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ABSTRACT.  The computational problem of emergy within a general system of interconnected processes at steady state is a subject 
of interest in literature today. When there is no co-product the proposed method coincides with the Track Summing Method of 
Tennenbaum which was developed precisely for interconnected networks with feedbacks and splits of emergy. As the underlying 
algebraic structure of the Tennenbaum's method is the linear algebra, it is not well-suited to account for the co-product problem which 
induces the idempotent operator max. Thus, authors have chosen another underlying algebraic structure which is the idempotent 
semiring structure (i.e. a semiring equipped with an idempotent addition). This method is divided into two parts. The first part is the 
emergy flow enumeration, where paths from an emergy source to the input of a given process are enumerated avoiding double 
counting of emergy assignation. This part is a path-finding problem which is a slight modification of gerbier of null square approach to 
find elementary/simple paths in a graph. The second part evaluates the emergy flowing between two components of the system. It is a 
quantitative part in which the problem of avoiding double counting split and co-product flows are dealt with by introducing a way to 
mark splits and co-products flows. The method is partially parallelizable. However, the method enumerates paths on a graph thus, in 
worst cases, its complexity is not polynomial. This paper provides a rigorous framework based on an axiomatic basis to conduct the 
emergy evaluation of an emergy graph. 
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1. Introduction 

The first principle of thermodynamics states that heat and 
power are two forms of the same quantity: energy. Carnot (1796 
~ 1832) wrote that: “A fire machine will be able to produce a 
positive quantity of mechanical work only at the price of a fall 
of temperature”. This idea is expressed in substance by: “There 
is a price to pay to Nature to produce work”, introducing the 
quality of energy. Generally speaking, exergy characterizes the 
quality of energy. Energy and exergy are two thermodynamic 
state functions of thermodynamic state variables (for example, 
pressure, temperature, etc.) and consequently do not depend 
on the process. Hence, oil, natural gas and coal are featured by 
their physical properties, such as low heating value. Neverthe- 
less, one major dimension is forgotten in this approach, those 
fuels are time-derivatives of wood (trees) decomposition (bur- 
ning during thousand of millenaries near the earth magma), see 
two recent papers Brown and Ulgiati (2010) and Brown et al. 
(2011). As a result, apart from nuclear energy and geothermic, 
all major energy sources can be, directly or indirectly, consi- 
dered as a “solar energy tank”.  

According to Odum (1996) emergy, spelled with an ''m'', 
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can be defined as the total solar equivalent energy/exergy of 
one form that was used up directly or indirectly in the work of 
making a product or a service. The physical dimensions are th- 
ose of the energy. So emergy provides a general framework to 
account for both ecological and human activities which make 
it an attractive concept. However, one of the main drawbacks 
of emergy analysis is the difficulty to obtain a clear procedure 
for computing emergy. The main problem is to avoid double 
counting within a system of interconnected processes with fee- 
dbacks, splits and co-products. When working with emergy, the 
comparison of interconnected processes/components can be 
based on the same fundamentals and provides reliable sustaina- 
bility development dimensionless numbers. The idea of emergy 
is based on the maximum power principle originally stated by 
the biologist Lotka (1922). On the one hand, emergy is not a 
thermodynamic state function and consequently depends on its 
pathway or its history. Emergy assessment does not “add” two 
energies of different qualities but add the solar embodied ener- 
gy of a source. Hence, the main interest (advantage) of emergy 
is the comparison of two processes/products with multi-sources 
(renewable and/or non-renewable sources), see Brown and 
Ulgiati (1997). On the other hand, system boundaries must be 
clearly detailed. 

As mentioned in Hau and Bakshi (2004) even if the idea 
of emergy is attractive, only Odum and a small circle of co- 
workers have developed the notion of emergy and emergy ana- 
lysis since the 1980's. Even if there are attractive features, as 
mentioned in Hau and Bakshi [Section 1 and subsection 3.2], 
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emergy analysis received many criticisms. Most of these criti- 
cisms could be applied to other popular methods which try to 
analyze environmental and industrial/human systems within 
the same framework. As mentioned in Hau and Bakshi (Section 
5) emergy analysis of large and complex systems is one of the 
main challenges of the emergy approach. A system is large 

