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ABSTRACT.  The water shortage problems have become main obstacles for sustainable socio-economic development of many cities. 
There was an urgent need to develop effective decision-support tools for supporting water-supply schemes under multiple uncertainties. 
In this study, an interval-parameter stochastic chance-constrained programming (IPSCCP) model was developed for urban water 
supply system. It integrated stochastic chance-constrained programming (SCCP) and interval linear programming (ILP) into a general 
optimization framework. IPSCCP could deal with uncertainties expressed as both discrete intervals and probability distributions; 
meanwhile, it was also useful for helping analyze the reliability of satisfying system constraints. A multi-layer urban water supply 
system, including water resources, collection and treatment facilities, reservoirs, and consuming zones, was used to demonstrate the 
feasibility and applicability of proposed method. The results indicated that IPSCCP was capable of helping understand the effects of 
uncertainties and was useful for urban water managers to gain an in-depth insight into the tradeoffs between system cost and reliability 
of constraints satisfaction. The study would be a new attempt in advancing an integrated uncertainty-analysis tool for urban water 
supply system. It was also suggested that other uncertain approaches are integrated into an IPSCCP framework for reflecting more 
complex conditions. 
 
Keywords: urban water resources management, stochastic chance-constrained programming, interval linear programming, uncertainty, 
optimization

 
 

 

1. Introduction 

The shortage of water resources has become main obsta- 
cles for sustainable socio-economic development in many ci- 
ties over decades. Currently, about 700 million people in the 
world live below the benchmark, which is a threshold for main- 
taining the operation of socio-economic and environmental 
system; this figure is expected to reach 3 billion by 2025 as 
water stress intensifies (Human Development Report, 2006). 
The water shortage problems were mainly caused by the increa- 
se of water demand due to rapid population growth, develop- 
ment in industrial and agricultural production, and shrinkage 
of water supplies. It is thus necessary to develop effective deci- 
sion-support tools for supporting urban water supply manage- 
ment system (Yang et al., 2005; Ping et al., 2010; Fattahi and 
Fayyaz, 2010). However, the system is complicated with un- 
certainties that may exist in many system components and th- 
ese complexities are further compounded by interactions among 
various system parameters. This would bring significant diffi- 
culties in formulating the management models and generating 
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effective solutions. Therefore, based on a comprehensive wa- 
ter supply system framework, the incorporation of effective 
uncertain optimization methods is desired to help evaluate the 
effects of various urban water management policies. 

During the past decades, many inexact optimization meth- 
ods were developed to describe and tackle uncertainties asso- 
ciated with various management system (Slowinski, 1986; 
Jenkins and Lund, 2000; Liu et al., 2007a,b, 2008; Xi et al., 
2008; Liu et al., 2009; Sun and Huang, 2010; Xu and Qin, 2010; 
Cao and Huang, 2011; Huang and Cao, 2011; Qin, 2011). The 
majority of these methods were related to stochastic mathema- 
tical programming (SMP), fuzzy mathematical programming 
(FMP) and interval linear programming (ILP). For example, 
Wilchfort and Lund (1997) developed a shortage management 
model, where a two-stage stochastic programming was used 
to tackle the uncertainties involved in cost and hydrologic as- 
pects. The model was expanded in several case studies and has 
advantage in incorporating the effects of the seasonal shortages 
and uncertainties related to long-term and short-term manage- 
ment options. Bender and Simonovic (2000) proposed a fuzzy 
compromise approach for supporting water sources planning 
under uncertainty, where fuzzy ranking measures was used to 
reflect the decision maker’s attitudes to the risk and determine 
the importance of different decision alternatives. These studies 
demonstrated that FMP and SMP are suitable in describing and 
handling uncertain information in water management systems. 
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FMP is mainly used to reflect the ambiguous coefficients and 
relations in optimization models as well as the vague informa- 
tion of decision makers’ implicit knowledge through expert 
consultation or public survey. SMP was used to tackle the sto- 
chastic uncertainties expressed as random variables with pro- 
babilistic distribution functions (PDFs) based on complete long- 
term historical records. However, the process of collecting and 
analyzing the above information of both two methods is time- 
consuming and requires additional manpower in many practi- 
cal applications. Moreover, it is also difficult to solve a large- 
scale SMP or FMP model, even though such information is 
available. 

ILP, which was proposed by Huang et al (1992), was inte- 
grated with other inexact methods and was extensively applied 
in water resources management fields. For example, Huang and 
Loucks (2000) developed an inexact two-stage stochastic pro- 
gramming method which could tackle uncertainties expressed 
as the discrete intervals and random variables. The reasonable 
solutions have been obtained. Li et al. (2009) proposed an in- 
exact multistage joint-probabilistic programming method for 
tackling uncertainties presented as interval values and joint pro- 
babilities. The results demonstrated that reasonable solutions 
for continuous and binary variables had been generated. From 
previous studies, it was indicated that integrated uncertain me- 
thods were more suitable in tackling real-world problems wh- 
ere ILP was a good complement for FMP and SMP, especially 
when available uncertain information was limited. However, 
the structure and components of water resources management 
system tended to be simplified in order to better describe and 
reflect the characteristics of uncertain method. This would af- 
fect its feasibility and applicability in real-world applications.  

