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ABSTRACT.  With the population increasing and land use patterns changing, there will be environmental consequences. To solve 
these impending problems, information on the future land use pattern is needed. This study attempted to develop an enhanced land use 
model, capable of predicting future conditions. The traditional Markov model was modified by incorporating a Cellular Automata (CA) 
and a population variable to depict the neighboring effects and the impacts of population growth on urbanization. The performance of 
this new model was quantitatively assessed by generating the 2001 land use patterns of the East Fork Little Miami River watershed in 
southwest Ohio with and without the CA and the population variable and compared with the actual 2001 land use imagery. From the 
comparison, it was apparent that the land use map generated with the CA and population variable was more accurate. To further 
ascertain its applicability in a larger watershed, the same procedure was used to model the entire Little Miami River watershed. The 
validation results demonstrated that the performance of the modified CA-Markov model at both watershed scales was acceptable, and 
the inclusion of the CA and population variable could markedly improve model predictability. Based on these findings, the 2030 land 
use scenario for the LMR watershed was postulated. The resultant map showed much urban expansion in the western and southern 
portions of the basin. This information can be useful to planners and resource managers, enhancing their efforts in generating more 
sustainable future development strategies. 
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1. Introduction 

Our world is changing rapidly in land use patterns; never 
in our history had we witnessed such a rate or magnitude of 
change. With the economic development, population growth, 
and in-migration, many places are experiencing expeditious ur- 
ban expansion and sub-urban sprawl, which can cause signifi- 
cant environmental consequences, such as changes in surface 
runoff and water quality (Tong et al., 2011). Moreover, future 
climate changes may further interact with these physical and 
socio-economic factors, exacerbating the transformation of lan- 
dscape and degrading environmental qualities (Lambin et al., 
2001). With the anticipation of these changes and the associa- 
ted environmental problems, it is of paramount importance to 
be able to postulate the future land use conditions so that we 
can better plan for sustainable future developments. However, 
the prediction of future land use is often complicated as there 
are many intrinsic, inter-dependent, and interrelated socio-eco- 
nomic and biophysical drivers controlling the process of land 
use change (Parker et al., 2003).  
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This paper attempted to develop an enhanced Markov- 
based spatial dynamic modeling procedure to predict the pros- 
pective land use conditions. The goal was to improve the pre- 
diction accuracy of the original Markov land use model by 
coupling it with a Cellular Automata (CA) and the trend of po- 
pulation growth through Multi-Criteria Evaluation (MCE). The 
integration of a CA with Markov will take into account the nei- 
ghboring effects in calculating the transition probabilities (East- 
man, 2006). Additionally, since population growth is often an 
important socio-economic factor driving urban growth (Li et 
al., 2003, Liu et al., 2005), it is hoped that by considering po- 
pulation density in the study area, this modified Markov Cellu- 
lar Automata Land Use Change Model (CA-Markov) could ex- 
plicitly simulate the tendency of urbanization and suburban sp- 
rawl. Through the validation process, the efficacy of this enhan- 
ced population-coupled CA-Markov land use model in simula- 
ting urban expansion and in making realistic predictions of the 
future land use conditions was explored.  

2. Methodology 

2.1. Study Areas  

This research used the East Fork Little Miami River 
(EFLMR) watershed, a sub-watershed of the Little Miami Ri- 
ver (LMR) in southwest Ohio, as a pilot study to first develop 
an enhanced land use model. After the model was developed  
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Figure 1. The East Fork Little Miami River and Little Miami 
River watersheds. 
 
and validated, it was extended to the whole LMR watershed to 
ascertain its applicability and effectiveness in a larger water- 
shed. Figure 1 shows the geographic locations of the EFLMR 
and LMR watersheds in southwest Ohio. 

 
2.1.1. Rationale for Choosing the EFLMR and LMR 
Watersheds  

Originating at the southeast of Springfield in Clark County, 
Ohio, the LMR flows 169.78 km to join the Ohio River at the 
confluence near the eastern side of Cincinnati, draining an area 
of 4,550.6 km2. Within the LMR watershed is a sub-basin of 
the EFLMR, which only covers 1,295 km2. Because of its small 
size, EFLMR watershed is an ideal area for a pilot study as it 
will enable easier and simpler model development and valida- 
tion. Besides, if the modeling results are promising in this small 
and predominantly agricultural sub-watershed with a moderate 
population density, it is likely that the model will be able to ge- 
nerate a relatively accurate future land use pattern for a larger 
watershed with a higher population density and a faster rate of 
urbanization.  

The main reason for choosing the LMR basin in this study 
is because it is an important growth area in southwest Ohio 
(Ohio Department of Development, 2010). The LMR watershed 
was once predominately agricultural, but in recent decades, th- 
ere have been rapid population growth and land use changes. 
The good transportation systems offered by the rivers, high- 

Table 1. Land Use Categories in the LMR Watershed in 1976, 
1992, and 2001 by Percentages 