when it possesses a large number of components. A system is 
complex when there are splits and co-products within the same 
system. Generally speaking, an emergy system (see the precise 
definition in subsection 3.1) is represented by an oriented graph. 
Each node represents a process/component. The emergy circu- 
lates on the branches of the system and is assigned to the nodes 
of the system. A pathway from a source of emergy (e.g. sun, 
wind, fuel) on the graph, represents the sequel of assignations 
of the emergy source. According to Odum (1996) (Chap. 6, p. 
90) in a split branching, a pathway of the emergy system is di- 
vided into several branches of the same kind e.g. as in hydrau- 
lic systems. In a co-product branching, the flow in each branch 
is of different kinds, e.g. in combined heat and power plants 
(described in e.g. Horlock (1996)). 

The complexity comes from the fact that the flow circula- 
ting on a branch is in fact a combination of splits and co-pro- 
ducts coming upstream this branch. And the upstream flows 
cannot be counted more than once. But it is clearly noticed in 
Lazzaretto (2009) (p.2201): ''As observed by one of the revie- 
wers the rule counting the largest emergy value (arriving at a 
node) is a rather ''crude way'' of avoiding double counting''. 
The rules of emergy evaluation are explained in Chaper 6 
(Odum, 1996). They are summarized in Sciubba and Ulgiati 
(2005) (pp. 1965 ~ 1966) as follows under the name emergy 
algebra：  

R1: When only one product is obtained from a process (i.e. 
a process with only one output), all source-emergy is assig- 
ned to it. 

Concerning processes with more than one output we have the 
following rules： 

R2: When a flow (of emergy) splits the total emergy splits 
accordingly, based on the exergy/energy flowing through 
each pathway. 
R3: When two or more co-products are generated in a pro- 
cess, the total source-emergy is assigned to each of them. 

Finally, a fourth rule describes how emergy is assigned within 
a system of interconnected processes： 

R4: Emergy cannot be counted twice within a system. 
R4.1: Emergy in feedbacks cannot be double counted. 
R4.2: Co-products, when reunited, cannot be summed. 
Only the emergy of the largest co-product flow is accou- 
nted for. 

The general method of emergy analysis consists of propa- 
gating these rules from emergy sources to the outputs of the 
system of interconnected processes. Difficulty occurs for large 
and complex systems. To bypass this difficulty, several nume- 
rical methods have been proposed. Most of them are approxi- 
mation methods based on linear algebra. Some of them are ba- 
sed on pre-analysis of the system which is not well-suited for 
an automatic emergy computation. For further information on 
such approaches see Li et al. (subsection 1.3 and references th- 

erein) (2010). Few simulation approaches have been proposed 
(see Odum and Peterson (1996), Maud (2007) and references 
therein). All these solutions have no mathematical framework 
and it is difficult to validate their results. To the best knowle- 
dge of the authors, the only mathematical framework which 
has been proposed in literature is Giannantoni (2006) who pro- 
posed another approach based on (non)-linear differential equa- 
tions and on a variant of fractional derivatives concept. 

In this paper, a method based on idempotent semiring, i.e. 
a semiring with an idempotent addition (for more details see 
Definition 2.1) is proposed. The starting point of this method 
is the Track summing method developed by Tennenbaum (1988) 
which is exact and has been implemented for emergy systems 
with splits and without co-products. More precisely the method 
starts from the expression given in Tennenbaum (p. viii) (1988) 
for acyclic source requirements. This formula expresses the 
emergy arriving at a node k of the system coming from all em- 
ergy sources upstream the node k avoiding the problem of dou- 
ble counting. 