Based on the facts mentioned above, this study aims to de- 
velop an interval-parameter stochastic chance-constrained pro- 
gramming (IPSCCP) model and apply it to an urban water su- 
pply system under multiple uncertainties. The proposed model 
can effectively deal with uncertainties expressed as not only 
probabilistic distributions but also discrete intervals. It allows 
some constraints with random variables are satisfied at a pre- 
scribed range of probability levels. A variety of cost-effective 
interval solutions can be obtained. An urban water supply ma- 
nagement case will be used to demonstrate the applicability of 
the proposed method. The objective entails: (i) formulation of 
an IPSCCP model based on both SCCP and ILP models; (ii) 
application of the developed model to an urban water supply 
management case; (iii) analysis of the results and discussion 
of the model applicability. 

2. Methodology 

2.1. Stochastic Chance-constrained Programming  

Stochastic Chance-constrained programming (SCCP), as 
a main SMP approach, is advantageous that it does not require 
all of the constraints be absolutely satisfied. Instead, they only 
need to be satisfied at a prescribed range of probability levels, 
such that a variety of cost-effective solutions are generated 
(Loucks et al., 1981). A general SCCP model can be written 
as follows (Charnes et al., 1972): 

1

  
J

j j
j

Minimize f c x


    (1a) 

 
Subject to: 

 

1

( ) ,
J

r ij j i z
j

P s a x b s q i


       
    
   (1b) 

 
0,jx j    (1c) 

 

, 0, ,ij ijc a i j    (1d) 

 
where j is the index of decision variables, where j = 1, 2, ..., J, 
and J is the total number of decision variables;

 
i is the index of 

chance-constraints, where i = 1, 2, …, I, and I is the total num- 
ber of chance-constraints; z is the index of acceptable probabi- 
lity levels of constraints satisfaction, where z = 1, 2, …, Z, and 
Z is the total number of given probability level; xj are determi- 
nistic decision variables bi(s) is the random numbers with pro- 
bability distribution functions p(s); cj and aij are deterministic 
coefficients, respectively;  rP  denotes probability of events 
in   ; qz is acceptable probability levels. Theoretically, it is po- 
ssible that the probability level of satisfying random constraints 
could be any value ranging from 0 to 1. In fact, a low proba- 
bility level means that the random constraints can hardly be sa- 
tisfied and this could lead to an increase of system-failure risk. 
Under such a case, the feasibility and reliability of the obtained 
solutions would decrease. In real-world applications, the ben- 
chmark values of qz are normally set by the decision maker at 
0.8 or 0.9. In model (1), Equation (1a) is an objective function 
with deterministic coefficients and decision variables. Equation 
(1b) is a chance-constraint with random parameters in the right- 
hand side and crisp parameters in the left-hand side, respecti- 
vely. Equations (1c) and (1d) are technical constraints, respec- 
tively. According to (Charnes et al., 1972), the chance-constr- 
aint (1b) can be transformed to their respective crisp equiva- 
lents: 

 

1

1

,z

J
q

ij j i
j

a x b i



    (2a) 

 
1 1( ( )) ,zq
i i i zb F b s i q  ，   (2b) 

 
where Fi

-1(bi) is given the cumulative distribution functions 
(CDFs) of bi, i.e. [Fi(bi)]. According to Cheng et al. (2009), the 
constraints (1b) can be transformed to their respective crisp 
equivalents (2) only for some specific distributions and certain 
levels of pi, such as the cases when (i) aij are deterministic and 
bi are random (for all pi values); (ii) aij and bi are discrete ran- 
dom coefficients; (iii) aij and bi have Gaussian distributions. 
In this paper, aij are deterministic and bi are random, such that 
constraint (1b) can be transformed into (2). Finally, the deter- 
ministic objective function values and decision variables (i.e. 
fopt and xj,opt ) at different probability levels can be obtained. 
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2.2. Interval Linear Programming  

Interval linear programming (ILP), which is based on in- 
terval number theory, was firstly proposed by Huang et al. 
(1992). In a typical ILP model, all or part of the model para- 
meters expressed as interval numbers can be directly incorpo- 
rated within its optimization process and resulting solution. 
Referring to Huang et al. (1992), an ILP model can be written 
as follows: 

 

1

  
J

j j
j

Minimize f c x  



    (3a) 

 
Subject to: 
 

1

J

ij j i
j

a x b i  



  ，   (3b) 

 
0,jx j     (3c) 

 
, 0, ,ij ijc a i j      (3d) 

 
where jx  is a vector of decision variables expressed as inter- 
val numbers; ija , ib and jc are interval-format vectors of 
coefficients in objective function and constraints. The term 
“interval number” is expressed as [ , ]ij ij ija a a    where ija

 and ija  are
 
lower and upper bounds of ija , respectively. As 

proposed by Huang et al. (1992), the interactive two-step me- 
thod can be used to solve model (3). Finally, the objective va- 
lue and decision variables as discrete intervals are obtained, 
being ,opt opt optf f f      and , , ,,j opt j opt j optx x x      , respectively. 

