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ABSTRACT.  Natural resource managers require information concerning the frequency, duration, and long-term probability of 
occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden 
from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model 
for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using 
Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total 
monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, 
accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given 
fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between 
threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at 
least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of 
quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time 
series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of 
violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the 
sub-sampled time series with respect to the full quasi-weekly time series. 
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1. Introduction 

Aquatic resource professionals recognize that harm can 
come to aquatic ecosystems when water-quality thresholds are 
violated too often or for excessively long periods of time 
(Davies et al., 1992; DeWalle et al., 1995; Sickle et al., 1996; 
Baldigo and Murdoch, 1997; Bulger et al., 2000; Laio et al., 
2001). These thresholds may be set by regulation or be deter- 
mined empirically by studies. Either side of the threshold may 
represent the harmful condition.  

For water quantity, i.e., river discharge, hydrologists have 
worked for decades to couple extreme value theory with the 
theory of stochastic processes. The motivation has been the 
need to be able to predict the likelihood of occurrence of in- 
frequent and random flood events, within typically long ma- 
nagement horizons such as the lifetime of a structure (e.g., a 
bridge). For these analyses, relatively high-frequency (with 
respect to period), evenly spaced observations of discharge 
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(e.g., 15-minute or hourly observations) are available. These 
high-frequency observations allow the timing of threshold cro- 

ssings to be identified with little uncertainty relative to the 
occurrence of crossings of interest. 

While relatively high-frequency observations are availa- 
ble for discharge, this is not the case for water-quality indica- 
tors (WQI), where the frequency of observation is typically 
monthly, quarterly, or rarely, weekly. This is especially true 
for long-term monitoring programs. In these cases the exact 
time, or even the approximate time, of a threshold crossing 
cannot be known with any reasonable degree of certainty. Li- 
kewise, the time between crossings cannot be known with rea- 
sonable certainty. 

Since these crossings generally are not observed, the pro- 
cess that generates them is a hidden process. Hidden proce- 
sses are common in the literature and are sometimes referred 
to as latent or state processes, and the variables associated 
with them are referred to as hidden, latent, or state variables 
(Berliner, 1996; Skrondal and Rabe-Hesketh, 2004; Cressie 
and Wikle, 2011). The key with hidden processes is to identify 
a mathematical mapping between what can be observed and 
the true process and/or variables of interest. 

Thresholds of interest differ between analyses of water 
quantity and water quality. In flood frequency analysis, the th- 
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resholds are usually relative. For example, in the Peaks Over 
Threshold (POT) method (Todorovic and Zelenhasic, 1970), 
the threshold for determining when crossings occur typically 
is set as a high percentile value. For WQIs, however, thres- 
holds of interest usually are specified as absolutes. WQI thres- 
holds are not necessarily near the top of the range of observa- 
tions, as flood-frequency thresholds are; in fact, WQI thresho- 
lds might be near the bottom of the range of observations. For 
example, in this paper we examine a WQI threshold defined 
as “acid-neutralizing capacity” (ANC) equal to zero, because 
when ANC is negative (below the threshold), the water has 
lost its ability to neutralize acidity and thus can be harmful to 
aquatic organisms (Bulger et al., 2000). Periods of ANC dep- 
ression less than zero of only a few days can be critical, yet 
ANC is often only observed on a weekly or monthly time step. 
Under these conditions, the observer will rarely know when 
threshold crossings occur. 

The new contributions relative to the modeling of thres- 
hold violations in WQIs presented here are threefold. First, we 
related a model for observations of a WQI to a model for the 
threshold-crossing process, which is hidden from the observer 
but is what is of interest, and developed a procedure for esti- 
mating those parameters using Bayesian methods. This model 
and method will be of value to water-quality analysts intere- 
sted in the frequency, duration, and long-term probability of 
occurrence of threshold-violation events. Second, we conduct- 
ed a simulation experiment to determine the relationship be- 
tween accurate and precise parameter estimation and monitor- 
ing frequency and period. The understanding resulting from 
this experiment will be of value to those conducting monitor- 
ing. Third, we applied the methodology to a time series of data 
collected from a stream in Shenandoah National Park to exa- 
mine the utility of the method in a real setting. In the remain- 
der of this paper we introduce the modeling and estimation 
machinery behind the method, describe the experiment condu- 
cted to validate its use, and analyze the results of the expe- 
riment. We then provide the example application, followed by 
discussion of the limitations of the method, opportunities for 
additional work, and recommendations for practitioners. We 
conclude the paper with a summary of our contributions. 