Contributions of the paper are as follows. First, we remark 
that the Tennenbaum's Track summing method can be divided 
into two different parts. The first part is a path-finding pro- 
blem. Classification of paths for ecosystems appears necessary 
since Patten (1985). Then, the analysis of ecosystem network 
(or food webs) consists of the enumeration of paths and selec- 
tion of these which belong to a certain class. In terms of for- 
mal language theory it is equivalent to extract words from the 
formal language associated with the graph which models the 
ecosystem network. In Whipple (1999) there are 16 categories 
of paths which are classified. The fourth rule of emergy algebra 
(no double assignation of emergy which occurs at the output 
of a node, see Brown and Herendeen (1996)) eliminates 14 
categories of paths. Due to the specificity of the problem, the 
path-finding problem is solved by using idempotent semi- 
ring. It is a slight modification of methods enumerating elemen- 
tary paths in a graph developed by Kaufmann and Malgrange 
(1963), Kaufmann (1967), Benzaken (1968), Backhouse and 
Carré (1975), also mentioned in Gondran and Minoux (2008). 
The second part is a computational problem. To completely 
solve the computational problem the axiomatic basis (p0 ~ p6) 
(see subsection 3.1), (.0 ~ .2), and (.0 ~ .4) (see subsec- 
tion 3.3) is elaborated. This axiomatic basis is a translation of 
the abovementioned rules R1 ~ R4 (see the discussion in Sec- 
tion 6). Then, Definition 3.2 is proposed as the emergy mea- 
sure. This definition and the axiomatic basis (.0 ~ .2), and 
(.0 ~ .4) allow us to provide an algorithm to compute emer- 
gy flowing on each arc of the emergy graph (see Section 4). In 
Proposition 4.1 the proposed algorithm is proved to terminate. 

Organisation of the paper is based on the overall frame- 
work for computing emergy flowing on a given arc [v0; v1] on 
an emergy graph G, see Figure 1. In Section 2 the basic mate- 
rial and main notations are presented to the reader. Idempotent 
semiring structure and elements of binary relations (especially 
the quotient of sets) are defined. Formal language and Max-Plus 
algebra are particular cases of idempotent semirings. They are 
detailed in subsections 3.1 and 3.3, respectively. In Section 3, 
elements of the method for computing emergy flowing on a gi- 
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ven arc [v0; v1] of an emergy graph G are given. At the begin- 
ning of the method (i.e. block 1 in Figure 1) it is assumed that 
paths are modelled by words over a certain alphabet. It means 
that the emergy graph is represented by a formal language 
(which is a particular idempotent semiring). In subsection 3.1 
the formal language F (see equation 17) associated with the 
emergy graph is given. The particularities of the emergy graph 
(see equation 18) are specified by axiom (p0 ~ p6) (i.e. block 2 
in Figure 1). In subsection 3.2, the path-finding problem is for- 
malized and solved (see Theorem 3.1). In definition 3.1, emer- 
gy path is defined. To extract from F the relevant words (i.e. 
emergy paths) a binary relation is defined by equations (22 ~ 
26) and denoted 1



 / 2



 . The block 3 in Figure 1 can be de- 
scribed as follows. If *

GA  denotes the matrix which contains 
all possible paths in the emergy graph G then the matrix *

GA  
defined by equation (35) contains the emergy paths if the graph 
G. *

GA is the result of the quotient of matrix 
*
GA  by the binary 

relation 1



 / 2 .


 *
GA  is computed step by step using particu- 

lar sum,  defined by equation (33), and product  , defined 
by equation (34). The computation of the matrix *

GA terminates 
(see the proof of theorem 3.1). In subsection 3.3, an axiomatic 
basis is (.0 ~ .2) and (.0 ~ .4) is proposed to provide a clo- 
se formula for emergy flowing on an arc [v0; v1] of an emergy 
graph G (see block 4 in Figure 1). This formula is recursively 
obtained and expressed in the basic algebraic structure : the 
so-called max-plus algebra, defined by equation (37), which is 
a particular case of idempotent semiring. In Section 4 an algo- 
rithm is provided. It computes the emergy flowing on an arc 
accordingly to the Definition 3.2 of the emergy measure. In Pro- 
position 4.1 the algorithm is proved to terminate. Note that the 
step [D] of the algorithm is recursive. In Section 5 the approach 
is validated by numerical examples. The subsection 5.1 is de- 
voted to an emergy graph example with only splits. And one 
retrieves a similar formula as the Tennenbaum's one (the only 
difference is that the proposed formula is expressed using the 
max-plus algebra notations). The subsection 5.2 is devoted to 
an emergy graph with co-products only. Finally, an example 
of emergy graph with splits and co-products is analyzed in sub- 
section 5.3. In Section 6 authors discuss rules R1 ~ R4 vs the 
axiomatic basis. Finally, Section 7 is the conclusion of the pa- 
per. 

