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ABSTRACT.  Six GIS-based spatial interpolation methods were compared to determine their suitability for estimating mean monthly 
air temperature (MMAT) surfaces, from data recorded at nearly 31 meteorological stations representing different climatic conditions in 
Western Saudi Arabia. The eventual purpose of producing such surfaces is to help making air temperature data be available for a wide 
variety of scientific uses. The interpolation techniques included four deterministic methods (Inverse Distance Weighted, Global 
Polynomial, Local Polynomial, and Radial Basis Function (Thin-Plate Spline) and two geostatistical methods (Ordinary Kriging, and 
Universal Kriging). Quantitative assessment of the continuous surfaces showed that there was a large difference between the accuracy 
of the six interpolation methods and that the geostatistical methods were superior to deterministic methods. This work also revealed 
systematic spatial and temporal variations of temperatures in western Saudi Arabia. 
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1. Introduction 

Spatial continuous data (surfaces) play a significant role 
in planning, risk assessment and decision making in environ- 
mental management. They are, however, usually not readily 
available and often difficult and expensive to acquire, espe- 
cially for mountainous and deep marine regions. As geogra- 
phic information systems (GIS) and modeling techniques are 
becoming powerful tools in natural resource management and 
biological conservation, spatial continuous data of environ- 
mental variables are increasingly required. However, spatial 
data of natural phenomena such as air temperature are often 
collected from point sources. Therefore, GIS-based spatial 
interpolation methods are essential for estimating biophysical 
variables for the unsampled locations (Li and Heap, 2008). 

Spatial interpolation is the process of intelligent guess- 
work, in which the investigator and the GIS attempt to make a 
reasonable estimate of the value of a continuous field at pla- 
ces where the field has not actually been measured (Longley 
et al., 2011). Spatial interpolation is more worthwhile if a 
sufficient density of weather stations is available across the 
study area. As it is the case in numerous areas of the world, 
the western portion of Saudi Arabia lacks extensive, elaborate, 
or evenly distributed network of meteorological stations. With 
the exception of airport sites, agricultural extensions, and dam 
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facilities, meteorological data are not available for the majo- 
rity of locations within the study area. Such a shortcoming 
would necessarily justify interpolation studies for climatic 
variables, and hence make such viable data available for a 
wide range of scientific applications. 

Selecting an appropriate GIS-spatial interpolation method 
is a key success factor of surface analysis since different 
methods of interpolation can result in different surfaces and 
ultimately different results .Among numerous interpolation 
methods, no method is uniquely optimal, and so the best inter- 
polation method for a specific situation can only be obtained 
by comparing their results. For example, Luo et al. (2008) 
compared seven spatial interpolation techniques (Trend Sur- 
face Analysis, Inverse Distance Weighting, Local Polynomial, 
Thin Plate Spline, Kriging and Cokriging) to determine their 
suitability for estimating daily mean wind speed surfaces, 
from data recorded at nearly 190 locations across England and 
Wales. Cross – validation was used to evaluate the performan- 
ce of each interpolation method by calculating the root mean 
square error (RMSE) for each interpolation method. The 
results indicated that Cokriging was most likely to produce 
the best estimation of continuous surface for wind speed in 
the study area. Sun et. al. (2009) compared three interpolation 
methods (Inverse Distance Weighting, Radial Basis Function, 
and Kriging) to determine their suitability for interpolating 
depth to groundwater in the Minqin oasis of northwest China. 
Root mean square error (RMSE) was used to evaluate the per- 
formance of each interpolation method. Results of this study 
indicated that simple Kriging was the optimal method for 
interpolating depth to groundwater in the study area. 
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While there have been comparisons of interpolation me- 
thods for temperature and precipitation in numerous areas of 
the world, (see for example, Holdaway, 1996; Dodson and 
Marks, 1997; Thornton et al., 1997; Bolstad et al., 1998; 
Couralt and Monestiez, 1999; Xia et al., 1999; Hartkamp et al., 
1999; Shen et al., 2001; Xia et al., 2001; Jarvis and Stuart, 
2001; Kastelec and Kosmelj, 2002; Hasenauer et al., 2003; 
Garen and Marks, 2005; Stahl et al., 2006; Attorre et al., 2007; 
Hofstra et al., 2008), review of the literature reveals that no 
interpolation study of climatic variables has been applied to 
the study area (western Saudi Arabia). However, there is a 
single attempt to introduce a method for estimating mean 
monthly air temperatures in western Saudi Arabia (Al-Jerash, 
1983). 