Land use types 1976 1992 2001 

Water body 0.6% 0.9% 1% 
Urban area 11% 17% 17.8% 
Forests 7.6% 24.1% 23.7% 
Agriculture 80.3% 56.7% 56.2% 
Others 0.4% 1.3% 1.4% 

 
ways, railroads, and regional airports; the mild climate; as well 
as the abundant supply of water from its aquifer help to faci- 
litate urbanization and economic development. As shown in 
Table 1, the agricultural land use in the LMR watershed has 
experienced a drastic decrease from 80.3% in 1976 to 56.2% 
in 2001, whereas the urban land has increased by 6.8%. In the 
same period, population from the ten counties in the basin has 
grown from 2,371,943 in 1980 to 2,558,509 in 2000, an increa- 
se of 7.87% of the population (US Census Bureau, 2010). These 
rates of changes in land use and population are among the hi- 
ghest in Ohio. Similar situations, though in a lesser magnitude, 
are found in the sub-watershed of the EFLMR; in 1976, almost 
70% of the land was agricultural, 12% forests, and 7% urban. 
But, the amount of agricultural land has been decreasing, and it 
is now accounting for only 57% of the total area in the EFLMR 
basin (East Fork LMR Watershed Collaborative, 2007), and 
much of the former agricultural lands are now encroached by 
urban development. Any further demographic and land use ch- 
anges in the EFLMR and LMR watersheds will certainly have 
major environmental consequences. Earlier studies by Tong 
(1990), Wang (2001), Tong and Chen (2002), Tong and 
Naramngam (2007), and Tong et al. (2008; 2011) had demons- 
trated that changes in land use patterns in the LMR basin have 
caused significant hydrologic and water quality impacts on the 
downstream receiving water bodies.  

 

2.1.2. Physical Geography of the LMR Basin 

The LMR watershed has a cool temperate climate; summers 

are warm and humid with an average high temperature of 30 
oC and low temperature of 15 oC, whereas winters are modera- 
tely cold with few annual winter frosts and snowfalls. Winter 
temperature highs are mostly around 0 oC and lows about -10 
oC. Average annual air temperature ranges from 10°C in the 
north to 13 °C in the south. Average snowfall in the watershed 
is 50 to 76 cm per year, and the average annual precipitation 
ranges from 90 to 110 cm, approximately one-third of which 
becomes surface runoff (Debrewer et al., 2000).  

The entire LMR basin lies within the clay-rich Till Plains 
comprising mainly of glacial till and loess irregularly overlying 
limestone and shale. At the bedrock valley are outwash deposi- 
ts composed of sand and gravel. These bed rock deposits exert 
considerable impacts on surface water by absorbing large quan- 
tities of rainfall, releasing it throughout the year, especially du- 
ring the low-flow seasons (Schneider, 1957).  

The soils in the region belong to the deep, moderately well 
drained, and highly productive Genesse-Williamsburg Associa- 
tion. They were formed from the silts, alluvial, and residual 
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materials from the glacial drifts, outwash, and tills (Lerch et 
al., 1975). Soils on the older till plain in the southeast exhibit 
more drainage problems and have been less extensively culti- 
vated than the younger till-derived soils in the northwest.  

 

2.2. Approaches to Generate Future Land Use Scenarios  

Despite the fact that there are existing future land use plans 
from different administrative offices (such as county offices) 
comprising the LMR basin, which can be processed to produce 
future land use scenarios, there are several drawbacks in this 
approach. The most notable one is that since the administrative 
boundaries may not necessarily coincide with the physical 
boundaries of a watershed, there will be a need for multiple fu- 
ture land use maps from various administrative offices, which 
often are not consistent, differing in terms of spatial and tem- 
poral scales and the degree of details. Due to this shortcoming, 
some researchers resolve in using statistical analyses, such as 
correlation and regression analyses, to generate future land use 
scenarios. By employing the socio-economic determinants and 
physical drivers as independent variables, regression equations 
can be derived to predict future land use changes. But due to 
the dynamic nature and uncertainty of the land use change pro- 
cess, these techniques are often inadequate to predict future ch- 
anges. This is mainly because most statistical methods can only 
characterize simple and uniform changes in the form of linear, 
polynomial, exponential, or power functions, but not complica- 
ted processes driven by a multitude of spatial and temporal fa- 
ctors and multi-directional change patterns (Parker et al., 
2003).  

The other method is to employ a spatially explicit and dy- 
namic land use model to quantitatively describe the underlying 
system attributes and their interrelations, as well as to postulate 
the future land use pattern. This is a more common method as 
it is convenient and can allow the researcher to examine the spa- 
tial and temporal drivers for land use change and to predict the 
future conditions under certain known assumptions (Li and 
Yeh, 2002). Thus, this approach often provides more realistic 
results. As pointed out by Silva and Clarke (2002), the use of 
spatial explicit modeling, coupled with remote sensing and geo- 
graphic information systems (GIS), offer an alternative means 
of research, enabling an efficient characterization of the current 
conditions, the detection and monitoring of spatial and tempo- 
ral changes, and the prediction of future land use patterns. In 
this research, the method of land use modeling was adopted to 
characterize the existing land use pattern and to generate future 
land use scenarios.  

 

2.3. Selection of the Land Use Model  

A literature search had been conducted to identify an appro- 
priate model for use in this study. The criteria for choosing the 
land use model were: theoretical suitability, predictive power, 
requirement of data inputs, ease of use, and compatibility with 
the commonly used GIS systems, such as ArcView and ArcGIS, 
as well as feedbacks from other users. In this study, the tradi- 
tional stochastic Markov chain model was first selected because 
it is a dynamic, spatial, and stochastic model. A dynamic mo- 

del is preferred over a static model since it is capable to simu- 
late land use change over time. The fact that the Markov mo- 
del is a spatial model is also desirable as it can produce spatial 
maps. Moreover, being a stochastic model instead of a deter- 
ministic model is beneficial, as there is often a certain degree 
of randomness and uncertainty in the land use change process, 
and a stochastic model will be more effective in simulating th- 
ese changes. Many researchers, including Bell (1974) and Tang 
et al. (2007), had employed Markov-based models to explain 
land use change.  