2. Main Definitions and Notations 

2.1. Algebraic Structures 

Let us define the fundamental (idempotent) algebraic stru- 
ctures used in this paper. The main reference is Baccelli et al. 
(1992) [Chapters 3 and 4]. The interested reader can also find 
many references in e.g. Glazek [subsection 4.2] (2002). 

Definition 2.1 (Basic Structures): 
 Magma: A magma is a set  equipped with an internal com- 

position law, i.e. a map:       
 Semigroup: A semigroup is a set  endowed with an asso- 

ciative operation :      (i.e. a  (b  c) = (a  b) 
 c).  

 Monoid: A monoid is a set M = ( , , 0) which is a semi- 
group with a neutral element 0 (i.e. a  0 = 0  a = a). 

Moreover, if  is commutative (i.e. a  b = b  a) then M 
is a commutative monoid.  

 Semiring: A semiring is a set S = ( , , , 0, 1) with 0 ≠ 1 
such that ( , , 0) is a commutative monoid, :      
is associative and its neutral element is 1,  has 0 as absor- 
bing element (i.e. 0  a = a  0 = 0),  distributes over  
(i.e. a  (b  c)= (a  b)  (a  c) and (a  b)  c = (a  
c)  (b  c)).  

Semigroup, monoid, semiring are said to be idempotent 
when  is idempotent (i.e. a, a  a = a). Semirings are also 
known as dioids (see e.g. Bacecelli et al. (1992)). 

Let Matn( ) be the set of nn-matrices which entries are 
elements of S. If A  Matn( ) we denote A(i, j), A(l, ·), A(·, k) 
the entry (i, j) of A, the l-row of A, the k-column of A, respec- 
tively. (·)t denotes the transpose operator. The matrix (0) deno- 
tes the null matrix. 

The operations  and  are naturally extended on 
Matn( ) for all n  1 as follows. Let A and B be two elements 
of Matn( ), then: 

 

 ( , ) ( , )
def

i j i j  A B A B  (1) 

 
and  
 

   1( , ) ( , ) ( , ) ( , )n
ki j i k k j       A B A B A B  (2) 

 
The power function is defined as follow: 

pow :  \ {0}     \ {0} 
 

(s, n) pow (s, k) 
( fold) if 1

if 0

def s s k k

k

   
   1


 (3) 

 
In the sequel pow(s, k) will be sometimes denoted ks  

or simply sk. The power function is naturally extended to the 
set Matn( ) equipped with the above defined addition and mul- 
tiplication of matrices as follows: Ak 

def

 A  …  A (k-fold) 
if k ≥ 1 and A0

def

 I, where I denotes the identity matrix, i.e. 
the matrix which off-diagonal entries are 0 and diagonal entries 
are 1. 

We define the star/closure (or  -closure) of matrix A  
Matn( ) as: 

  
def

k     A I A A  , (if exists) (4) 
 
Identifying Mat1( ) with  the star/closure operator for scalars 
is well defined. 

We summarize all these properties by saying that (Matn( ), 
, ,  , (0), I) is a Kleene algebra,  n 1. 

 

2.2. Binary Relations 

Let  and  be two sets. In this paper it is sufficient to de- 
fine a binary relation R over  and  as a subset of the carte- 
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sian product  × . If  =  we simply say that R is defined 
over . The statement (x, y)  R is denoted x R y. The inverse  
relation of R, denoted R-1 is defined as 1 ( , )

def

R y x   × | 
(x, y) ∈ R}. Let S be another binary relation over  and  
then the union of R and S denoted R ∪ S is defined as R ∪ S 
def

 {(x, y) ∈  ×  (x, y) ∈ R or (x, y) ∈ S}. Let  be a third 
set. Let T be a binary relation over  and . Then, the com- 
position relation R T  is a binary relation over  and  de-  
fined as ( , )

def

R T x z    ×  y    s.t. (x, y) ∈ R or (y, 
z) ∈ T}, where the abbreviation s.t. means ''such that''. 

Let R be a relation defined over the set . R is reflexive 
if x   , x R x. R is symmetric if , 'x x   , x R x’ and 
x’ R x. R is transitive if , ', ''x x x  , x R x’ and x’ R x'' im- 
plies x R x''. A relation which is reflexive and transitive is a 
preorder. A preorder which is also symmetric is called an equi- 
valence relation. 