 

2.3. Interval-parameter Stochastic Chance-constrained 
Programming 

In many real-world problems, it is very difficult to find th- 
at all uncertain variables are presented as uniform uncertain 
format. Therefore, the system uncertainties should be tackled 
by various uncertain analysis methods based on uncertain pro- 
perties and quality of available data information. ILP is capa- 
ble of handling the boundary uncertainties with lower data re- 
quirement than those of SCCP; however, it may become infea- 
sible when the right-hand side parameters in constraints are hi- 
ghly uncertain. To realize optimal objective function values, 
the constraints should be satisfied within an acceptable range. 
SCCP can effectively handle the above problems. Therefore, 
an interval-parameter stochastic chance-constrained program- 
ming (IPSCCP) model is proposed and is formulated as fol- 
lows: 
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J

j j
j

Minimize f c x  



    (4a) 

 
Subject to: 
 

 
Figure 1. General framework of IPSCCP. 
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0,jx j     (4c) 

 
, 0, ,j ijc a i j      (4d) 

 
where all coefficients and variables in the objective function 
(4a) is presented as interval numbers. Eqution (4b) is the con- 
straint with interval and random variables. Based on Eqs (2), 
the constraint (4b) can be transformed into the interval-format 
constraints as follows: 

 

1

1

,z

J
q

ij j i
j

a x b i 



    (5) 

 
where 1 1( ( ))zq

i i ib F b s   and Fi
-1(bi) is given the cumulative 

distribution functions (CDFs) of bi, i.e. [Fi(bi)]. As a result, 
model (4) can be transformed into a general ILP models. As pro- 
posed by Huang et al. (1992), the solution for ILP model can 
be obtained through a two-step method. A sub-model corres- 
ponding to f - (when the objective function is to be minimized) 
is first formulated and solved, and then the relevant sub-model 
corresponding to f + can be formulated based on the solution 
from the first sub-model. Finally, the objective values and de- 
cision variables expressed as discrete intervals at various acce- 
ptable levels of constraints satisfaction will be obtained. Fi- 
gure 1 shows the general framework of an IPSCCP model. The 
detailed procedures of formulating and solving the model are 
summarized as follows: 

Step 1: Identify the uncertain variables and acquire the related 
probabilistic distribution and discrete-interval information. 

Step 2: Formulate an IPSCCP model. 

Step 3: Convert the stochastic chance-constraints to their res- 
pective crisp equivalents. 

Step 4: Reformulate and solve sub-model one, which corres- 
ponds to f   if the objective function is to be minimized;  
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Step 5: Formulate and solve sub-model two, which correspon- 
ds to f  , based on the obtained solutions from f  ; 

Step 6: Generate the final solutions of ,opt opt optf f f       and 
,opt opt optx x x      .  

 

 
Figure 2. Integrated urban water supply management system. 

3. Case study 

3.1. Overview of the Study Case  

In this study, an urban water supply system case will be 
used for demonstrating the applicability of proposed method. 
This case was adapted from the real case discussed by Fattahi 
and Fayyaz, (2010). The water shortage problem of research 
region is intensified by unequal distribution of rainfalls in di- 
fferent seasons and continuous decreasing of the rainfalls in re- 
cent years. It is necessary to develop effective tools for assis- 
ting urban water service providers and government agencies 
to generate rational water resources management scheme based 
on a comprehensive management framework of urban water 
supply system.  

Figure 2 shows the general diagram of the water supply 
system, which is a water supply network with four layers, in- 
cluding water sources, treatment facilities, storage facilities and 
water users. Many nodes representing sub-components with si- 
milar characteristics are included in each layer. For example, 
the municipal, agricultural and industrial sectors belong to the 
layer of water users. In a typical water supply network, some 
optional water-distribution paths are needed to be prescribed 
by local authorities, and they are reflected by the lines linking 
the nodes in different layers. The operation process of the wa- 
ter supply system is that the available water from the two re- 
sources (i.e. surface water and groundwater) should firstly be 
collected and transferred to treatments for purifying. Then the 

purified water are transported to the reservoirs and finally pum- 
ped to consuming zones. The water managers are responsible 
for solving the following problems: how much water must be 
extracted and supplied from each water resources during the 
planning periods? How much water can be treated by different 
treatment plants? How much water can be transferred to reser- 
voirs subjected to the limitation of their storage capacities and 
requirement from the consuming zones? Which paths can be 
used in entire water supply system? To tackle such problems, 
optimization models are needed. 

Many system parameters in water supply system, such as 
water demand amounts from consuming zones, available water 
amounts from water resources, purified and stored capacities 
of treatment plants and reservoirs may appear uncertain. Gene- 
rally, the water demand amounts of consuming zones, the sto- 
rage capacities of reservoirs, the treatment capacities of treat- 
ment plants and maximum extracted water amounts from two 
water resources own long-term historical record for generating 
the PDFs, thus they may be assumed as random variables. Ta- 
ble 1 shows the water demand amounts at one year. Other pa- 
rameters, such as the inventory amounts of the water resources, 
treatments and reservoirs during the first period, and the cost 
of purchase, transfer and treatment suffer from a lack of com- 
plete data survey and record. These parameters are more suita- 
ble to be described by discrete intervals. Table 2 shows the in- 
ventory amounts and maximum capacities of water resources, 
treatments and reservoirs, respectively.  