Markov chain is a stochastic process that simulates the ch- 
anges from a current state to the next state using a transition 
probability matrix. In Markov chain, there is a series of random 
values; the probability of each of these values at a certain time 
interval is dependent on its value at the previous time period. 
When used in land use change analysis, Markov chain relies 
on two sets of historical land cover images to analyze past land 
cover changes. By using the earlier land use patterns as the ba- 
sis to project future conditions and assuming that land use ch- 
ange is a stochastic process, Markov chain describes land use 
change from one period to another. The changes in each land 
use category between these two time periods are calculated, 
transition probability matrices and a group of transitional pro- 
bability images are generated to represent all the multidirec- 
tional land use changes between land use categories, and the 
potential for future changes is modeled. Thus, in the Markov 
analysis, the predictive modeling of the future land use is based 
on the changes in land use patterns between these two periods 
through a probabilistic process.  

Although Markov chain may produce accurate time transi- 
tion probabilities for each category of land use, it does not pro- 
vide any geographical element in its analysis. Consequently, 
even if the dynamic transition probabilities may be accurate 
on a per category basis, the analysis cannot portray an accurate 
spatial distribution of these land use categories, as such it is 
more functional as a descriptive tool in land use change analysis 
instead of a predictive tool in generating future land use patterns. 
Another weakness of Markov chain analysis is related to the 
fact that it assumes that the transition probabilities do not ch- 
ange over time, which may not be valid under some situations 
(Sun et al., 2007). Hence, Markov model often produces poorer 
predictions of land use change, especially if the geographic pa- 
tterns are taken into account, and further modifications are re- 
quired (Brown, 1970). To address these shortcomings, this stu- 
dy also developed another land use model by incorporating 
the traditional Markov model with a CA and a population va- 
riable through the MCE method to depict the spatial dimension 
and contiguity as well as to include suitability knowledge in 
the analysis.  

CA is a simple and computationally efficient method ca- 
pable of simulating spatial contiguity and temporal-spatial dy- 
namics at high resolution. It was first used by Von Neumann 
for self-reproducible systems (Couclelis, 1989). Since then, it 
has been widely applied in modeling the growth of cities and 
the evolution of land use (Tobler, 1970). In a CA system, there 
are four basic elements: the cells, states, neighborhoods, and 
rules. The cells are the smallest spatial units, and the states are 
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the attributes of the cells at a given time step. For each neigh- 
borhood, there is a set of well-defined relationships between 
the cells, and there are rules to define the states of the cells in 
each time step (Thapa and Murayama, 2011).  

As a discrete and dynamic system, CA studies each grid 
cell, assuming that the geographical space and cell states are 
discrete. Additionally, it examines the dynamic behaviors of 
the state in each cell over time (Wolfram, 1984), thereby captu- 
ring the dynamic nature of land use change. In land use mode- 
ling, the geographical space of the CA is represented by grid 
cells, and their states are denoted by finite, integer numbers. 
The state of each cell is governed by the local relationship be- 
tween the cell and its neighbors (Abdalla et al., 2006), as such 
it not only influences its neighbors, but it is also influenced by 
its neighbors. The contiguity rule embedded in a CA ensures 
that a pixel located at the proximity of a specific land use cate- 
gory will have a higher probability to become that category. 
For this reason, the suitability value of each pixel is dependent 
on whether there are pixels of the same category in the neigh- 
borhood. Since time is progressing in uniform steps in a CA, 
the state of each cell is evolved in discrete time steps across the 
geographic space according to its own state, the configuration 
of its neighborhood, as well as some pre-defined local transi- 
tion rules (White and Engelen, 1993). With the neighborhood 
functionalities and contiguity rule, CA can therefore simulate 
the complicated land use change process over time and space 
(Wolfram, 1984) and provide a more accurate simulation of the 
spatial characters (Eastman, 2006). As contended by Tobler 
(1970), it is important to consider the neighboring effects and 
spatial contiguity in land use change modeling. In this research, 
we integrated a CA and a population variable into the Markov 
model through MCE. 

MCE was first developed in regional economics as a deci- 
sion support method for structuring and aiding complex deci- 
sion making processes (Proctor, 2001). In the last two decades, 
the technique is becoming popular, and its application has been 
greatly expanded. Some researchers have integrated it with GIS 
(Carver, 1991) and applied it to land suitability analyses (see, 
for example, the work of Pereira and Duckstein, 1993).  

MCE uses a variety of user-defined criteria, either as a fa- 
ctor or a constraint, which can be represented as map layers in 
a GIS (Eastman, 2006). In this study, the factor used in MCE 
was a population variable, represented as a population density 
map showing the changes in population distribution. Using 
mathematical functions, map algebra, and spatial overlay, MCE 
integrates these criteria, calculates the suitability of each land 
cover category, supervises the spatial allocation of the predic- 
ted time transition probabilities, and displays the results as sui- 
tability maps. When used with the CA-Markov model, MCE 
has the ability to incorporate the impacts of various spatial or 
temporal variables under the complex hierarchical transition 
rules (Zhang et al., 2008). Furthermore, by enabling a spatially 
explicit weighting factor, CA-Markov with MCE method con- 
siders both the factors causing land use change and the proba- 
bilistic randomness. Consequently, MCE can be used to define 
transition rules and to determine the parameter values of a CA 
model (Wu, 2002). The ability of parameterization in MCE is 