 

2. Method 

Markov processes have been widely discussed in hydro- 
logy (Lu and Berliner, 1999; Szilagyi et al., 2006). A number 
of researchers have developed models for threshold violations 
that combine extreme value and Markov chain theory (Smith 
et al., 1997). Others have used statistical (Deviney et al., 2006) 
or process (Zhang and Arhonditsis, 2008) models to make 
time series predictions from which threshold violation proper- 
ties can be estimated. However, these approaches assume the 
existence of a high-frequency time series of either the WQI or 
of another variable, i.e., discharge, which can be used to make 
high-frequency predictions of the WQI. 

A homogeneous two-state continuous-time Markov chain 
(CTMC) is a reasonable first choice for a model of threshold 
violation, where the times of threshold crossings are hidden 

from the observer. To describe this model, let state 'A' rep- 
resent the violation state and let state 'B' represent the non- 
violation state. Assume that upon entering state 'A', a random 
amount of time X, the duration, passes before the process tran- 
sits to state 'B'. Once in state 'B', a random amount of time Y, 
independent of X, passes before the process returns to state 'A'. 
Assume these random times have exponential distributions 
with rates λ and μ that are not necessarily equal. Such a pro- 
cess has the following well-known properties: 
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where f(x;λ) and f(y;μ) are the probability density functions of 
X and Y, X represents the random amount of time spent in 
state 'A', Y represents the random amount of time spent in 
state 'B', Z = X + Y is the random time between entrances into 
either state (the return or renewal period), E[] denotes expec- 
tation, PA is the long-term probability of occurrence of state 
'A' (alternatively the long-term proportion of time spent in 
state 'A' or the limiting probability for state 'A'), and PB is the 
long-term proportion of time spent in state 'B'. If one knew 
when state transitions (threshold crossings) occurred, it would 
be an easy matter to make estimates of these properties, which 
are the properties of interest to the WQI analyst. 

Ross (2006) showed how the two-state homogeneous 
CTMC process and the Kolmogorov Backward Equations lead 
to two equations that predict the probability of being in state 
“A” 1) having been in state “A”, or 2) having been in state “B”, 
at some time previous. The Kolmogorov Backward Equations 
are differential equations that relate transition rates and transi- 
tion probabilities between states. In the case of the two-state 
homogeneous CTMC, Ross (2006) showed how these differen- 

tial equations can be solved rather simply to yield the follow- 
ing: 
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where PAA (∆t), for example, is the probability of going from 
state 'A' to state 'A' in t time, over all possible transitions 
through state 'B' in the meantime. The elegance of these equa- 
tions can be seen by considering the cases where t goes to 
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zero or to infinity. In the first case, PAA = 1 and PBA = 0, which 
is to be expected given that not much time has elapsed. In the 
second case, PAA = PBA = μ⁄(λ+μ), which is just the long-term 
probability of being in state 'A'. In other words, the influence 
of the last observed state on the current state diminishes with 
time until it is no longer felt. Similar results can be derived for 
PBB and PAB. 

While the analyst is interested in the distributions of times 
between threshold crossings, which are governed by the para- 
meters  and , observations are generally only available be- 
tween crossings. Equations (1) and (2) link the process para- 
meters with the observations. In addition, they impose no re- 
quirement that the observations be evenly spaced, frequent, or 
coincident with state changes. With some re-arrangement of 
terms, a hierarchical specification for the model can be wri- 
tten as: 
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where λ and μ are the transition rates from state 'A' to 'B' and 
'B' to 'A', respectively, and Sn is the state at time index n. 

It is common to take WQI measurements at semi-regular 
intervals, either in situ with a meter or by collecting a sample 
for laboratory analysis. While in actual practice the value of 
the WQI is recorded, for analysis with respect to a biological 
or regulatory threshold, for this model it is only necessary to 
know whether or not the value was above or below the thres- 
hold. We wanted to simulate this semi-regular observation be- 
havior. A method was developed to simulate the repeated 
measurement, or observation, of a WQI, where the observa- 
tion is simply whether or not the WQI is above or below a 
defined threshold value. Each simulation was then used as the 
input to the estimation procedure for the parameters  and  
of the two-state homogeneous CTMC described in equations 
(1), (2), and (3).  