If R is an equivalence relation over the set . The equiva- 
lent class of an element a   by the relation R is the subset 
of  defined by: 
 

cl ( )
def

R a x    | x R a} (5) 

 
If the context is clear the subscript R will be omitted. Thus, 
clR will be simply denoted as cl. 

The quotient set of  by R is the set of all equivalent cla- 

sses and is denoted  / R. If S is another equivalent relation 
on  / R, we define the relation R / S over : 

 

,a b   , / cl ( ) cl ( ).
def

R Ra R S b a S b  (6) 

 
By the definition of R / S we have:  

 

/cl ( )
def

R S a x   cl ( ) cl ( ) .R Ra S x  (7) 

 
for all a  . And we note that: 

 
 / (R / S) = (  / R) / S  (8) 

 
Let ( , ) be a magma. Then a relation R over  is a congr- 
uence if it is an equivalent relation compatible with the inter- 
nal composition law , i.e.:  

 

, , ,x y a b   ,  x R y a x b R a y b      (9) 

3. Emergy Analysis 

This Section is devoted to the methodology for emergy 
computation, as depicted in Figure 1. 

Definition of a recursive method
by axioms  

Validation of 
emergy graph

Finding  
all emergy paths

Enter emergy graph

Enter 

Extract all emergy paths
 ending at  ];[ 10 vv

Evaluation of emergy
 flowing on arc  

Path in a graph 
= 

Word of a formal language

)2.0.(   )4.0.(  

Elimination 
of irrelevant words

Axiomatic definition of an emergy graph
)6.0.( pp 

];[ 10 vv

];[ 10 vv

Formal langage 
 

Max-Plus Algebra Id
em

po
te

nt
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g 
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tr
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 Figure 1. Overall framework. 
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3.1. Emergy Description Model and Its Qualitative Axioms 

The way by which emergy circulates in a multicomponent 
system is modelled by an oriented graph. The graph has input 
nodes called sources, intermediate nodes and output (or final) 
nodes. Each node is represented by an integer (i.e. an element 
of ). Let us denote s, i and o as the set of emergy sources, 
the intermediate nodes and the output nodes of the emergy gra- 
ph, respectively. An arc is an element of the set    with 

def


s   i   o, where ( s; i; o) is a partition of  

and  denotes the cartesian product of sets. The set  verifies: 
 ∩ s s =    o o = Ø. It means that a source (resp. 

an output node) is not linked to another source (resp. an 
output node). 

The drawing conventions for the emergy graph are depic- 
ted in Figure 2. A source is represented by the symbol Figure 
2A, an intermediate node on the emergy graph is represented 
by Figure 2B, an output node is represented by Figure 2C. Sp- 
lits are modelled by Figure 2D and co-products are modelled 
by Figure 2E.  

 

(A) (B) (C) (D) (E)

 
Figure 2. List of emergy symbols. 

 
As the reader will see in the sequel it will be convenient 

to model emergy flows by particular words over a certain alpha- 
bet (block 1 in Figure 1). Thus, it is convenient to use some re- 
sults of formal language theory. Formal laguages used here are 
particular cases of idempotent semirings. 

Let us introduce the alphabet associated with the emergy 
graph: 

def

     0,1, [,] ;   (10) 

The elements of  are called letters. Let us stress that the ele- 
ments of  are the physical nodes of the emergy graph. The 
meaning of 0, 1 and ; is specified later in the paper.  

The set of all words of finite length constructed on the al- 
phabet is the free monoid (see Bourbaki [A.I, pp. 77 ~ 79] 
(2006) for a very formal definition). It is defined as the follo- 
wing disjoint union (which coincides with the union of sets 
∪): 

0

def
n

n


    (11) 

with  0 1
def

  . It means that 1 is the empty word which has 
length 0. And 1n  , n denotes the set of all words which  

contain exactly n letters. If  is any subset of * then: 0 
def

  
 ∪ {0}. A word m is represented by a finite sequence of le- 

tters (i.e. elements of ).  

On *
0  two operations are defined. The first is the sum 

of two words which can be identified with the union if a word 
m is identified with the set {m}, and will then be denoted ∪. In 

other words it means that *
0  will be identified with the set 

of all parts of *
0 , denoted 0

2 . The second operation is the 
concatenation of two words, denoted  , which is defined as fo- 
llows: 

0 0 0:

( , ') 'm m m m

      


  (12) 

 
The word 'm m  is the new word obtained by joining the le- 
tters of m and the letters of m' end-to-end. If there is no ambi- 
guity the concatenated word 'm m  will be denoted mm’. 