 

3.2. Formulation of an IPSCCP Model  

Based on the general IPSCCP model, a specific water su- 
pply model for the research region can be formulated as fol- 
lows (Fattahi and Fayyaz, 2010): 

Objective function: 
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Consuming constraints: 
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Reservoirs constraints: 
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Table 2. Information of the Water Resources, Treatment 
Plants and Reservoirs  

Information of water 
resources 

Beginning 
inventory (×103 m3) 

Maximum 
capacities (×103 m3)

Dam  [15000, 19000] (4600, 480) 
Well [2050, 2950] (3800, 365) 

Information of 
treatment plants 

Beginning 
inventory (×103 m3) 

Maximum 
capacities (×103 m3)

Treatment plant 1 [5, 7.5] (1900, 220) 
Treatment plant 2 [10, 13] (3400, 245) 
Treatment plant 3 0 +∞ 
Treatment plant 4 0 +∞ 

Information of 
reservoirs 

Beginning 
inventory (×103 m3) 

Maximum 
capacities (×103 m3)

Reservoir 1 [16, 26] (4500, 420) 
Reservoir 2 [6.5, 13.5] (720, 60) 
Reservoir 3 [1, 3.5] (230, 15) 
Reservoir 4 [6.5, 13.5] (440, 35) 
Reservoir 5 [2, 4.5] (230, 15) 
Reservoir 6 [22, 38] (700, 50) 
Reservoir 7 [4, 6.5] (440, 35) 

*[a1, a2] represents the interval numbers where a1 and a2 are the lower and 
upper bounds, respectively; (m1, d1) represents the random variables 
where m1 and d1 are the mean values and standard deviation value, 
respectively. 

1 1 1
1 1

(1 )* ,
T Z

r r tr tr rz
t z

IR IRO LXT XTR XRZ r    

 
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Treatment constraints: 
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Water resources constraints: 
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Table 1. Water Demand of the Consuming Zones (×103 m3) 

 Parameters z = 1 z = 2 z = 3 z = 4 z = 5 z = 6 z = 7 

k = 1 Mean value 794.59 190.97 146.02 295.77 101.97 168.31 153.54 
Standard deviation 15.29 11.73 10.31 19.70 10.33 14.03 10.73 

k = 2 Mean value 748.57 179.76 137.76 278.07 96.66 159.51 141.74 
Standard deviation 14.37 10.98 9.67 18.43 9.74 13.23 9.83 

k = 3 Mean value 760.37 182.71 140.12 282.79 98.43 161.87 144.69 
Standard deviation 14.61 11.18 9.86 18.77 9.94 13.44 10.05 

k = 4 Mean value 748.57 179.76 137.76 278.07 96.66 159.51 141.74 
Standard deviation 14.37 10.98 9.67 18.43 9.74 13.23 9.83 

k = 5 Mean value 783.38 188.02 143.66 291.05 100.79 166 150.59 
Standard deviation 15.07 11.53 10.13 19.36 10.20 13.82 10.51 

k = 6 Mean value 886.63 212.8 161.95 329.99 112.59 185.47 177.14 
Standard deviation 17.13 13.19 11.53 22.14 11.51 15.59 12.55 

k = 7 Mean value 644.14 154.98 120.06 239.13 84.86 139.45 115.78 
Standard deviation 12.28 9.33 8.31 15.65 8.43 11.40 7.83 

k = 8 Mean value 760.37 182.71 140.12 282.79 98.43 161.87 144.69 
Standard deviation 14.61 11.18 9.86 18.77 9.94 13.44 10.05 

k = 9 Mean value 840.61 201.59 153.69 312.88 107.28 176.62 165.34 
Standard deviation 16.21 12.44 10.90 20.92 10.92 14.78 11.64 

k = 10 Mean value 955.66 229.32 173.75 356.54 120.85 199.04 194.25 
Standard deviation 18.51 14.29 12.44 24.04 12.43 16.82 13.87 

k = 11 Mean value 921.44 221.06 167.85 342.97 116.72 192.55 185.99 
Standard deviation 17.83 13.74 11.99 23.07 11.97 16.23 13.23 

k = 12 Mean value 875.42 209.85 159.59 325.86 111.41 183.7 174.19 
Standard deviation 16.91 12.99 11.35 21.85 11.38 15.43 12.32 

*z represents the consuming zones; k represents the month. 
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Leakage rate constraints: 
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Technical constraints: 

 
0, 0, 0, , , , ,jtk trk rzkXJT XTR XRZ j t r z k        (6p) 

 
where f is net system cost ($); k (k = 1, 2, …, K) is index of ti- 
me periods where K is number of time periods; j, t, r and z (j = 
1, 2, ..., J; t = 1, 2, …, T; r = 1, 2, …, R; z = 1, 2, …, Z) are in- 
dexes of specific water resources, treatment plants, reservoirs 
and consuming zones, respectively; J, T, R and Z are numbers 
of water resources, treatment plants, reservoirs and consuming 
zones; BJjk is the recovered water for each water resource j in 
each season k (m3); CJTjt, CTRtr and CRZrz are the transferred 
cost of water from water resources j to treatment plants t, from 
treatment plants t to reservoirs r and from reservoirs r to con- 
suming zones z, respectively ($); Dzk is the amount of water re- 
quired for consuming zone z in season k (m3); IROr and IRrk are 
the inventory of each reservoir r at the first of the planning ho-  

rizon and the end of each season k, respectively; ITOt and ITtk 
are the inventory of each treatment t at the first of the planning 
horizon and the end of each season k, respectively (m3); IROj 

and IRjk are the inventory of each water resource j at the first 
of the planning horizon and the end of each season k, respec- 
tively (m3); LXJjt, LXTtr and LXZrz are the leakage rate of water 
in network from water resources j to treatments t, treatments t 
to reservoirs r and reservoirs r to consuming zone z, respecti- 
vely (%); MJjk is the maximum amount of water can be exited 
from water resources j at each season k (m3); PRjk is the pur- 
chasing cost of water from water resources j at each season k 
($); qz is acceptable level of constraints-satisfaction. TL is the 
allowed maximum leakage amounts (m3); VRrk and VTtk are the 
capacity of reservoirs r and treatment t at each season k (m3); 
XJTjtk, XTRtrk and XRZrzk are decision variables representing the 
amount of water transferred from water resources j to treat- 
ments t, from treatments t to reservoirs r and from reservoirs r 
to consuming zones z at each season k, respectively (m3); ZRZrz, 
ZJTjt and ZTRtr are binary variables (i.e. expressed as 1 or 0, re- 
presenting yes or no answers) used to define paths from reser- 
voirs r to consuming zone z, from water resources j to treat- 
ments t and from treatments t to reservoirs r, respectively. Ba- 
sed on model (4), the chance-constraints in model (5) (i.e. con- 
straints 5b, 5g, 5k and 5n) can be transformed to their respecti- 
ve crisp equivalent as follows: 