ideal because it provides a certain degree of transparency and 
flexibility in the modeling exercise, allowing the balance of di- 
fferent processes and factors to be addressed explicitly. As a 
result, the model can generate more realistic changes in diffe- 
rent cells, improving the simulation of the patterns and spatial 
structure of land use and land cover. Indeed, the CA-Markov 
model is a combined Cellular Automata/Markov chain/Multi- 
criteria/Multi-objective land allocation land cover prediction 
procedure that adds an element of spatial contiguity as well as 
knowledge of the likely spatial distribution of transitions to the 
traditional Markov chain analysis. By aggregating the automa- 
tic Markov chain analysis which computes land cover time tran- 
sition probabilities with the geographic supervised CA analysis 
of spatial contiguity and land cover suitability, the CA-Markov 
can predict any transition among any number of land use cate- 
gories. As a result, it can generate a better spatial pattern of the 
land use categories and can be used for more accurate future 
land use prediction. Many researchers, including Ward et al. 
(2000), Pontius and Malanson (2005), Paegelow and Olmedo 
(2005), Cabral and Zamyatin (2006), Sun et al. (2007), and Ye 
and Bai (2008) found the CA-Markov model to be valuable in 
land use predictions. For example, by using Markov chain, 
MCE, and CA in their land cover modeling of Garrotxes in 
France and Alta Alpujarra Granadina in Spain, Paegelow and 
Olmedo (2005) found that the accuracy of their prediction re- 
sults had greatly improved.  

Both the Markov and CA-Markov models used in this re- 
search are available in the IDRISI Andes software (IDRISI, 
2008), an integrated GIS and image processing software for 
displaying and analyzing spatial information. IDRISI provides 
not only good facilities for map display, map composition, 3D 
visualization, and other common GIS and image processing 
functions, but also a suite of tools and models for cartographic 
and spatial analyses, land use planning, decision support, risk 
analysis, spatial statistical analysis, time-series analysis, and 
surface analysis. The software can be used to predict future 
land use and land cover changes through the Markov stochastic 
model or the CA-Markov modules. Moreover, the validation 
criteria, such as the Relative Operating Characteristics (ROC) 
and the Kappa index of agreement, are available in the soft- 
ware, facilitating easy assessment of model accuracy.  

 

2.4. Development of the EFLMR Watershed Land Use 
Model 

As a pilot study, a Markov land use model for the EFLMR 
basin was developed first. A polygon of the study area was 
obtained from the National Resources Conservation Service 
(NRCS, 2008). Using the polygon as a mask and the extraction 
function in ArcGIS, the environmental data, such as land use, 
topography, and river reaches, for the watershed were extracted 
from meta-datasets. The data were clipped, merged, and mana- 
ged in a GIS. 

To build the Markov land use model for the EFLMR ba- 
sin, three sets of historical land use records were required: two 
would be used to determine the pattern of land use change and 
to “train” the Markov iteration process, and the other set was 
used for validation. A search in the database had found a few 
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Figure 2. EFLMR watershed land use maps from USGS: (a) 
1976 LULC, (b) 1992 NLCD, (c) 2001 NLCD; and projected 
2001 land use maps for the EFLMR watershed: (d) from 
Markov, (e) from CA-Markov with the population variable. 
 
Table 2. Reclassification of the Land Use Categories 

Land Use 
Reclassification* 

Descriptions 

Water body Streams, Lakes, Reservoirs 
Urban area Industrial, Residential, Commercial, 

Transportation, Mixed Urban or Built-up 
Land 

Forests Deciduous forest, Evergreen forest, Mixed 
forest 

Agriculture Crops, Pasture 
Others Wetlands, Barren 
* The original land use datasets were reclassified to five land use cate- 
gories using Anderson Level I classification system: “Water body”, 
“Urban area”, “Forests”, “Agriculture”, and “Others”. 
 
comprehensive and compatible datasets available for the 
EFLMR area: the 1976 Land Use and Land Cover (LULC) and 
the 1992 and 2001 National Land Cover Data (NLCD) from 
the U.S. Geological Survey (USGS). The data from LULC were 
derived from aerial photographs from the Geographic Informa- 
tion Retrieval and Analysis System (GIRAS), whereas the data 
for the NLCD were derived from the 30-m resolution satellite 
imageries from the Multi-Resolution Land Characteristics Con- 
sortium (MRLC). The 1992 and 2001 land use data were the 
retrofit data recently published by USGS, which had been re- 
classified using Anderson I supervised classification and recti- 
fied for changes in elevation. Nevertheless, the resolution and 
the amount of details in the LULC and NLCD imageries were 

different. There was also a dataset from the U.S. Environmen- 
tal Protection Agency for the study area, but it was collected 
by a low-flying airplane with hyper-spectral sensors, and it was 
only for the year of 2002.  

With these constraints, we had decided to use the USGS 
LULC 1976 and the NLCD 1992 land use maps (Figures 2a, b) 
as the training maps and the NLCD 2001 map (Figure 2c) for 
model validation. Although this choice was less than ideal, it 
was the best option available for this stage of model develop- 
ment.  

Since the LULC and NLCD datasets were different, the 
land use classes for all three imageries were re-sampled and re- 
classified into five categories in ArcGIS: (1) Water body, (2) 
Urban area, (3) Forests, (4) Agriculture, and (5) Others (see 
Table 2). The original data were in grid format; so the maps 
were converted to 'TIFF' images. Moreover, they were projected 
into NAD 1983 State Plane Ohio South FIPS 3402 coordinate 
system and were resized to assure conformity in size and di- 
mension with other data sets. 

 

2.4.1. Markov Stochastic Land Use Simulation 

The first land use scenario for the EFLMR study area was 
generated using the Markov stochastic method. The 1976 and 
1992 historical land use maps were imported into the IDRISI 
Markov as the training maps to generate the transition proba- 
bility matrix as well as the probability maps for each land use 
category, which were used later as suitability maps to simulate 
the final prediction.  