Let us remark that  

 

0E ( , , , 0,1)    (13) 

 
is an idempotent semiring (see section 2). The neutral element 
for  is 1 (the empty word). The element 0 (empty set) is the 
neutral element for ∪ and is absorbing for  , i.e.m, 0  m 
= m  0 = 0. The letter ; is used as a separator and is idempo- 
tent for concatenation, i.e.: 

; ; ;.   (14) 

 
The set of idempotents for  is {0, 1, ;}. 

Let us also recall that the star/closure operator * is defined  

as follows. 0m   , 0

def
n

nm m 
 , where 0 1

def

m  , 1n  ,  

, ,
def

nm m m  (n-fold). Note that 0m   ,  m m
  and 0* 

= 1* = 1. 

The operations ∪,   and * are naturally extended to ele- 
ments of Matn( 0

 ) and we summarize all above mentioned 
definitions by saying that   n 0Mat , , , , (0),   I is a Kleene 
algebra, 1n  . 

If  and  are two subsets of 0
 the Minkowski produ- 

ct of  by : 

  
def

u v u   , v }
.not

 , (15) 

 
is well defined because of the identification of 0

 with 0
2  

and the distributivity of  over ∪. When  (resp. ) is a single- 
ton, i.e.  = {m} (resp.  ={m'}), then    will be denoted 
m   (resp.   m’) or simply m  (resp. m'). Since concate- 
nation is associative the multiplication of sets is also associa- 
tive. Let us also remark that 1n  , n     (n-fold). 

We identify the set   with the set: 

 

 
def

  [ ; ]
.not

  [ ; ]. (16) 
 

An emergy flow corresponds to a series of arcs of an emergy 
graph called physical emergy path in subsection 3.2. Thus, the 
main idempotent semiring describing flows of emergy in an 
emergy graph is: 

(
def

F  0 , , , 0,1)   (17) 
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The semiring F is a subsemiring (or sublanguage) of the semi- 
ring (or language) E. 

One can now specify what is an emergy graph by using 
axioms (p0 ~ p6) (see block 2 in Figure 1). Let us consider 
four symmetric binary relations Ø, id,  and // defined on . 
For all a, a'  : a Ø a' means that there is no relation between 
arcs a and a', the relation a id a' means a = a' (identity relation 
over ). For all l, l', l''  , [l; l'] // [l; l''] means that there is a 
co-product at node l. And for all l, l', l1, l2  , [l; l1]  [l'; l2] 
means that there is a split of emergy at node l if l = l', or that l 

and l' are emergy sources. The binary relation  is called inde- 
pendent relation. 

The relations Ø, id,  and // satisfy the following axioms: 
 (p0). For all arcs of the emergy graph there exists at least one 

binary relation between them, i.e.  a, a'  , a Ø a' or a id 
a' or a  a' or a // a'. 

 (p1). The binary relations  and // are in mutual exclusion, 
i.e.  a, a'  , a  a' (a // a'). Where Q denotes the 
negation of the proposition Q. 

 (p2). If there exists a binary relation of type  or // between 
two arcs of the emergy graph necessarily these arcs are dif- 
ferent,i.e.  a, a'  A, a  a' or a // a’ ( a id a'). 

 (p3). For † {id, , //} we have the following pseudo-transi- 
tivity property:  l  ,  a, a’, a’’ [l; ] ∩ , a † a’ and 
a’ † a’’  a † a’’. 

 (p4). There are only three possible binary relations between 
arcs of the emergy graph which have the same element of 
the set \ o as their input, i.e.  l  \ o,  a, a’ [l; ] ∩ 

, a id a’ or a  a’ or a // a’. 
 (p5). The different sources of an emergy graph are indepen- 

dent (cf. Odum, 1996), i.e.  l, l’  s,  a [l; ] ∩ ,  
a’ [l’; ] ∩ , a  a’ or a id a’. 

 (p6). By convention, each source of the emergy graph is con- 
nected to only one node of the emergy graph, i.e.  l  s, 
|[l; \ s] ∩  | = 1. 