In this study Six GIS-based spatial interpolation methods 
were compared to determine their suitability for estimating 
mean monthly air temperature surfaces, from data recorded at 
nearly 31 meteorological stations representing different clima- 
tic conditions in Western Saudi Arabia. The cross-validation 
method is used to assess which method gives the best inter- 
polation. Then, the best method was used to analyze temporal 
and spatial variations of mean monthly temperature. 

 

2. Materials and Methods 

2.1. Study Area 

The western portion of Saudi Arabia covers a conside- 
rable area of the country, about 382,000 Square Kilometers. It 
extends in the north – south direction for sixteen degrees of 
latitude (16 ~ 32 North) along the Red Sea coast. In the east- 
west direction, it spans from the coast to the high mountain 
range of Sarawat as shown in Figure 1. Delineation of Wes- 
tern Saudi Arabia has been geographically adopted by many 
authors (Al-Jerash, 1983; Al-Mowalad, 1983; Habib, 1989; 
Al-Harbi, 2009). 

Topographically, the study area comprises a variety of 
sub-regions as shown in Figure 1. They include: (1) Tihama, a 
narrow, low-lying, gradually sloping, coastal plain, (2) the 
western highlands of the Sarawat mountains which extend 
parallel to the Red Sea coast, and (3) a group of elevated 
plateaus. Elevation in the area ranges between sea level to 
more than 3000 meters at the summits of Asir region to the 
south. 

The Red Sea coastal plain varies in width on a north- 
south direction. While it extends for about 45 km from the 
coast near Jazan in the south, it gradually narrows to about 20 
km to the north (Sagga, 1995). Furthermore, the plain beco- 
mes extremely narrow in the northernmost parts where the 
coast nearly meets the foothills (Saif, 2000). 

The western highlands extend from east to west for be- 
tween 120 ~ 200 kilometers, with an overall altitude of 900 
meters (Al-Mowalad, 1983). Elevation above sea level gra- 
dually increases towards the south exceeding 3000 meters in 
the southernmost parts of the study area. Elevation of the 
interior plateaus ranges between 800 ~ 1500 meters. The 
mountain range gently slopes to the east, while rough slopes 
are found on the west. 

Climatic conditions in the study area are generally inf- 
luenced by such factors as; latitude, geographical location, 
dominant pressure conditions, and topography. As far as air 
temperatures, the study area is generally characterized with 
conditions typical of arid and semi-arid regions of the world. 
Air temperatures tend to vary widely in both spatial as well as 
temporal levels. However, temperature tends to increase in a 
southerly direction all year round, on one hand, and decreases 
with altitude on the other. For example mean January tempe- 
ratures ranges between 9 ~ 11 degrees at Al-Namas (2600 me- 
ters), and Tabouk (28, 22 N) respectively. The mean for the 
same month exceeds 25 degrees at Jazan, Sabya, and Malaki 
in the extreme south of the study area. On the other hand, July 
mean temperature ranges between 20 ~ 23 degrees in high al- 
titude stations such as Al-Namas, Abha, and Khamis Mushait 
at 2600, 2200 and 2057 meters respectively. At the lowlands 
and on the coast (north and south), it is not uncommon for the 
mean in this month to exceed 30 degrees (Jeddah, Jazan, 
Sabya, Tabouk, and Najran), until it reaches the upper thirties 
in the interior portions as in Madinah for example. 

 

Location Map of Saudi 

Arabia and Study Area 

Elevation in Meters 
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343 - 577 

577 - 736 

736 - 969 
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Climate Stations

 
Figure 1. Study Area and Climate Stations. 
 