For the estimation procedure we chose a hierarchical 
Bayes framework. While not employed in this case beyond 
simple observation and process equations, the hierarchical 
Bayes framework allows the process parameters to be predict- 
ted by exogenous variables, such as watershed characteristics. 
Such extensions lead to a potentially infinite variety of non- 
homogeneous CTMC models. The intention here was to esta- 
blish first that given a simple process model, the estimation 
procedure would yield the true (design) values of the process 
parameters, and second, establish the rates and numbers of 
observations needed to yield the true (design) values with pre- 
cision. Without such an analysis, practitioners would have little 

reason to trust the results of using the method with real data or 
with more complicated extensions to the model. 

An experimental design was created for testing the esti- 
mation procedure. Twenty-five hundred sets of design parame- 

ter values were generated. For each parameter set, two separa- 
te simulations were generated. In total, 5,000 sets of simulated 
observations were created. Simulations of a WQI were gene- 
rated using the CTMC process model described above in equa- 

tion (2). Simulations were designed to exhibit a range of WQI 
processes typical of, and of interest in, the water-quality 
monitoring field (Table 1). State 'A' in the previous model 
descriptions was arbitrarily chosen to be the violation state. 
Parameters were set so that the design mean violation state 
duration (E[X]) for each simulation was chosen from an inter- 
val between 0.005 periods and 0.05 periods (given a period of 
one year, this range is roughly between 40 hours and 2.5 wee- 
ks). Crossings into the violation state in each simulation had a 
design mean return period (E[Z]) chosen from between 1 and 
0.1 (between once per period and ten times per period, or 
roughly from annually to monthly). These ranges for E[X] 
and E[Z] result in a range for PA of between 0.005 and 0.5. 

 

Table 1. Ranges of Important Process Characteristics of 
CTMCs Used in Simulations 

Property Range Description 

E[X]  [0.005, 0.05] Expected length of time in the violation state
E[Z]  [0.1, 1.0] Expected time between entries into the 

violation state, or the mean return period 

 
Table 2. Ranges of Important Process Observation Properties 

Property Range Description 

oP  [5, 50] Observation period length 
rS  [0.01, 1.0] Quasi-regular observation interval (spacing is 

equal ± a small perturbation) 

 

WQI observations were simulated at a spacing of 0.0001 
time units apart (10,000 data points per period). Relative to 
the solar year, that is roughly equivalent to 1 data point per 
hour. It was assumed that more frequently simulated observa- 
tions would not be necessary to capture state changes impor- 
tant in water-quality monitoring. 

Observation of the WQI process was simulated by quasi- 
randomly selecting observations from those described above, 
based on an observation protocol. Two minor components were 

defined associated with the observation protocol (Table 2). 
For the first component observation period length, oP, leng- 
ths of between 5 and 50 periods were specified, as the lower 
limit corresponds roughly to a generally accepted minimum 
time period for analysis of stochastic processes with a sea- 
sonal component (Hirsch et al., 1982), and the upper limit ex- 
ceeds but is within the foreseeable range of observed data re- 
cords available in water-quality monitoring. The second minor 
component of the observation protocol quasi-regular observa- 
tion interval, rS, mimicked a regular collection spaced at in- 
tervals of 0.01 to 1 period (100 to 1 observations per period), 
where the actual interval lengths were allowed to vary with a 
standard deviation equal to one fifth of the mean interval leng- 
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th. For example, for a mean interval of one week (168 hours), 
the standard deviation would have been set to 33.6 hours.  

Choices for design parameter levels describing the proce- 
sses and observation protocols were generated using leaped 
Halton sequences (Kocis and Whiten, 1997). Halton sequen- 
ces are used in computer experiments, where replication is 
usually not possible, to obtain good coverage over the design 
space. To ensure orthogonality between design parameters, the 
leaped Halton sequence for each parameter was generated 
using a unique prime number as the base, and a common leap 
parameter of a prime number greater than the maximum base 
value. 