To verify model predictability, one can adopt a visual as- 
sessment method (Pontius et al., 2008). However, since it is a 
qualitative approach, it is vulnerable to subjective bias. Ano- 
ther method is to examine the percentage of correctly classified 
pixels of the model output as it is compared to a reference map. 
Notwithstanding its simplicity, the method has some inherent 
problems because this method only compares two images pixel 
by pixel, and it does not consider the spatial patterns of these 
pixels, regardless of whether the correct pixel is found near a 
neighboring pixel or somewhere else in the map. Accordingly, 
a high number of correctly classified pixels may not imply that 
it has a good predictive power (Pontius, 2002). In this research, 
we used ROC to measure the degree of certainty for the suita- 
bility maps. As a method to assess the validity of a scenario, 
ROC compares and measures the degree of agreement between 
the predicted location of an occurrence, which is usually repre- 
sented as a suitability map of a certain land use category, with 
a Boolean image showing where that occurrence actually exists. 
According to Pontius and Schneider (2001), a ROC value hi- 
gher than 0.5 means that there are no statistical significant di- 
fferences between the two compared objects. The only diffe- 
rences are due to randomness. In this model simulation, the 
ROC validation was performed by comparing the 2001 suitabi- 
lity map for the urban area (Figure 3a) with the Boolean image 
derived from the actual 2001 NLCD map of the urban area 
(Figure 3b).  

After ROC validation, the transition probability matrix 
was used in the Markov stochastic model to predict the 2001 
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Figure 3. ROC validation for the EFLMR watershed: (a) the 
urban suitability map generated from Markov, (b) 2001 map 
of the urban area from NLCD; and development of the 2001 
population variable for the EFLMR watershed: (c) 2000 
population density map, (d) 2001 population-coupled urban 
suitability map generated from MCE. 
 
land use of the EFLMR basin. The predicted 2001 land use pa- 
ttern (Figure 2d) was compared to the 2001 USGS NLCD data 
(Figure 2c). Similarities between these two images were com- 
pared using an enhanced Kappa statistic, which discriminates 
both the errors of quantity and errors of location. It is more ac- 
curate than the original Kappa index of agreement, which only 
considers the errors of quantity. As a similarity index of agree- 
ment between two image pairs, Kappa provides a measurement 
of the overall accuracy between the predicted and the actual 
images. The possible values of the statistic range from 0 to 1, 
where 1 depicts perfect agreement, 0 means no agreement be- 
yond that expected by chance, and the value below 0 represents 
complete disagreement (Pontius, 2000). 

For this simulation, the training data sets were derived 
from different media with discordant scales. Nonetheless, the 
ROC value between the suitability map of the 2001 urban area 
and the actual urban area of NLCD imagery was 0.956, and the 
Kappa statistic between the predicted 2001 imagery of the 
EFLMR watershed and the NLCD imagery was 0.819 (see Ta- 
ble 3). Since both results are acceptable, it seems that the errors 
introduced by different sensors and resolutions may not be very 
significant. 

 

2.4.2. CA-Markov Land Use Simulation with a Population 
Variable 

From the aforementioned analysis, it is apparent that the 
Markov land use simulation can successfully predict a reasona- 

ble future land use pattern of the EFLMR watershed. However, 
since the Markov model did not simulate the neighborhood ef- 
fects and geographical contiguity, a CA-Markov model was in- 
troduced to run the same set of data again. In this second simu- 
lation, suitability maps for each land use category derived from 
the Markov model were scaled from 0 to 255 using a linear fu- 
zzy method available in IDRISI. The fuzzy method was used 
to standardize the dataset, recoding the original values to a sui- 
tability range stretching from 0 to 255 (Paegelow and Olmedo, 
2005); a value of 0 indicated the lowest suitability and a value 
of 255 indicated the highest suitability. Moreover, a population 
variant was coupled in the CA-Markov model through the MCE 
method.  

Driven by population growth, many human activities can 
substantially change the land use patterns. The trajectory of ur- 
ban development is therefore affected by the future population. 
These effects of population growth in urbanization and subur- 
ban sprawl are well-documented in literature. As asserted by 
Li et al. (2003) and Liu et al. (2005), demographic change is 
one of the most significant internal factors of urban expansion. 
Tobler (1970) even argued that modelers should take into ac- 
count the impacts of population growth in predicting future ur- 
banization and land use change. de Almeida et al. (2003) de- 
monstrated that by incorporating population density in the com- 
plex land use change analysis, it can improve the predictability 
of the land use model. It is therefore probable that by introdu- 
cing a population variable into the CA-Markov model to por- 
tray the importance of population growth in urban growth and 
land use change, a more realistic suitability map for the urban 
area will be generated. Hence, in this research, a population 
variable was incorporated into the CA-Markov model, and its 
performance was assessed to determine the efficacy of such 
an inclusion.  

 

2.4.3. Formulation of the Population Variable 

To quantify the population variable, the 2000 population 
data were extracted from the census block groups; the year 
2000 was selected to match with the 2001 land use map. The 
area of each census block group was calculated by using the 
“Calculate Geometry” function in ArcGIS, and the density for 
each census block group was computed and converted to a ras- 
ter format. The EFLMR watershed mask was used to extract 
the population density map for the study area. The resultant po- 
pulation density map was then imported from ArcGIS to IDRISI 
through an ASCII file. Using the fuzzy method in IDRISI, the 
population data were scaled from the lowest population density 
(0) to the highest density (255) (Figure 3c). This was necessary 
because the density data were not normally distributed, and th- 
ere was a wide range of values between different census block 
groups. In addition, for the purpose of conformity, all suitabi- 
lity maps derived from the Markov model were standardized 
to a scale from 0 to 255, using the same fuzzy method.  