2.2. Data Collection 

The data used in this study comprise continuous records 
of mean monthly air temperature for the period (1970 ~ 1986) 
in 31 stations scattered throughout the study area as shown in 
Figure 1. Air temperatures, along with other meteorological 
elements, are regularly recorded at airport sites, ten of which 
are found in the study area. Observations are also made at 
agricultural extensions and dam sites. These data have been 
originally provided in part by the Meteorology Section of the 
presidency of Meteorology and Environmental Protection, and 
in part by the Hydrology Division of the Ministry of Agri- 
culture and Water. However, and despite the small number of 
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stations in the study area, the distribution of measurement 
locations would permit: (1) Representation of the variant 
physical regions in the study area, and thus the inclusion of a 
wide range of different altitudes (between sea level and more 
than 2600 meters), and (2) Taking into account latitudinal and 
longitudinal differences in the assessment of their influence 
on the performance and accuracy of interpolation methods 
subjected to comparison in this study. 

 

2.3. Interpolation Methods 

The interpolation methods used in this study were per- 
formed by ESRI ArcGIS® Geostatistical Analyst 9.3. Geosta- 
tistical Analyst is an extension to the ArcGIS Desktop that 
provides a powerful suite of tools for spatial data exploration 
and surface generation using sophisticated statistical methods. 
Geostatistical Analyst provides two groups of interpolation 
techniques: deterministic and geostatistical. All methods rely 
on the similarity of nearby sample points to create the surface. 
Deterministic techniques use mathematical functions for inter- 
polation. Geostatistics relies on both statistical and mathema- 
tical methods, which can be used to create surfaces and assess 
the uncertainty of the predictions. This section briefly intro- 
duces the different interpolation methods used in this study, 
detailed descriptions of these methods are reported elsewhere 
(ESRI, 2001; Li and Heap, 2008; Chang, 2010; Lloyd, 2010). 

 

2.3.1. Deterministic Methods 

Deterministic interpolation methods create surfaces from 
measured points, based on either the extent of similarity (e.g. 
Inverse Distance Weighted) or the degree of smoothing (e.g. 
Radial Basis Functions). Deterministic interpolation methods 
can be divided into two groups: global and local. Global me- 
thods calculate predictions using the entire dataset. Local me- 
thods calculate predictions from the measured points within 
neighborhoods, which are smaller spatial areas within the 
larger study area. Geostatistical Analyst provides the Global 
Polynomial as a global interpolator and the Inverse Distance 
Weighted, Local Polynomial, and Radial Basis Functions as 
local interpolators. Deterministic interpolation techniques may 
be exact or inexact interpolators. Exact interpolators such as 
Inverse Distance Weighted Interpolation and Radial Basis 
Functions generate a surface that passes through the control 
points. In contrast, inexact interpolators such as Global and 
Local Polynomial predict a value at the point location that 
differs from its known value. 

 

A-Inverse Distance Weighted (IDW) Interpolation 

IDW is the workhorse of spatial interpolation, the method 
that is most often used by GIS analysts. It employs the 
Tobler’s First Law of Geography by estimating unknown 
measurements as weighted averages over the known measure- 
ments at nearby points, giving the greatest weight to the 
nearest points (Longley et al., 2011). The general equation for 
IDW method is shown in equation (1): 
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Where 0z is the estimated value at point 0, zi is the z value at 
known point i, id  is the distance between point i and point 0, 
n is the number of known points used in estimation, and k is 
the specified power which controls the degree of local 
influence (Chang, 2010). 

 

B-Global Polynomial (GP) Interpolation 

GP interpolation simply uses multiple regression methods 
on all of the data. A response or trend surface is fitted to the 
x-and y-coordinates, which are the covariates. A first-order 
Global Polynomial (linear) fits a single plane through the data 
as shown in equation (2): 
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where z(xi, yi) is the datum at location (xi, yi), βi are parame- 
ters, and ε(xi, yi) is a random error. A second-order Global 
Polynomial (quadratic) fits a surface with a bend in it, allow- 
ing surfaces representing valleys; a third-order Global Polyno- 
mial (cubic) allows for two bends; and so forth, up to a 10 are 
allowed in Geostatistical Analyst (ESRI, 2001). 