Table 3. Part of the Water Amounts Allocated from Water Sources to Treatment Plants at Different Probabilistic Levels (×103 m3) 

 

Acceptable levels 

p = 0.9   p = 0.95   p = 0.99   
j = 1 j = 2  j = 1 j = 2  j = 1 j = 2  
t = 1 t = 2 t = 4 t = 1 t = 2 t = 4 t = 1 t = 2 t = 4 

1 1093.69 [1683.30, 
2131.57] 

3332.23 1157.46 [1689.32, 
2272.58] 

3199.63 1172.41 [2074.02, 
2310.94] 

2950.88 

2 [0, 504.59] [672.47, 
812.32] 

[0, 726.46] [0, 402.14] [687.56, 
701.73] 

[0, 886.85] [0, 583.49] [342.45, 
549.23] 

[0, 1187.69]

3 [1100.14, 
1232.35] 

[684.61, 
1066.05] 

[976.24, 
2007.96] 

[531.88, 
1054.54] 

[713.00, 
1134.13] 

[1138.39, 
2021.64] 

[1177.11, 
1480.96] 

[812.89, 
1433.05] 

[1442.54, 
2047.30] 

4 [0, 232.36] [1668.76, 
2088.76] 

[1408.61, 
1976.77] 

[1292.86, 
1426.90] 

[1380.43, 
1545.27] 

[1418.20, 
1990.23] 

[0, 5.94] [1706.13, 
2117.19] 

[1436.19, 
2015.47] 

5 [569.66, 
744.61] 

[706.71, 
1288.71] 

[1474.18, 
2068.79] 

[139.71, 
191.54] 

[722.63, 
1216.90] 

[1484.23, 
2082.90] 

[609.62, 
831.50] 

[752.48, 
916.76] 

[1503.09, 
2109.36] 

6 [642.49, 
879.51] 

[847.48, 
1023.91] 

[1668.66, 
2341.72] 

[367.90, 
568.80] 

[1223.17, 
1602.89] 

[1680.09, 
2357.76] 

[687.94, 
941.47] 

[1014.69, 
1525.78] 

[1701.54, 
2387.85] 

7 [1028.07, 
1244.70] 

[858.96, 
990.96] 

2642.74 [1275.07, 
1556.01] 

[879.33, 
1158.13] 

2660.68 [1452.10, 
1770.40] 

[917.53, 
1208.89] 

2694.34 

8 [0, 216.37] [1019.99, 
1339.60] 

[0, 1065.95] [365.95, 
743.96] 

[1044.51, 
1372.10] 

[0, 1073.19] [0, 361.11] [1090.51, 
1433.05] 

[0, 1086.76]

9 [609.60, 
1082.05] 

[1130.36, 
1982.17] 

[1581.98, 
2220.07] 

744.61 [1157.73, 
2054.59] 

[1592.79, 
2235.25] 

[367.09, 
470.49] 

[1209.06, 
1865.46] 

[1613.09, 
2263.72] 

10 [1694.31, 
1754.61] 

[2102.40, 
2230.25] 

3332.23 [0, 220.29] [2131.73, 
2369.01] 

3199.63 1093.95 2389.40 2950.88 

11 [0, 372.76] [432.18, 
736.13] 

[200.68, 
2290.23] 

[683.22, 
1174.78] 

[464.66, 
625.83] 

[357.54, 
2461.41] 

[318.58, 
967.16] 

[525.59, 
884.73] 

[651.77, 
2782.53] 

12 297.42 [1179.40, 
1397.90] 

1647.55 649.47 [1208.04, 
1452.67] 

1658.83 653.41 [1059.08, 
1654.51] 

1679.99 

*Water amounts transferred from water resources to treatment plant 3 are zero; t represents the treatment plants; the numbers (e.g. 1, 2, …, 12) represents 
months. 
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Finally, the transformed ILP models can be formulated and 
solved, such that the objective values and decision variables 
expressed as discrete intervals at various probability levels will 
be obtained. 

4. Result Analysis 

Tables 3 to 5 present the solutions at some acceptable pro- 
bability levels of constraints satisfaction (i.e. 0.9, 0.95 and 
0.99) obtained through IPSCCP model. Figures 3 and 4 show 
obtained solutions of decision variables and objective function 
values at various probability levels. The related solutions indi- 
cate that the water supply patterns are affected by multiple fac- 
tors. 