In order to incorporate the impacts of population growth 
and urban expansion on land use changes into the model as 
well as to compare the accuracy of land use projection, it was 
crucial to prepare another suitability map for the “Urban area” 
land use category with the population variant. To this end, this 
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research used the MCE method as a decision support tool to 
convert the population density layer to a new suitability map 
for the urban area and to depict the trend of population growth 
and urban development for input into the CA module. The wei- 
ght of the population variable in MCE was determined using 
an Analytic Hierarchy Process (AHP) method developed by 
Saaty (1977). Initially, AHP was used to scale ratios based on 
pair-wise comparison, but it is now mainly used for complex 
decision making. In the AHP method, each variable is assigned 
with a value representing its degree of relative importance. Ba- 
sed on these values, the weight of each variable is calculated. 
In this research, two variables were considered: one was the 
urban suitability area, and the other was the population density. 
The values of each variable were assigned through trial and er- 
ror. After numerous attempts, we had finally decided to assign 
the population variable with a weight of 16.67% and the urban 
area variable a weight of 83.33% in MCE because these wei- 
ghts seemed to produce the best results in the validation pro- 
cess. It was further assumed that there would be minimal chan- 
ges in water bodies, and a constraint map was created to depict 
the water bodies. The Weighted Linear Combination (WLC) 
in MCE was used to generate a suitability map for the urban 
area scaling from 0 to 255 (Figure 3d). This was a spatially ex- 
plicit weighting factor denoting the effects of population grow- 
th on urban development. The new suitability map for urban 
area became the population-coupled suitability map.  

 

2.4.4. Performance of the Population-coupled CA-Markov 
Model 

Similar to the earlier Markov analysis, the ROC was used 
to ascertain the effectiveness of the new population-coupled 

CA-Markov model. The agreement between the new popula- 
tion-coupled suitability map of the urban area and the actual 
2001 urban map was evaluated. The results revealed that the 
ROC increased from 0.956 to 0.970 (see Table 3). The impro- 
vement in model performance demonstrated the benefits of in- 
corporating the population variable and CA into the Markov 
land use projections for the mixed urban and rural areas of the 
EFLMR watershed. In light of this result, the new population- 
coupled suitability map of urban area, the CA-Markov model, 
together with the 1976 LULC and 1992 NLCD land use maps 
(Figures 2a, b), were employed to derive the projected land 
use map for 2001 for the EFLMR watershed (Figure 2e). This 
projected 2001 land use map was then compared with the 2001 
USGS NLCD imagery (Figure 2c). The Kappa statistic was  

 
Figure 4. LMR watershed land use maps from USGS: (a) 
1976 LULC, (b) 1992 NLCD, (c) 2001 NLCD; and projected 
2001 land use maps for the LMR watershed: (d) from Markov, 
(e) from CA-Markov with the population variable. 
 

used to compare the predicted 2001 land use map derived from 
the population-coupled CA-Markov with the actual 2001 land 
use map. The results in Table 3 showed a higher Kappa value 
(0.929) than that without the CA and population variable. Due 
to the improvement in model performance, it seems that the 
population-coupled CA-Markov model deserves further inves- 
tigation.  

 

2.5. Development of the LMR Watershed Land Use Model  

The EFLMR watershed is a small sub-basin within the 
LMR watershed. Although the enhanced land use model see- 
med to be reliable, its appropriateness and applicability in a lar- 
ger watershed needed to be assessed. To this end, the model 
was extended to the entire LMR watershed for further valida- 
tion. Following the same procedure as outlined in the EFLMR 
pilot study, a Markov land use model for the LMR watershed 
was developed using the 1976, 1992, and 2001 land use maps 
(Figures 4a, b, and c). 

Table 3. ROC Values and Kappa Statistics for Model Validation 

Models Comparisons ROC Kappa

EFLMR Original suitability map for urban area from Markov without the population variable vs 2001 NLCD urban area 0.956  
New suitability map for urban area from MCE with the population variable vs 2001 NLCD urban area 0.970  
Projected 2001 land use using Markov model vs 2001 NLCD land use  0.819
Projected 2001 land use using CA-Markov model with a population variable vs 2001 NLCD land use  0.929

LMR Original suitability map for urban area from Markov without the population variable vs 2001 NLCD urban area 0.979  
New suitability map for urban area from MCE with the population variable vs 2001 NLCD urban area 0.984  
Projected 2001 land use using Markov model vs 2001 NLCD land use  0.812
Projected 2001 land use using CA-Markov model with a population variable vs 2001 NLCD land use  0.913
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Figure 5. ROC validation for the LMR watershed: (a) the 
urban suitability map generated from Markov, (b) 2001 map 
of the urban area from NLCD; and development of the 2001 
population variable for the LMR watershed: (c) 2000 
population density map, (d) 2001 population-coupled urban 
suitability map generated from MCE. 
 

The 1976 and 1992 base maps of the LMR basin were im- 
ported into IDRISI to calculate the transition matrix between 
each land use class. After running the Markov model, a transi- 
tion area file and a set of five probability images for each land 
use class were created for 2001. For validation purposes, the 
suitability map for the urban area (Figure 5a) was compared 
to the NLCD urban area (Figure 5b). The ROC result was 
0.979. When the suitability maps for all land use classes were 
imported into the Markov model, a projected land use map for 
2001 for the LMR basin was generated (Figure 4d), which was 
then compared with the NLCD 2001 land use image (Figure 
4c). The Kappa statistic for the Markov model was 0.812.  

The next step in the analysis was to incorporate the popu- 
lation variable into the CA-Markov model and to assess the 
performance of this new model. Using the same techniques as 
described earlier, the population density of the LMR watershed 
was calculated based on the 2000 census data, which was fur- 
ther converted into a standardized scaling map (Figure 5c) to 
impart the influence of population distribution and growth as 
a quantitative weight in urbanization.  