 

C-Local Polynomial (LP) Interpolation 

As with global polynomials a least square polynomial fit 
to the data is applied, with options for Order 1, 2 or 3 equa- 
tions. However, instead of fitting the polynomial to the entire 
dataset it is fitted to a local subset defined by a window. The 
size of this window needs to be large enough for a reasonable 
number of data points to be included in the process. One 
further adjustment is made to this procedure — a measure of 
distance-based weighting is included, so the least squares 
model is in fact a weighted least squares fit. The weights are 
computed using a power function of distance as a fraction of 
the window size. The simplest case is where the moving 
window is a circle with radius R. If the distance between grid 
point (xi,yi) and a data point (x,y) within the circle is denoted 
di, then the weight wi is given by equation (3) and the least 
squares procedure then involves minimizing the expression 
given by equation (4) (De Smith et. al., 2011)： 
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where p is a user definable power and If p=0 all the weights 
are 1. 
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D-Radial Basis Functions (RBF) Interpolation 

RBF methods are a series of exact interpolation algori- 
thms that a surface must go through in each measured sample 
location. Geostatistical Analyst includes five different RBF 
methods: Thin-Plate Spline, Spline with Tension, Completely 
Regularized Spline, Multiquadric Function, and Inverse Mul- 
tiquadric Function. Each basis function has a different shape 
and results in a slightly different interpolation surface. In this 
paper, Thin-Plate Spline (TPS) was used. TPS creates a sur- 
face that passes through the control points with a minimum 
curvature surface. The approximation of TPS is calculated as 
shown in equation (5): 
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Where x and y are the x-, y-coordinates of the point to be 
interpolated, 2 2 2( ) ( )i i id x x y y    , xi and yi are the x-, 
y-coordinates of the control point i, n is the number of control 
points, and if is the known value at control point i. Thin 
–plate spline consists of two components: (a + bx + cy) 
represents the local trend function, and 2 logi id d represents 
minimum curvature surface basis function. The coefficients Ai, 
a, b, and c are determined using a linear system of equations 
(Chang, 2010). 

 

2.3.2. Geostatistical Methods 

Geostatistical interpolation methods create surfaces in- 
corporating the statistical properties of the measured data. 
These techniques produce not only prediction surfaces but 
also error or uncertainty surfaces, giving the analyst an indi- 
cation of how good the predictions are. Many methods are 
associated with geostatistics, but all are in the Kriging family. 
Originated in mining and geologic engineering in the 1950s, 
Kriging has since been adopted in a wide variety of discip- 
lines. Kriging assumes that the spatial variation of an attribute 
is neither totally random (stochastic) nor deterministic. Ins- 
tead, the spatial variation may consist of three components: a 
spatially correlated component, representing the variation of 
the regionalized variable; a “drift” or structure, representing a 
trend; and a random error term. The interpretation of these 
components has led to development of different Kriging me- 
thods for spatial interpolation. Ordinary, Simple, Universal, 
Probability, Indicator, and Disjunctive Kriging are available 
in the Geostatistical Analyst. In this study, Ordinary and 
Universal Kriging were used. 

 

A-Ordinary Kriging 

Assuming the absence of a drift, Ordinary Kriging (OK) 
focuses on the spatially correlated component and uses the 
fitted semivariogram, a diagram relating the semivariance to 
the distance between sample points used in Kriging, directly 
for interpolation. The estimator of ordinary Kriging is given 
by equation (6): 
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Where z*(x0) is the estimate value at x0, z(xi) is the measure 
value at the xi and λi is the weight assigned for the residual of 
z(xi) (Sun et al., 2009). 

 

B-Universal Kriging 

Universal Kriging (UK) assumes that the spatial variation 
in z values has a drift or a trend in addition to the spatial 
correlation between the sample points. By definition of the 
drift component, the expected value m(x) of z(x) at point z is 
given by equation (7) and the estimator of universal Kriging is 
given by equation (8) (Sun et al., 2009): 
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where nthe number of is available sampling data, z*(x0) is the 
estimate value, za is the measured value at sampling point 

( 1,...., )a a n  , and λa is the weighting coefficient, which is 
calculated with unbiased and minimum error variance. 