For each of the 5,000 sets of simulated observations, pos- 
terior distributions of model parameters were estimated using 
OpenBUGS (Thomas et al., 2006), a Bayesian estimation soft- 
ware package that can be run from R using the BRugs pac- 
kage (Thomas et al., 2006). All estimates were made using the 
Cross-Campus Grid (XCG) at the University of Virginia 
(Morgan and Grimshaw, 2007). Convergence of each set of 
estimates was determined by requiring that the Gelman-Rubin 
statistic Ȓ̂ be less than 1.01 for each monitored parameter. 
Gelman and Hill (2007) suggest a threshold of 1.1 for prelim- 
nary work, and smaller values for more stable estimates. In 
addition, the slopes of all chains were required to be trend free. 
To check this, a regression of chain values versus their itera- 
tion index, modeling residuals to be first-order autocorrelated, 
was performed. A conservative p-value of 0.01 divided by the 
total number of chains was used for rejection of the null hypo- 
thesis of “no trend” to compensate for the number of tests.  

Estimates of each set of posterior distributions were made 
using three chains. After burn-in, sufficient iterations were run 
to obtain 350 values from each chain, for a total of 1,050 sam- 
ples for the posterior distributions of  and . Each estimation 
run was initialized with a relatively small burn-in period and 
thinning parameter. Then, if convergence was not attained, the 
thinning parameter was increased and the procedure ran again, 
starting from the last iteration's values of the previous run, 
and considering all iterations of the algorithm up to that point 
to be burn-in.  

The Gamma distribution (equation (4)) is a natural conju- 
gate prior for the exponential distribution rate parameters λ 
and μ (Gelman et al., 2004):  

  

 

   αΓ
exβ

xp

βα,Gammaμλ,
βxαα 1

~

~

  (4) 

   
The hyper-parameters for the Gamma priors were chosen 

(both  and  were set to 0.001) to provide relatively flat, but 
weakly informative, priors. The prior expectation and varian- 
ce for λ and μ were thus 1 and 1,000, respectively, making the 
prior expectations for E[X], E[Z], and PA, respectively, 1, 2, 
and 0.5. These are outside of, or at the edge of, the experi- 
mental ranges. 

The three design parameters assessed for recovery and 

precision were: 1) E[X], the expected value of time spent in 
the violation state, 2) E[Z], the expected value of the re- 
newal interval (time between re-entries to the violation state, 
or the inverse of frequency of occurrence), and 3) PB, the limi- 
ting probability for the non-violation state. Recovery was 
evaluated by examining whether the design parameter value 
was within a 95% credible interval determined from the pos- 
terior distribution for the parameter. A 95% credible interval 
for the posterior was defined as the values corresponding to 
the percentiles between 2.5 and 97.5.  

Recovery can be obtained with a wide credible interval, 
however, a narrow credible interval generally is desired. Pre- 
cision was examined with a relative dispersion (RD) metric, 
calculated as:  

  

95

4

% credible interval width
RD =

x estimated parameter value

     (5) 

 
where the estimated parameter was taken as the median of the 
posterior distribution. RD is approximately equivalent to the 
relative standard deviation (RSD) if one assumes that a 95% 
credible interval is approximately four standard deviations in 
width. 

3. Results 

All of the 5,000 sets of estimates converged successfully. 
Close to 98% of the design parameter percentiles fell within 
their respective credible intervals (Table 3).  

 
Table 3. Counts of Design Values with Respect to a 95% 
Credible Interval of the Posterior Distribution 

Group # inside c.i. total % inside c.i. 

E[X] 4,943 5,000 98.86 
E[Z] 4,941 5,000 98.82 
P1 4,840 5,000 96.80 
All 14,724 15,000 98.16 

 
The relative dispersion, RD, was calculated for estimates 

of E[X], E[Z], and PB. In order to gain some intuition about 
any relationship between RD and the four factors being mani- 
pulated in the experiment, the RD metrics (log-transformed) 
were regressed against suitable transformations of the four 
factors (Table 4). Although in each case there is some unexp- 
lained variation in the metric, the models are statistically sig- 
nificant. Inclusion of second-order effects did not improve the 
models sufficiently to warrant the increased model complexity. 
Of interest is the not unexpected result that in all three cases, 
RD improves (decreases) with increasing observation period 
length or shorter observation intervals. Of note also is that the 
results for E[X] and E[Z] are virtually identical (Table 3). 