At this step an emergy graph can be described by the fo- 
llowing 10-tuple, called emergy graph G: 

 
def

G  ( s i o F , id, , //, Ø) (18) 
 
recalling that ( s, i and o) is a partition of , F defined by 
(17) is the formal language used to identify paths with words, 
 [ ; ] denotes the set of all arcs of the emergy graph whi- 

ch satisfies  ∩ s × s = ∩ o × o = Ø, and id, , //, and Ø 
are the only possible binary symmetric relations between arcs 
of emergy graph G, which satisfies axioms (p0 ~ p6). 

With the aim of computing emergy, the set of the arcs, , 
can be stored in the matrix AG  Mat| |( O

 ), where | | denotes 
the number of elements of , called incidence matrix, and 
defined by: 

 
[ ; '], [ ; ']

( , ')
0,

def

G

l l if l l A
l l

otherwise


 


A   (19) 

 
for all l, l'  . The equality AG(l, l’) = [l; l’] means that there 

exists one arc between node l and node l'. We label this arc [l; 
l']. We say that the graph G is a  -labelled graph.  

The set of relations between the arcs of  is represented 
by a symmetric function     {id, , //, Ø}, which can be 
stored in an array RG indexed by    with entries in {id, , //, 
Ø} by: 

 

( , ')
def

G l l R †, if a†a’, (20) 

 
where †  {id, , //, Ø}. Let us note that the matrix RG is filled 
up accordingly to the axioms (p0 ~ p6). 

 

Example 3.1 

Let us consider the emergy graph G1 = ( 1, 
s
1, 

i
1, 

o
1, 

F1, 1, id, , //, Ø) of the Figure 3 which is an example borro- 
wed from Brown and Herendeen [p.226, Figure 9b] (1996). 

 

1

2

3 4 6 7

5 

1 1

1

1 

1

1

1 

 
Figure 3. Graph G1. 
 
Table 1. Incidence Matrix, 

1GA , of the Graph G1 

 1 2 3 4 5 6 7 

1 0 0 [1;3] 0 0 0 0 
2 0 0 0 [2;4] 0 0 0 
3 0 0 0 [3;4] [3;5] 0 0 
4 0 0 0 0 0 [4;6] 0 
5 0 0 0 0 0 [5;6] 0 
6 0 0 0 0 [6;5] 0 [6;7] 
7 0 0 0 0 0 0 0 

 
Table 2. Array 

1GR  

1GR [1;3] [2;4] [3;4] [3;5] [4;6] [5;6] [6;5] [6;7]

[1;3] id  Ø Ø Ø Ø Ø Ø 

[2;4]  id Ø Ø Ø Ø Ø Ø 

[3;4] Ø Ø id // Ø Ø Ø Ø 
[3;5] Ø Ø // id Ø Ø Ø Ø 
[4;6] Ø Ø Ø Ø id Ø Ø Ø 
[5;6] Ø Ø Ø Ø Ø id Ø Ø 
[6;5] Ø Ø Ø Ø Ø Ø id // 
[6;7] Ø Ø Ø Ø Ø Ø // id 

 
According to settings we have 1 ={1, 2, 3, 4, 5, 6, 7}, 

s
1 = {1, 2}, i

1 ={3, 4, 5, 6}, o
1 ={7}. F1 is defined by (17) 

with  replaced by 1= [ 1; 1]. The set of the arcs is 1 = {[1; 
3], [2; 4], [3; 4], [3; 5], [4; 6], [5; 6], [6; 5], [6; 7]}. The 
incidence matrix,

1GA , of the graph G1 is given in Table 1. 
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1GA (1, 3) = [1; 3] means that [1; 3]  1,
1GA (2, 7) = 0 

means that [2; 7]  1, and so on. Columns 1 and 2 of
1GA are 

null columns, which mean that nodes 1 and 2 have no 
predecessors. The row 7 of 

1GA is a null row, which means 
that node 7 has no successors. 

The relations between the arcs are stored in the array 
1GR , 

see Table 2. It means equivalently that: [1; 3]  [2; 4] because 
1 and 2 are sources and axiom p5. There are co-products at 
nodes 3 and 6. Thus, by definition of // we have: [3; 4] // [3; 5] 
and [6; 5] // [6; 7]. 