Firstly, the objective function values and part of the deci- 

sion variables from IPSCCP would be presented as discrete in- 
tervals. As shown in Figure 4, at a probability level of 0.9, the 
objective function value (i.e. total system cost) would range 
from 38.68 to 74.26 (× 106) dollars. The lower bound of the 
objective function represents an optimal decision scheme with 
the lowest cost; correspondingly, the obtained decision varia- 
bles of water amounts transferred among different layers would 
reach their lower bounds. Conversely, the solution correspon- 
ding to the higher bound of system cost is of conservative con- 
sideration where the alternatives with higher supplied amounts 
would be generated to satisfy the strict requirements of the wa- 
ter users. Based on obtained interval solutions, a variety of al- 
ternatives can be generated through adjusting within their solu- 
tion intervals. Considering extensive uncertainties exist within 
the urban water supply system, the decision variables presented 
as discrete intervals are more flexible and suitable to generate 
the effective decision alternatives.  

The obtained solutions from Tables 3 to 5 also demonstrate 
that under a fixed probability level, the prescribed transferring 
routines by local managers are main factors for determining 
water supply schemes. The investigation results of the water 
supply network show that the water from the treatment plant 1 
must be transferred to the reservoirs 2, 3 and 5, respectively. 
The water from the treatment plant 2 must be transferred to the 
reservoirs 4, 6 and 7, respectively. Moreover, the leakage rates 
also have notable influences on the planning results. From Ta-  

Table 4. Part of the Water Amounts Allocated from the Treatment Plants to Reservoirs at Different Probabilistic Levels (×103
 m3)

k 

Acceptable levels 
p = 0.9 p = 0.95 p = 0.99 
t = 2 t = 2 t = 2 
r = 4 r = 6 r = 7 r = 4 r = 6 r = 7 r = 4 r = 6 r = 7 

1 [519.86, 
656.81] 

[988.29, 
1231.94] 

[171.31, 
188.87] 

[531.76, 
796.52] 

[978.20, 
1224.51] 

[175.46, 
193.37] 

[923.75, 
1013.00] 

[959.29, 
1044.51] 

[183.24, 
194.11] 

2 [501.65, 
623.85] 

0 164.10 512.79 0 167.89 [164.01, 
350.05] 

0 [175.01, 
182.71] 

3 [510.22, 
634.50] 

[0, 224.66] [167.54, 
174.91] 

[521.56, 
648.60] 

[12.89, 
272.54] 

[171.43, 
178.96] 

[542.83, 
675.06] 

[83.22, 
528.43] 

[178.71, 
186.57] 

4 [501.65, 
623.85] 

[986.32, 
1230.94] 

[164.10, 
171.31] 

[512.79, 
637.70] 

685.94 [167.89, 
175.27] 

[533.68, 
663.67] 

[980.38, 
1207.30] 

[175.01, 
182.71] 

5 [525.21, 
653.15] 

[0, 414.80] [174.43, 
182.10] 

[536.91, 
667.69] 

[0, 326.36] [178.49, 
186.34] 

[558.85, 
694.97] 

0 [186.11, 
194.29] 

6 [595.89, 
741.04] 

37.67 [205.45, 
214.48] 

[609.26, 
757.67] 

[391.38, 
577.59] 

[210.29, 
219.54] 

[634.35, 
788.88] 

[150.80, 
462.10] 

[219.39, 
229.03] 

7 [430.98, 
535.96] 

285.62 [133.77, 
139.65] 

[440.43, 
547.72] 

[293.31, 
432.86] 

[136.80, 
142.81] 

[458.17, 
569.77] 

[307.71, 
454.12] 

[142.47, 
148.73] 

8 [510.22, 
634.50] 

[332.03, 
490.01] 

[167.54, 
174.91] 

[521.56, 
648.60] 

[341.09, 
503.37] 

[171.43, 
178.96] 

[542.83, 
675.06] 

[358.07, 
528.43] 

[178.71, 
186.57] 

9 [564.83, 
804.78] 

[362.56, 
917.84] 

[191.66, 
200.09] 

[577.47, 
718.14] 

[372.52, 
1070.04] 

[196.16, 
204.78] 

[601.18, 
747.62] 

[391.20, 
577.32] 

[204.60, 
224.18] 

10 [1051.44, 
1123.49] 

804.50 [225.43, 
235.34] 

[1052.85, 
1230.24] 

826.77 [230.79, 
240.93] 

1055.50 [1069.17, 
1281.76] 

240.84 

11 [212.08, 
488.77] 

0 [215.78, 
225.27] 

[239.12, 
376.45] 

0 [220.89, 
230.60] 

[289.86, 
617.57] 

0 [230.48, 
240.61] 

12 588.39 [377.22, 
556.60] 

[202.00, 
210.88] 

[601.59, 
748.13] 

[387.61, 
445.11] 

[206.76, 
215.85] 

[626.35, 
778.92] 

[206.46, 
600.79] 

[215.69, 
225.17] 

* Specific water amounts allocated from treatment plants to reservoirs are listed; t represents the treatment plants; r represents reservoirs; the numbers (e.g. 
1, 2, …, 12) represents months. 
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Figure 3. The total water amounts transferred from reservoirs 
to consuming zones. 
 
ble 4, at a probability level of 0.9, the water amounts transfer- 
red from the treatment plant 2 to the reservoirs 6 and 7 at mon- 
th 1 are [988.29, 1231.94] and [171.37, 188.87] (× 103 m3), 
respectively. This is because the leakage rate of transferring 
path from the treatment plant 2 to the reservoir 6 (0.07, 0.15) 
is higher than that of water transferring path from the treat- 
ment plant 2 to the reservoir 7 (0.01), although the water de- 
mand amount of consuming zone 6 (186.29 (× 103 m3)) is sli- 
ghtly higher than that of consuming zone 7 (167.30 (× 103 m3)).  