These results can be visualized by holding E[X], E[Z], 
and RD constant while allowing oP and rS to vary. Figure 1 
illustrates the relationship between rS and oP for various given 
values of RDE[X], E[X], and E[Z] in each subplot. These plots 
indicate that fewer observations are required to obtain small 



F. A. Deviney Jr et al. / Journal of Environmental Informatics 19(2) 70-78 (2012) 

 

74 

E[X] = 0.005, E[Z] = 1, P0~0 E[X] = 0.01, E[Z] = 0.1, P0~0.1 

E[X] = 0.005, E[Z] = 0.1, P0~0.5 E[X] = 0.1, E[Z] = 1, P0~0.1 
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Figure 1. Contours of RDE[X] are plotted for observation 
interval vs. observation period for various combinations of 
E[X] and E[Z]. Dashed horizontal lines correspond to weekly, 
monthly, and quarterly observation intervals, when the period 
is one year. 
 
Table 4. Regression Results 

RD Regression results 

RDE[X] Coefficients: Estimate Std. Error t value Pr(>|t|)  
(Intercept)     2.92121    0.08637   33.82   < 2e-16 ***
log_E_X     -0.54793    0.01717  -31.92   < 2e-16 ***
log_E_Z      0.50394    0.01717   29.35   < 2e-16 ***
log_oP       -0.63710    0.01716  -37.12   < 2e-16 ***
log_rS        1.00234    0.01140   87.95   < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.7136 on 4995 degrees of freedom 
Multiple R-squared: 0.6875, Adjusted R-squared: 0.6873  
F-statistic: 2747 on 4 and 4995 DF,  p-value: < 2.2e-16  

RDE[Z] Coefficients: Estimate Std. Error t value Pr(>|t|)  
(Intercept)     2.79089    0.08448   33.03   < 2e-16 ***
log_E_X     -0.52869    0.01679  -31.48   < 2e-16 ***
log_E_Z      0.48444    0.01679   28.84   < 2e-16 ***
log_oP       -0.59740    0.01679   -35.58   < 2e-16 ***
log_rS        0.98202    0.01115   88.09   < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.698 on 4995 degrees of freedom 
Multiple R-squared: 0.6847, Adjusted R-squared: 0.6844  
F-statistic: 2711 on 4 and 4995 DF, p-value: < 2.2e-16  

RDP1 Coefficients: Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.334363   0.047452   7.046  2.09e-12 ***
log_E_X    0.264793   0.009432   28.073  < 2e-16 ***
log_E_Z    -0.334707   0.009433  -35.482  < 2e-16 ***
log_oP     -0.737217   0.009431  -78.173  < 2e-16 ***
log_rS      0.558216   0.006262   89.147  < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.392 on 4995 degrees of freedom 
Multiple R-squared: 0.7635, Adjusted R-squared: 0.7633  
F-statistic: 4031 on 4 and 4995 DF, p-value: < 2.2e-16  

E[X] = 0.01, E[Z] = 0.1, P0~0.1 E[X] = 0.005, E[Z] = 1, P0~0 

E[X] = 0.005, E[Z] = 0.1, P0~0.5 E[X] = 0.1, E[Z] = 1, P0~0.1 

Observation period Observation period 
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Figure 2. Contours of RDPB are plotted for observation 
interval vs. observation period for various combinations of 
E[X] and E[Z]. 
 
RD when the proportions of time spent above or below the 
threshold are nearly equal (lower left subplot) than when these 
proportions are unequal. The upper left and lower right sub- 
plots suggest that given two processes with equal PA, it will 
require more observation effort to get the same RD for the 
process with shorter return period (higher transition rates). For 
PA = 0.10, a common proportion for legal impairment desig- 
nation of a water body, it appears that decades of observations 
at weekly or monthly intervals would be necessary to obtain 
an RD much less than 1. The plot for RDE[Z] is similar to 
Figure 1. 

In contrast, Figure 2 indicates that for PB (and by inferen- 
ce PA), RD is substantially smaller than for either E[X] or E[Z] 
given the same observation effort. In other words, the propor- 
tions will always be known with greater certainty than the 
mean duration or the mean return period. This is not unexpe- 
cted since there can be many pairs of values of E[X] and E[Z] 
that yield the same proportion values. 