The WLC method in MCE was employed again to gene- 
rate a suitability map for the “Urban area” land use category, 
and the population variable was given the same weight as the 
one used in EFLMR pilot study. A new suitability map of the 

 
Figure 6. Development of the 2030 population variable for 
the LMR watershed: (a) 2030 population density map, (b) 
2030 population-coupled urban suitability map generated 
from MCE; and projected 2030 land use map for the LMR 
watershed: (c) from Markov, (d) from CA-Markov with the 
population variable. 
 
urban area for 2001 was generated and imported into the CA- 
Markov model. MCE was used once again to incorporate the 
population variable and to simulate a land use distribution map 
for 2001. Figure 5d shows the urban suitability map for the 2001 
land use projection with the population variable. Figure 4e dis- 
plays the projected land use map for 2001 with the population 
variable after using MCE and CA-Markov. 

The accuracy of the land use projection generated from th- 
is enhanced model was validated using the ROC and Kappa 
statistics. As in the pilot study, both results showed good agree- 
ment between the predicted and the actual land use area in each 
category (Table 3). The projected 2001 land use with the popu- 
lation variant and the CA-Markov model displayed a better 
match with the actual 2001 land use than the projected 2001 land 
use without the population variable and the CA. With these re- 
sults, we are confident that the population-coupled CA-Markov 
model is a reliable model. It should be able to predict the 2030 
land use change in the LMR basin reasonably well. 

 

2.6. Generation of the 2030 LMR Land Use Scenario  

The model verification attested to the advantage of coup- 
ling a population variable with the CA-Markov model in land 
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use projections. The findings of a 0.970 ROC and a 0.929 Kappa 
statistic for the EFLMR watershed and a 0.984 ROC and a 0.913 
Kappa statistic for the LMR watershed indicated an improved 
model reliability and predictability. Based on these validation 
results, the land use scenario for the year 2030 in the LMR wa- 
tershed was generated using the CA-Markov model in conjun- 
ction with the 2030 population variable generated from MCE. 
In order to be able to plan for the future, it is important to have 
a better knowledge of the future land use pattern. The year 2030 
was used because water resources infrastructure often has a 
life-span of fifteen to twenty years; a prediction of the land use 
conditions for the year 2030 will be helpful to resource mana- 
gers and city planners. Besides, this study was a part of a lar- 
ger research project investigating the amalgamated impacts of 
global changes on water resources in which the horizon year 
was set to 2030. Furthermore, the 2030 population data could 
be derived from the official population projection of the Ohio 
Department of Development (2010).  

Following similar procedures, the 2030 land use scenario 
for the LMR watershed was generated using the NLCD 1992 
(Figure 4b) and 2001 (Figure 4c) land use maps as the training 
maps. Both of these datasets were extracted from the NLCD 
metadata sets; they had the same spatial resolution and were 
generated using the same image processing and classification 
methods. The 2030 population data from the Ohio Department 
of Development (2010) were used to calculate the population 
density (Figure 6a) and generate the population variable (Figure 
6b), which was then incorporated into the CA-Markov using 
the MCE. Finally, the CA-Markov model was used in conjunc- 
tion with the 2030 population variable to generate the 2030 land 
use scenario for the LMR watershed (Figure 6d). Accordingly, 
this scenario of land use change was based not only on the in- 
formation of land cover change from 1992 and 2001, but also 
on the projected population growth from 2001 to 2030. Thus, 
this 2030 land use change scenario may be more useful to the 
local planning and management agencies since it also repre- 
sents how population growth may affect urban land use change.  

3. Results 

Before generating the 2030 land use scenario for the LMR 
watershed, two models were examined: the Markov model and 
the CA-Markov model with a population variable. As a valida- 
tion process, these two models were used to generate the 2001 
land use maps for the EFLMR and LMR watersheds, and the 
results were compared with the 2001 NLCD maps. As shown 
in Table 3, the results from the CA-Markov model coupled wi- 
th the population variable were better, with higher values for 
the Kappa and ROC statistics, revealing a higher degree of mo- 
del performance and confidence level.  

In the pilot study, the projected 2001 land use map of the 
EFLMR basin by Markov model was based on the transition 
probability matrix. Since it was generated by a stochastic pro- 
cess, it did not take into account the spatial distribution and con- 
tiguity of the land use categories. Consequently, the model out- 
put did not reflect the spatial characteristics of the land use nor 
the geographical relationships. As the main objective of this stu-  

Table 4. Projected Land Use Changes in the LMR Basin by 
Different Categories in 2030 

Land use (sq km) 
 

 
1992 

Year 
2001 

 
2030 

Water body 40.574 44.105 83.750 
Urban area 775.039 809.582 1025.246
Forests 1098.124 1076.452 1048.795
Agriculture 2574.744 2555.441 2309.318
Others 60.196 63.096 81.680 

 

dy was to postulate the future land use pattern of an urbanizing 
watershed, a better representation of the spatial pattern of urban 
growth was desirable. The CA-Markov model considered the 
spatial contiguity and the neighboring effects of each pixel in 
the land use map, generating a more geographically-based pro- 
jection. By taking advantage of the CA, a spatially more expli- 
cit result was generated, enhancing the predictability of urban 
growth. Moreover, by coupling a population variable in the 
CA-Markov model through MCE, the effects of population gr- 
owth on urbanization were modeled. The performance of this 
new model was quantitatively ascertained by comparing the si- 
mulated 2001 land use map with the data from the historical 
2001 land use map. As evidenced by the Kappa and ROC values, 
the 2001 EFLMR land use map produced by the population- 
coupled CA-Markov model was more satisfactory; there was 
a marked improvement in model performance with ROC of 
0.970 and Kappa statistic of 0.929. A visual comparison of the 
2001 population-coupled CA-Markov model results with the 
2001 NLCD imagery of the EFLMR revealed that the model 
was able to capture the urbanization process, even in this small 
predominately agricultural watershed.  