 
Figure 4. Comparison of solutions between IPSCCP and 
SCCP models. 
 

In addition, the selective results among multiple available 
routines are mainly depended on transferred cost, leakage rate 
and water demand amounts of consuming zones. According to 
the investigation results of the water supply network, the reser- 
voir 4 can receive water from treatment plants 2, 3, and 4. The 
obtained solutions from Table 4 indicate that the water from 
the treatment plant 2 would be transferred to the reservoir 4 at 
month 1, being [519.86, 656.81] (× 103 m3); however, the trans- 
ferred water amounts from other two treatment plants to reser- 
voir 4 are zero. This is mainly because that the transferred cost 
from the treatment plant 2 to the reservoir 4 is the smallest, 
being $[220, 325]. The transferred costs from treatment plants 
3 and 4 to the reservoir 2 are $[530, 830] and [386, 590], res- 
pectively. Meanwhile, the leakage rate of path from the treat- 

Table 5. Part of the Water Amounts Allocated from the Reservoirs to Consuming Zones at Different Probabilistic Levels (×103 m3) 

 Acceptable levels  

 p = 0.9   p = 0.95   p = 0.99   
k r = 2 r = 4 r = 6 r = 2 r = 4 r = 6 r = 2 r = 4 r = 6 

 z = 2 z = 4 z = 6 z = 2 z = 4 z = 6 z = 2 z = 4 z = 6 
1 [242.36, 

332.27] 
[517.76, 
617.33] 

[321.19, 
433.23]  

[247.37, 
339.14]  

[529.31, 
631.10]  

[329.97, 
445.08]  

[256.78, 
352.03]  

[550.96, 
656.91]  

[346.46, 
467.31] 

2 [228.04, 
312.64]   

[486.60, 
580.18]   

[304.25, 
410.38] 

[232.74, 
319.08]   

[497.40, 
593.06]  

[312.53, 
421.55] 

[241.54, 
331.15]  

[517.67, 
617.22]  

[328.07, 
442.52] 

3 [231.81, 
317.80]  

[494.91, 
590.09]  

[308.79, 
416.51]  

[236.59, 
324.36]  

[505.91, 
603.20] 

[317.21, 
427.86]  

[245.55, 
336.65]  

[526.54, 
627.80]  

[333.00, 
449.17] 

4 [228.04, 
312.64]   

[486.60, 
580.18]  

[304.25, 
410.38]  

[232.74, 
319.08]  

[497.40, 
593.06] 

[312.53, 
421.55]   

[241.54, 
331.15]  

[517.67, 
617.22]  

[328.07, 
442.52] 

5 [238.59, 
327.10] 

[509.45, 
607.43] 

[316.74, 
427.23]  

[243.52, 
333.86]  

[520.80, 
620.95]  

[325.39, 
438.90]  

[252.77, 
346.54]   

[542.08, 
646.33]  

[341.63, 
460.80] 

6 [270.23, 
370.48]   

[578.01, 
689.17] 

[354.22, 
477.78]  

[275.87, 
378.21]  

[590.98, 
704.64]  

[363.98, 
490.95]  

[286.44, 
392.70]  

[615.32, 
733.65] 

[382.30, 
515.66] 

7 [196.40, 
269.26]   

[418.05, 
498.44]  

[265.63, 
358.29]  

[200.39, 
274.73]  

[427.22, 
509.38]  

[272.77, 
367.93] 

[207.87, 
284.98]  

[444.42, 
529.89]  

[286.17, 
386.00] 

8 [231.81, 
317.80]  

[494.91, 
590.09]  

[308.79, 
416.51]   

[236.59, 
324.36]  

[505.91, 
603.20]  

[317.21, 
427.86] 

[245.55, 
336.65] 

[526.54, 
627.80] 

[333.00, 
449.17] 

9 [255.92, 
350.86] 

[547.89, 
653.25]  

[337.18, 
454.80]  

[261.24, 
358.15]  

[560.15, 
667.87]  

[346.44, 
467.30]   

[271.21, 
371.82]  

[583.14, 
695.28]  

[363.81, 
490.73] 

10 [291.33, 
399.40]  

[624.75, 
744.90]  

[380.34, 
513.02] 

[297.44, 
407.78]  

[638.84, 
761.69]   

[390.88, 
527.23]  

[308.89, 
423.48]  

[665.26, 
793.20]  

[410.64, 
553.89] 

11 [280.78, 
384.94]   

[600.86, 
716.41]  

[367.85, 
496.17]  

[286.65, 
392.99] 

[614.38, 
732.53]  

[378.02, 
509.88]  

[297.67, 
408.09]   

[639.74, 
762.76]  

[397.09, 
535.61] 

12 [266.47, 
365.32]  

[570.74, 
680.50]  

[350.81, 
473.19]  

[272.02, 
372.93]  

[583.54, 
695.76]  

[360.48, 
486.22]  

[282.43, 
387.21]  

[607.55, 
724.39]  

[378.60, 
510.67] 

* Specific water amounts allocated from reservoirs to consuming zones are listed; t represents treatment plants; r represents reservoirs; k represents 
months.  
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ment plant 2 to the reservoir 4 is also the smallest, being [0.03, 
0.06]. The leakage rates of other two paths are [0.08, 0.13] and 
[0.03, 0.06], respectively. 