In both Figure 1 and Figure 2, lines that pass through the 
origin represent scenarios of equal numbers of observations, 
because the number of observations is equal to the observa- 
tion period length divided by the observation interval length. 
To achieve RDs for E[X] and E[Z] that are less than 1 when 
PA ~ 0.5, 0.1, or < 0.01, about 150, 300 or 1,000 observations, 
respectively, are needed. These results are based on an assum- 
ption that the process is stationary over the period of record. 

When the number of observations was small, design per- 
centile values for small values of E[X] (less than about 0.03) 
were biased (not centered at the 50th percentile), even if they 
were within the 2.5 to 97.5 percentile range. When the RD 
calculated for the estimate was less than 2, however, no such 
bias was evident (Figure 3). 
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Figure 3. Distributions of nominal values of E[X] as 
percentiles of the posterior distributions when RD was < 2 
(left subplot) and > 2 (right subplot). 
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Figure 4. The spike at 0.02 periods is roughly one week (7 
days). Spikes are observed at 4-11 days and at 14 days. Blips 
to the right of 0.04 indicate droughts or heavy snow periods 
when the station was inaccessible. 

 

4. Application of the Model 

Waters with low ANC are known to be harmful to aquatic 
life, and excursions of ANC of sufficient duration below zero 
microequivalents per liter (µeq/L) are thought to be sub-lethal 
(stressful) or lethal for some species (Bulger et al., 2000). A 
26-year time series of 1,220 quasi-weekly observations of 
ANC was obtained for Deep Run, a small headwater stream 
draining a 306 hectare forested catchment in the southwest part 
of Shenandoah National Park, Virginia (Ryan et al., 1989). We 
used this dataset to examine the effect of different sampling 
frequencies on the precision and accuracy of parameter esti- 
mates and compared the results with our conclusions from the 
simulation experiment.  

Deep Run is visited on a quasi-weekly basis, which means 

that it is visited at time intervals within a few hours of exactly 
7 days apart. This interval, however, may be a few days more 
or less than seven days, or up to several months during drought 
or other severe weather conditions (Figure 4). The standard 
deviation of all observation interval lengths was ~ 0.004 
periods (years) or ~ 1.5 days (statistics were restricted to in- 
tervals < 0.05 periods). The median of these restricted-interval 
data was 0.019 periods (7.0 days). The ratio of the standard 
deviation to the median interval was ~ 0.215. This ratio is 
nearly equivalent to that used to model observation interval 
length variability in the simulation experiment. 

We converted the ANC time series to a binary series, 
where the value 1 indicates ANC ≥ 0 µeq/L and the value 0 

indicates ANC < 0 µeq/L, which signifies the violation state. 
We used the entire dataset to estimate parameters using the 
method and model developed in section 2. We then simulated 
a quasi-monthly sampling protocol by dividing the year into 
48 equal-length segments and assigning the observations from 
every fourth segment to a separate time series. This resulted in 
four time series. We analyzed each time series individually and 

ensembled the results by combining one-fourth of each of the 
posterior sample sets into a single posterior sample set. Final- 
ly, we simulated a semi-monthly sampling protocol by assign- 
ing the observations from every other segment to a separate 
time series. Each time series was analyzed and the posterior 
distributions combined as before. 

In the simulation experiment, when estimate uncertainty 
was high (high values of RD), the mean duration period tend- 
ed to be over-estimated. We suspected this bias arose from the 
choice of values for the hyper-parameters of  and , which 
were intentionally set to be outside the experimental range. 
The fewer the number of observations, the closer the estimates 
will lie to the prior values.  

In actual practice one could take advantage of the data to 
prescribe values for the hyper-parameters of the prior distribu- 
tions of  and . By counting the number of threshold cross- 
ings, one can make an estimate of E[Z]. Additionally, a rough 
estimate of Pviolation can be made from the proportion of obser- 
vations in the violation state. From these two values, estimates 
of  and  for both  and  can be calculated (Equation (6)). 
For the analyses of Deep Run data, we prescribed the values 
of the hyper-parameters in this way: 
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  (6) 