 

2.4. Assessment of Interpolation Outputs 

Cross-Validation was used to evaluate the performance 
of each interpolation method. It is one of the most commonly 
used statistical techniques for comparing interpolation methods. 
Cross-Validation compares the interpolation methods by re- 
peating the following procedure for each interpolation method 
to be compared (Chang, 2010): (1) Remove a known point 
from the data set, (2) Use the remaining points to estimate the 
value at the point previously removed, and (3) Calculate the 
predicted error of the estimation by comparing the estimated 
with the known value. After completing the procedure for 
each known point, two common diagnostic statistics, Root 
Mean Square Error (RMSE) and the standardized RMSE, are 
calculated to assess the accuracy of the interpolation method 
as shown in equations (9) and (10): 
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where zi and z are the measured and the estimated value at the 
sampling point i ( 1,2,... )i n ; n is the number of values used 
for the estimation; and S is the standard error. 

The RMSE statistic is available for all exact local me- 
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thods, but the Standardized RMSE is only available for Kri- 
ging because the variance is required for computation. A be- 
tter interpolation method should yield a smaller RMSE and a 
better Kriging method should yield a smaller RMSE and a 
Standardized RMSE closer to 1 (Chang, 2010). 

3. Results and Discussion 

3.1. Comparison of Interpolation Methods 

Mean Monthly Air Temperature for four selected months 
(January, March, July, September) as representatives of the 
four temperate seasons (Winter, Spring, Summer, Autumn) in 
Western Saudi Arabia was interpolated in turn using six GIS- 
based interpolation techniques (IDW, LP, GP, TPS, OK, UK). 
Figure 2 shows samples of interpolated surfaces using differ- 
rent methods. RMSE (for the six methods) and Standardized 
RMSE (for only OK and UK) were then calculated using 
Cross-Validation as shown in Table 1. Figure 3 shows a sam- 
ple of cross validation comparison between two methods. The 
minimal RMSE are obtained by OK and UK, which have al- 
most the same RMSE and Standardized RMSE for all months. 
Thus those two methods are the optimal methods for interpo- 
lating mean monthly temperature in the study area. 

3.2. Temporal and Spatial Variation of Mean Monthly 
Temperature in Western Saudi Arabia 

The temporal and spatial variations of mean monthly air 
temperature (MMAT) in Western Saudi Arabia were interpo- 
lated using the Universal Kriging method (UK). The follow- 
ing two Sections briefly describe these variations. 

 
3.2.1. Spatial Distribution of Air Temperatures in Western 
Saudi Arabia 

Figure 4 shows four maps of interpolated mean monthly 
air temperature (MMAT) in the study area for January, March, 
July, and September which are, in the same time, represen- 
tatives of winter, spring, summer, and autumn respectively. 
Inspection of these maps clearly indicates a zonal distribution 
of interpolated (MMAT) that is largely influenced by such 
factors as longitude, latitude, and altitude. In general, air tem- 
peratures are higher along the coastal zone as well as throu- 
ghout the interior parts of relatively lower elevations in the 
study area. This situation is dominant in the area all year 
round, keeping in mind a wide range of differences between 
seasons (these temporal variations are discussed in the follow- 
ing section). On the other hand, areas with higher altitudes 

 

A: GP B: IDW C: LP

E: OK F: UKD: TPS 

Figure 2. Interpolation of September mean monthly temperature (MMAT) using 6 different methods. 
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especially mountainous portions in the south interpolation 
results showed general decrease in temperature throughout the 
year. However, the magnitude of such a reduced tendency 
varies with both time of the year, and altitude above sea level 
(Figure 4). 

Interpolated air temperature for interior, relatively lower 
portions of the study area greatly differs with seasons. During 
the hot times of the year these areas come among the hottest 
locations throughout Saudi Arabia (Figure 4C and 4D). Du- 
ring In winter, on the other hand, these areas reflect extremely 
cold conditions, and come among the coldest spots, for this 
time of the year, especially in the far north of the study area 
(Figure 4A). 

