. Fi- 
gure 8 presents the results of Monte Carlo simulations. For the 
convenience of comparison, the TSM solutions are also pre- 
sented in Figure 8. 

The simulation result of scenario 1 is similar to that under 
normal distribution assumption as shown in Figure 5. The main 
difference lies in that no infeasible solution exists under the 
uniform-distribution assumption as shown in Figure 8a. This 
characteristic is due to the feature of uniform distribution. As 
shown in Figure 7a, only values within the given interval can 
be taken under the assumption of uniform distribution; thereofre, 
no infeasible solution is allowed in the Monte Carlo simulation. 
Figures 8b and 8c show the simulation results under assump- 
tions of chi-square and con-chi-square distributions. It indicates 
that infeasible solutions exist under these assumptions. Accor- 
ding to Figures 7b and 7c, most of the solution values are within 

 
(a)

(b)

(c)

x 2
 

 
Figure 8. Results of simulation under different distribution 
assumptions: (a) simulation results under scenario 1; (b) 
simulation results under scenario 2; (c) simulation results 
under scenario 3. 
 
the given interval; however, there is a minor probability for the 
values to be out of the interval in the Monte Carlo simulation. 
Thus, some infeasible solutions exist under scenarios 2 and 3. 

Comparing the results under scenarios 2 and 3 as shown 
in Figures 8b and 8c, solutions of ILP could be significantly di- 
fferent when the distribution functions of coefficients are dif-  
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ferent. The uncertainties in the solutions come from the uncer- 
tain input parameters. In the numerical example, it is difficult 
to indentify interval solutions for x1 and x2 that satisfy both chi- 
square and con-chi-square distributions for the parameters. 

However, parameters in ILP could obey any type of distribu- 
tion. For a general ILP problem with n decision variables, we 
can hardly indentify an interval solution for each decision varia- 
ble that is feasible under an arbitrary distribution assumption 
for the coefficients. Therefore, assumptions of distribution 

types for the coefficients are necessary and should be presented 
when the solutions of ILP are analyzed. 

According to the above analysis, it is reasonable to present 
the distribution types when the results of TSM are analyzed. 
As mentioned in Section 2, when all the coefficients obey nor- 
mal distributions, inequalities (5a) to (6b) are tenable and TSM 
can be used to solve such an ILP problem. In scenario 1, all of 
the coefficients obey uniform distributions; the simulation re- 
sults show that aij xj holds the characteristics of inequalities 
(5a) to (6b). Thus TSM can be used under scenario 1. As a re- 
sult, ThSM-I and ThSM-II can be used to solve such ILP pro- 
blems. However, under scenarios 2 and 3, the simulation re- 
sults demonstrate that inequalities (5a) to (6b) are not tenable. 
It means that the assumptions of holding combinations of aij 
and xj as used in TSM cannot be satisfied. Thus TSM cannot 
be used when the coefficients of ILP obey chi-square or con- 
chi-square distribution. Consequently, ThSM-I and ThSM-II 
cannot be used since they are based on the solutions of TSM.  

In general, the developed ThSM-I and ThSM-II are appli- 
cable when coefficients of ILP obey normal or uniform distri- 
bution. Under other scenarios, such as chi-square and con-chi- 
square distributions, ThSM-I and ThSM-II cannot be used. To 
solve the problem, one way is to develop new solution methods 
with assumptions of other distributions. For example, a new 
solution method could be developed to deal with problems with 
their coefficients obeying chi-square distributions. In real-world 
cases, coefficients of an ILP model could hold different distri- 
bution functions (e.g. a11 obeys normal distribution, and a12 ob- 
eys chi-square distribution). We may then indentify an “equi- 
valent normal distribution” for a12. Then ThSM-I and ThSM-II 
can be adopted to solve the problem. However, many questions 
may still exist, such as: how to transform a chi-square distribu- 
tion to a normal one? What is the definition of “equivalent nor- 
mal distribution”? What are the principals of such transforma- 
tions? Further studies could focuse on these issues. 

5. Conclusions  

The two-step method (TSM) which was used widely to 
solve the interval linear programming (ILP) models has been 
analyzed. The principals and assumptions used in TSM are pre- 
sented and discussed. The definition of feasible decision space 
for ILP has been given. Also existence of infeasible solutions 
and how these solutions are generated have been examined. 

To analyze whether results obtained through TSM contain 
infeasible solution, feasibility test is needed. A constricting 
method has been developed to eliminate the infeasible part of 
the solution through constricting the solutions obtained throu- 

gh TSM. Based on three proposed steps (TSM, feasibility test, 
and constricting method), two new solution methods for ILP 
[named three-step method-I (ThSM-I), and three-step method- 
II (ThSM-II)] have been developed. The main advantage of 
ThSM-I and ThSM-II is that no infeasible solutions would be 
included in the obtained results. Moreover, the developed me- 
thods could generated interval solutions and do not have high 
computational requirements. An example has been presented to 
explain in detail the solution processes of ThSM-I and ThSM- 
II.  

In addition, three scenarios of Monte Carlo simulations 
have been introduced to explore the detailed solutions for ILP. 
It indicates that the developed methods are applicable when 
all the coefficients of ILP are assumed to obey normal or 
uniform distribution. Under other assumptions of distribution 
functions (e.g. chi-square distribution), ThSM-I and ThSM-II 
cannot be used. Further studies should be developed to deal 
with these cases. 
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