 
The estimation processes converged within a few thou- 

sand iterations of the MCMC algorithm. The Ȓ values for both 

andwere consistently less than 1.01, indicating good con- 
vergence. The parameter estimates using the entire dataset were 

quite precise, with RDs < 0.1. While this dataset had ~ 1,200 
observations, the two quasi-semi-monthly datasets had ~ 600 
each, and the four quasi-monthly datasets had ~ 300 observa- 
tions each. The effect of these sampling frequencies on bias 
and precision can be seen clearly in Figure 5, in which cumu- 
lative distribution functions (CDFs) of the combined posterior 
distributions are plotted for E[X], E[Z], PANC < 0, and PANC ≥ 0. 
Exact values for medians, C.I.s, and RDs are given in Table 5. 
Precise estimates result in steep CDFs, such as is seen for the  



F. A. Deviney Jr et al. / Journal of Environmental Informatics 19(2) 70-78 (2012) 

 

76 

 Weekly 
Quasi-Semi-Monthly 
Quasi-Monthly 

Probability Years 

C
u

m
u

la
ti

ve
 p

ro
b

ab
ili

ty
 

C
u

m
u

la
ti

ve
 p

ro
b

ab
ili

ty
 

C
u

m
u

la
ti

ve
 p

ro
b

a
b

il
it

y
 

C
u

m
u

la
ti

ve
 p

ro
b

ab
ili

ty
 

d) CDF: Long-term probability of ANC >= 0c) CDF: Mean return period 

a) CDF: Mean duration b) CDF: Long-term probability of ANC < 0 

Figure 5. CDFs for properties of interest given quasi-weekly, 
quasi-semi-monthly, and quasi-monthly sub-sampling 
protocols. 

 
Table 5. Summary of Results of Analysis of Deep Run ANC. 
E[X] and E[Z] Given in Years 

 Parameter Median Credible interval  RD 

E[X] 0.024 [0.020, 0.029] 0.094 
E[Z] 0.116 [0.096, 0.139] 0.093 
PANC < 0 0.208 [0.177, 0.242] 0.078 

Weekly 

PANC ≥ 0 0.792 [0.758, 0.823] 0.021 
E[X] 0.045 [0.033, 0.062] 0.167 
E[Z] 0.216 [0.160, 0.294] 0.155 
PANC < 0 0.211 [0.145, 0.295] 0.178 

Quasi- 
Semi- 
Monthly 

PANC ≥ 0 0.789 [0.705, 0.855] 0.048 
E[X] 0.068 [0.013, 0.118] 0.386 
E[Z] 0.336 [0.101, 0.531] 0.320 

Quasi- 
Monthly 

PANC < 0 0.207 [0.047, 0.618] 0.690 
 PANC ≥ 0 0.793 [0.382, 0.953] 0.180 

 

posterior estimates using the entire dataset. While the true 
values of these quantities cannot be known, the results of the 
computer experiment suggest that the method is unbiased gi- 
ven sufficient observations. If we assume that the medians of 
the distributions of E[X] and E[Z] obtained using the entire 
dataset are sufficiently close to the truth, then the medians of 
the other distributions are clearly biased high in comparison. 
This agrees with the results found in the simulation experi- 
ment. In addition, the credible intervals for the quasi-monthly 
estimates are so wide as to be practically useless. For example, 
the credible interval for E[X] using the quasi-monthly datasets, 
in days, spans from roughly 4.7 to 43, a hardly useful measure 
in the context of exposure of biota to hazardous conditions. 
The RD for this credible interval was 0.386. In contrast, the 
credible interval for E[X] from the quasi-weekly data spanned, 
in days, from roughly 7.3 to 10.6, with an RD of 0.094. 

The medians for the estimates of PANC < 0, and PANC ≥ 0 are 
roughly equal despite the sampling interval, although the un- 
certainty in those estimates increases with reduced sampling 
frequency. These results also agree with our conclusions from 
the simulation experiment.  

5. Discussion 

We are not aware of the development of any alternative 
methods for estimating the parameters of the model proposed 
in this study, when threshold crossings are hidden from the ob- 
server, so we have not made any comparisons. We expect to 
be able to extend the model to estimate parameters for multi- 
ple sites simultaneously, and to be able to model these para- 
meters in terms of exogenous variables such as, for example, 
catchment area or geology, in a hierarchical modeling context. 
However, examining the properties of the estimation method 
itself in such a context would be difficult at best. We preferred 
to start out by examining the simple case of a single process. 