In addition to the aforementioned factors, the interior 
southernmost portions of the study area, spatial aspects of in- 
terpolated MMAT appear to have been greatly influenced by 
its position regarding the growth and retreat of subsequent 
weather systems experienced throughout the march of seasons. 
During the colder part of the year (late autumn – late spring), 
the area is under the influence of weather systems coming 
from the north (the Mediterranean Region). For the warmer 
periods, the area is under the influence of weather effects of 
southern origin (monsoon systems). In all cases, the effects 
are reflected in lower air temperatures (Figure 4). 

 

3.2.2. Temporal Distribution of Air Temperatures in Western 
Saudi Arabia 

Results indicate widespread and distinctive patterns of 
differences and variations regarding interpolated monthly mean 
air temperature (MMAT) in the study area. These differences 
and variations relate to such characteristic as the magnitude as 
well as the distribution of interpolated variable. Interpolated 
values for winter (January) range between 10.06 and 26.29 
degrees centigrade, while summer (July) values were as high 
as between 20.51 and 35.34 degrees (Figures 4A and 4C). 
Furthermore, the spatial distribution of interpolated MMAT 
differed widely among seasons. For winter, the lowest tempe- 
ratures are found in the interior of the northernmost portion in 
the study area, followed by sections of the high mountainous 
region in the south. Higher values are spread throughout most 
of western Saudi Arabia including coastal and interior, both in 
the north and south of the study area. The highest temperatures 
are typically distributed throughout the southern half of the 
coastal plain and its neighboring low-lying interior segments. 
This pattern of the spatial distribution of interpolated MMAT 
comes in agreement with that important role of such variables 
as longitude, latitude, and elevation above sea level. 

As for summer, interpolated values show different arran- 
gements and spatial patterns (Figure 4C). The lowest values 

Table 1. RMSE for the Different Methods 

RMSE Standardized RMSE Month 

IDW LP GP TPS OK UK OK UK 
Jan 3.773 3.283 4.598 2.956 1.700 1.700 0.6189 0.6189 

Mar 3.278 3.283 4.618 2.975 1.751 1.751 0.5076 0.5076 
Jul 2.798 3.328 4.708 2.745 1.859 1.859 0.5787 0.5787 

Sep 2.743 3.227  4.682 2.593 1.614 1.612 0.5405 0.5303 

 

 
Figure 3. A sample of cross validation comparison. 
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are restricted to areas of high elevations especially the moun- 
tainous region of southwestern Saudi Arabia and to a lesser 
degree within the surrounding plateaus to the north and east of 
such region. Higher temperatures are distributed throughout 
most of the northern half of the study area including both 
coastal and interior segments. Like in winter, the southern half 
of the coastal plain still experiences high levels of air tempe- 
ratures in the summer. The highest temperatures are found in 
the interior, moderately elevated plains within the northern 
half of the study area. 

4. Conclusions 

Ordinary Kriging and Universal Kriging are the most 
optimal methods for interpolating mean monthly air tempera- 
ture in this region. This conclusion is based on available air 
temperature data recorded at nearly 31 meteorological stations 
representing different climatic conditions in Western Saudi 
Arabia during the period (1970 ~ 1986), which were in turn 
interpolated using six GIS-based interpolation methods. 
Cross-Validation was used to compare the various interpola- 
tion methods. Diagnostic Statistic indicated that Ordinary and 
Universal Kriging had the smallest RMSE and thus they are 
considered the optimal methods for interpolating air tempe- 
rature in this region. 

Results have shown a zonal pattern of interpolated air 
temperatures that is largely influenced by such factors as lon- 
gitude, latitude, and altitude. In general, air temperatures are 
higher along the coastal zone as well as throughout the in- 
terior parts of relatively lower elevations in the study area. 

Results have also revealed widespread and distinctive pa- 
tterns of differences and variations regarding the magnitude as 
well as the distribution of interpolated monthly mean air tem- 
perature in the study area. The spatial distribution of inter- 
polated mean monthly air temperature differed widely among 
seasons. 

These patterns of spatial as well as temporal distributions 
of interpolated mean monthly air temperatures comes in agree- 
ment with that important role of such variables as longitude, 
latitude, and elevation above sea level. 
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