It is also indicated that, the interactive relationships among 
the system components would lead to the mutual influences 
among decision variables. For example, as shown in Table 3, 
at a probability level of 0.95, the water amounts transferred from 
the water resource 1 to the treatment plant 1 at month 1 are 
lower than those to the treatment plant 2, being 1,157.46 and 
[1,689.32, 2,272.58] (× 103 m3), respectively. This is mainly 
due to the facts that the water from the treatment plant 1 must 
be transferred to reservoirs 2, 3 and 5, respectively. Meanwhile, 
the storage water in reservoirs 2, 3 and 5 are used to satisfy the 
water demand from consuming zones 2, 3 and 5, respectively. 
The total demand amount of consuming zones 2, 3 and 5 is 
492.20 (× 103 m3). As for the treatment plant 2, the water shou- 
ld be allocated to reservoirs 4, 6 and 7 for satisfying demand 
amounts of consuming zones 4, 6 and 7, being 690.75 (× 103 
m3).  

Figures 3 and 4 are used to demonstrate that the variations 
in the probability levels would result in changes of the water 
supply patterns. From Figure 3, at month 1, the total water am- 
ounts transferred from the reservoirs to the consuming zones 
at various probability levels (i.e. 0.99, 0.95 and 0.99) are 
[3,050.21, 3,987.00], [3,098.34, 4,048.39] and [3,188.62, 
4,163.57] (×103 m3), respectively. This is mainly because that 
as the increases of probability levels (from 0.9 to 0.99), the con- 
straints in the water demand from the consuming zones would 
become stricter. Figure 4 reflects the variation of system cost 
at various probability levels. Generally, the system cost would 
increase as the increases of probability levels. For example, at 
different probability levels, the system costs are $[38.68, 74.26], 
[39.19, 75.27] and [40.15, 77.17] (×106), respectively. A trade- 
off between total system cost and probability levels of constr- 
aints satisfaction can help decision makers gain an in-depth 
insight into the characteristics of urban water supply system 
and generate rational water supply alternatives.  

Generally, the above results demonstrate that IPSCCP has 
advantages in: (i) addressing uncertainties in urban water supply 
systems expressed as discrete intervals and probability distri- 
butions; (ii) generating the cost-effective interval solutions due 
to combinative application of probability levels of constraints 
satisfaction and interactive two-step interval algorithm; (iii) 

providing supports for decision makers to analyze the trade- 
offs between system cost and reliability of constraints satisfac- 
tion. Moreover, IPSCCP is capable of generating a spectrum 
of decision alternatives for decision makers, where the trade- 
off between system economy and reliability could be analyzed. 
If the decision makers only need one concrete planning pattern 
for water supply management, they should clearly identify their 
preferences on system economy and reliability, and specify the 
corresponding alternative for meeting their requirement.  

5. Discussions 

To better reflect the advantages of proposed IPSCCP mo- 
del, a general SCCP model would be generated for comparison 

purpose where the deterministic parameters are derived by ave- 
raging the upper and lower bounds of intervals from IPSCCP 
model. The total cost at different probability levels are $70.88, 
71.88 and 73.76 (× 106). Obviously, the solutions of SCCP mo- 
del are special cases in the solutions obtained from IPSCCP 
model. In such case, the decision alternative would be restric- 
ted to a single solution, leading to the negative influence on its 
application in real-world. As the proposed methodology offers 
solutions under various scenarios, it is possible that similar de- 
cision alternatives are generated under different combinations 
of probability levels and deterministic decision values. For 
example, the lower system costs under the higher probability 
levels are possibly leading to the same results with those from 
the higher system costs under the lower probability levels. But 
this does not mean that the model consideration is the same. 
In real applications, the decision makers should determine the 
probability levels and adjust the standard of choosing proper 
decision variables based on their own preferences, in light of 
system economy and reliability. 

However, IPSCCP also shows a number of limitations. 
For example, the obtained solutions through IPSCCP can reflect 
the trade-off between system cost and reliability of constraints 
satisfaction. It is challenging to choose reasonable solutions 
and form a decision-support base. Moreover, the urban water 
supply management system needs a comprehensive considera- 
tion of all related aspects, e.g. social, environmental, institu- 
tional, political, and financial (Zarghami et al., 2008). The sin- 
gle objective function in this study may not be sufficient to re- 
flect the balance between various objectives in decision ma- 
kings. In such a case, multi-objective programming (MOP) te- 
chniques could be applied for dealing with such a difficulty. 
Therefore, how to incorporate multi-objective programming 
(MOP) techniques into the proposed method framework is im- 
portant and deserve an in-depth study. 

6. Conclusions  

In this study, an interval-parameter stochastic chance-con- 
strained programming (IPSCCP) model has been developed for 
integrated urban water supply management system under un- 
certainty. The IPSCCP model can effectively deal with uncer- 
tainties expressed as discrete intervals and random variables. 
Moreover, it incorporates the interval uncertainties and prescri- 
bed probability levels of constraints satisfaction into its optimi- 
zation process. Finally, the decision alternatives can be gene- 
rated through adjusting within the solution intervals. An inte- 
grated urban water supply management system has been used 
to demonstrate the applicability of proposed method.  

The proposed model could help decision makers establish 
rational water supply patterns under complex uncertainties, 
and gain in-depth insights into the trade-offs between system 
cost and reliability. This study was the first attempt for the 
urban water supply management system through development 
of IPSCCP. The results suggested that other uncertain approa- 
ches, such as FMP and MOP, could be integrated into an 
IPSCCP framework for reflecting more complex conditions. 
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