When this enhanced land use model was extended to LMR 
basin, similar results were attained. The 2001 LMR land use 
map produced by the population-coupled CA-Markov model 
had a ROC of 0.984 and a Kappa of 0.913, which were higher 
than that without the population variable and the CA. These re- 
sults confirmed that by incorporating the growth of population 
as a variant affecting urban area expansion into CA-Markov, 
the model performance had markedly improved. They also pro- 
ved that this new population-coupled CA-Markov land use 
model was reliable even in a larger watershed. In terms of per- 
formance, this new model was certainly more advantageous th- 
an the traditional Markov chain, as it provided a more accurate 
land use prediction. These results also asserted that the adopted 
approach was appropriate in this study area where urban deve- 
lopment is driven by population growth.  

The simulated 2030 LMR land use scenario showed a sub- 
stantial decrease in agricultural lands and an increase in urban 
areas. The change in the land use pattern was more evident th- 
an that projected by using the Markov stochastic model (Figure 
6c), which depicted a smaller urban area. When GIS was em- 
ployed to calculate the area extent of each land use category 
from the maps, it indicated that the new urban area would in- 
crease from 809.582 km2 in 2001 to 1025.246 km2 in 2030 
(Table 4). A more extensive urban area was predicted to occur 
on the western and southern sides of the LMR watershed and  
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Population density map 
of the projected year 

2030 

Markov suitability map 
for urban area of the 
projected year 2030 

 
Figure 7. Schematic diagram showing the framework for 
building the modified population-coupled CA-Markov model 
to predict the 2030 land use pattern in the LMR basin. 
 

along the major transportation thoroughfares (Figure 6d). Con- 
versely, the agricultural land would decrease from 2555.441 
km2 to about 2309.318 km2. These results were reasonable, 
concurring with our expectation based on the trend of recent 
developments.  

4. Discussions and Conclusions 

This study described a procedure used to develop a modi- 
fied population-coupled CA-Markov model for generating a 
future land use change scenario for the LMR watershed. Alth- 
ough researchers, such as Paegelow and Olmedo (2005), Cabral 
and Zamyatin (2006), and Sun et al. (2007), had used CA-Mar- 
kov in their land use modeling, they did not consider popula- 
tion growth as a socio-economic driving force of urban deve- 
lopment and land use change. Ward et al. (2000) had used slope, 
distance from roads, and distance from population centers as 
constraints. de Almeida et al. (2003) had integrated various so- 
cio-economic and infrastructural factors in their land use mode- 
ling. However, both studies did not incorporate the population 
variant in their models as well. To address this gap, the modi- 
fied CA-Markov model in this research was based on not only 
the stochastic change but also the neighboring effects of popu- 
lation growth, providing information on both the uncertainty 
and the geographic patterns of the future land use change. Quan- 
titative assessment results through model validation from the 
2001 land use data for both the EFLMR and LMR watersheds 
indicated that the use of this population-coupled CA-Markov 
model was appropriate, as it had enhanced the performance of 
the Markov model, increasing the predictability and the reliabi- 
lity of the model results.  

Overall, the proposed modeling approach was effective in 
simulating land use changes. It was convenient to use, as it could 

operate in the commonly used GIS environment. Moreover, it 
was capable of GIS and spatial analyses. Additionally, since the 
methodology was based on an available GIS package, IDRISI, 
the approach could be easily adapted by other researchers to 
model other geographic areas. Therefore, this study had provi- 
ded an easy and more accurate approach to land use prediction. 
The study also affirmed the advantage in considering the effects 
of spatial contiguity and population growth in land use mode- 
ling. These results may contribute to the scientific community 
in land use modeling, as other researchers and practitioners 
may find the tool and the concepts useful.  

Nonetheless, one should note that this modeling exercise 
was based on historical processes of land use change and the 
predicted population change. It did not consider other factors, 
such as future climate change, extreme climate conditions, or 
city planning policy and development strategies fluctuations. 
One therefore has to use the simulation results with caution as 
they can only provide a future land use scenario. 

Using the enhanced model, we also predicted the land 
use pattern for the year 2030 in the LMR watershed. For easy 
reference, the framework of the procedure used in developing 
the 2030 land use scenario is depicted in Figure 7. The 2030 
land use map showed a more realistic land use pattern with 
more urban development in the western and southern portions 
of the watershed. This land use map can provide useful infor- 
mation to researchers. For instance, they can use the map in 
their studies of global changes. The 2030 land use map may 
also be used as an input parameter in hydrologic and water 
quality modeling to predict the future conditions in water re- 
sources. Moreover, the 2030 land use scenario can provide 
better information to facilitate government agencies, policy 
makers, and urban planners in their decision makings, ena- 
bling them to make appropriate sustainable development 
strategies, adaptation programs, and mitigation measures for 
environmental protection in the future. To cite an example, 
under the projected land use changes, there will be large 
aggregates of urban land use in the western portion of the 
LMR watershed. With these new urban developments, a series 
of environmental problems are likely to occur, including ur- 
ban heat island effect and micro-climate change, non-point 
source pollutant loading, and increased water usage and 
wastewater discharges, which may pose new challenges to the 
future management of surface water quality and ecological 
functions in the watershed. To ensure sustainable development, 
new comprehensive planning and management schemes have 
to be derived (Pielke et al., 2007). The 2030 land use scenario 
generated from this study may be helpful in providing the 
necessary information for such an endeavor. 
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