The simulation experiment results indicated that between 
150 and 300 observations would be needed to obtain relative- 
ly precise (relative precision less than 1) estimates of mean 
duration and return period. However, the Deep Run analysis 
results indicated that a relative precision, in terms of RD, on 
the order of 0.10 would be required to get estimates precise 
enough for management decisions. Figure 1 suggests that a 
minimum of around 600 observations (the equivalent of 50 
years of monthly observations) would be needed to achieve 
this level of precision, although more than this amount was 
needed with the Deep Run data.  

In comparison with trend analysis, more observations are 
needed to obtain satisfactory results. For example, Hirsch and 
Slack (1984) found that to obtain adequate power to detect 
trends, approximately 10 years of monthly observations, or 120 

observations, were sufficient. Here we found that a bare mini- 
mum of 150 observations would be needed. 

An important limitation of the model and method presen- 
ted here is the assumption of process homogeneity. To be of 
greater use, the model needs to be modified to account for non- 

homogeneous processes, including seasonally varying beha- 
vior and changes over time. We expect to be able to develop 
multi-level models to incorporate extraneous explanatory va- 
riables, which should allow us to model the process parame- 
ters  and  as functions of time, season, or other watershed 
characteristics. 

Another limitation of the model concerns the assumption 
that observations are made independently of the state of the 
process. Many water-quality monitoring projects include a 
mixture of occasional high-frequency observations made du- 
ring high-discharge events along with regularly spaced obser- 
vations. In these cases observations are generally not made 
independently of the state of the process. Deviney (2009) found 

that application of this model to simulations of such mixed 
observation protocols led to biased results. Observations made 
in conjunction with high-frequency observations need to be 
excluded from analyses using this methodology. 
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While five periods (if periods are years) is short for a ty- 
pical long-term monitoring project, it is long for a typical re- 
search project. Therefore this method may not extrapolate well 
to shorter research projects, even given sufficient observations. 
There also may be situations where an event occurring much 
less frequently than once a period could have a significant im- 
pact on some ecosystems. While expected duration and return 
period were specified to be less than one, these results could be 

adapted to both such situations by a suitable definition of the 
length of one period. For example, if the unit period length 
was defined to be one week instead of one year, the imply- 
cations of Figure 1 would be the same adjusted to the new 
period unit.  

 

6. Conclusions 

Excursions of WQIs above or below certain thresholds 
for lengthy or frequent periods are known to have undesirable 
ecological consequences. However, estimation of parameters 
describing the return period, duration, and long-term probabi- 
lity of violation associated with such excursions is problematic 

because observations of WQIs are generally made infrequently, 
at arbitrary times, at unevenly spaced intervals, and asyn- 
chronously with threshold crossings. 

Two-state continuous time Markov chains are simple pro- 
cesses that are useful for modeling a wide variety of pheno- 
mena. In this paper, we investigated the use of such models 
for estimating the parameters discussed above. A two-state 
continuous-time Markov chain (CTMC) model based on the 
Kolmogorov Backward Equations was evaluated using simu- 
lations of infrequent, unevenly spaced, and uncoordinated ob- 
servations. Parameters were estimated using Bayesian methods. 
The evaluation consisted of an assessment of design parame- 
ter recovery and estimate precision, and of the effect of va- 
rious process and observation characteristics on said precision. 
The purpose of these assessments was to determine the condi- 
tions under which the methodology could be applied, under the 

assumption that successful application would be a function of 
both process characteristics and of observation protocol chara- 
cteristics.  

Reasonably precise estimates of mean duration, return 
period, and long-term exceedance probability were obtained 
given sufficient observations. For most cases where the ex- 
ceedance probability exceeds 0.10, at least 600 observations 
were determined to be needed. It is expected that many current 
water-quality time series meet this requirement. An example 
with over 1,200 quasi-weekly observations was presented. Very 

precise estimates of mean duration, return period, and long- 
term probability of violation were obtained with the full data- 
set. Precision deteriorated when the times series was sub-sam- 
pled at quasi-semi-monthly and quasi-monthly intervals. Bias 
was evident for estimates of mean duration and mean return 
period between the various rates of sampling, but was absent 
for estimates of the long-term probability of violation. 

Additional research should test further extensions of these 

models, including non-homogeneous models and multi-level 
models, for single and multiple processes. Such models could 

take account of seasonal or trend changes in process parame- 
ters, make estimations for multiple locations simultaneously, 
or leverage other available information. 
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