 

3.2. Emergy Flow Enumeration Problem 

Let us introduce the following definitions from the semi- 
ring F defined by (17). 

Definition 3.1. 
 Path. A path  is an element of the set 0

 which has the form 
= 0, or  = 1, or = [l1; l2] or  k  3, = [l1; l2] [l2; l3] … 
[lk-2; lk-1] [lk-1; lk], with lj  , j = 1, …, k. The length of the 
path, lg(), is - if = 0, 0 is  = 1, otherwise the length of 
 is equal to the number of arcs [lj; lj+1] which compose the 
path.  

 Path from a source. A path from a source is a path = [l1; 
l2] … [lk-1; lk], s.t. l1  s. 

 Simple path. A simple path is a path  = [l1; l2] … [lk-1; lk], s.t. 
 1  j  j’  k, lj  lj’. 

 Simple path from a source. A simple path from a source is a 
simple path  = [l1; l2] … [lk-1; lk], s.t. l1 

s. 
 Emergy path. An emergy path is a path  = [l1; l2] … [lk-1; lk], 

s.t. the path [l1; l2] … [lk-2; lk-1] is a simple path from a source 
and lk  \ s. 

 A physical emergy path (or emergy flow). A physical emergy 
path is an emergy path  = [l1; l2] … [lk-1; lk] s.t. 2 < j < k - 
1, lj  i and lk  \ s. 

In fact, because of the structure of an emergy graph, an emergy 
path defined on an emergy graph coincides with a physical em- 
ergy path. 

Let us illustrate the different notions of paths previously 
defined, see Figure 3. A path  has the form = 0 (impossible 
path or empty set),  = 1 (unit path, i.e. a path with no arc) or 
e.g. = [3; 4] [4; 6] [6; 5] [5; 6] which is a path from first 
node 3 to last node 6 in graph G1. A path from a source is a pa- 
th such that its first node is a source, e.g. [1; 3] [3; 4] [4; 6] [6; 
5] [5; 6] [6; 5] is a path from the source 1 to node 5. A simple 
path is a path such that all its nodes are different, e.g. [4; 6] [6; 
5] is a simple path from node 4 to node 5. A simple path from 
a source is a simple path such that its first node is a source, 
e.g. [2; 4] [4; 6] [6; 5] is a simple path from the source 2 to no- 
de 5. The path [2; 4] [4; 6] [6; 5] and [2; 4] [4; 6] [6; 5] [5; 6] 
are emergy paths. Note that the loop 6; 5; 6 is only counted once. 
But the path [2; 4] [4; 6] [6; 5] [5; 6] [6; 7] is not an emergy 
path because the path [2; 4] [4; 6] [6; 5] [5; 6] is not a simple 
path from a source. Let us stress that this definition of emergy 
path solves the problem of the rule R4.1 (i.e. Emergy in feed- 
backs cannot be double counted). 

For all k  2, for all l’  \ s, let k, s,k, and k (l') be the 
set of all simple paths of length k, the set of all simple paths 

from a source of length k and the set of all emergy paths of 
length k ending at node l', respectively. Then, we have: 

 
s,k=[ s; \ s] k-1, k(l’)= s,k-1 [ \ s; l’]. (21) 

 
From these trivial relations between the sets it is clear that the 
emergy flow enumeration problem is very close to a simple pa- 
th enumeration problem. Such problems have already been stu- 
died in the literature (see Benzaken (1968), Backhouse and 

Carré (1975) and references therein). 

To solve the path-finding problem (i.e. block 3 of the me- 
thodology depicted in Figure 1), let us define the following bi- 
nary relations (or rewriting rules) denoted 1 and 2, respec- 
tively defined by: 

 
l  : l][l1 l. (22a) 
 
And  
 

l 0, m  , l’  : l; m; l; l’2 0. (22b) 
 
The relation 1 is used to list the nodes through which emergy 
passes. The relation 2 is used to detect if there is a double as- 
signation of emergy at a node l. 

We follow Book and Otto [Chapters 1, 2 and 7] (1993) to 
construct the Thue congruences


1 and 2



 associated with 
1 and 2, respectively. The Thue congruence


1 transforms 

any path of the emergy graph into the series of nodes which 
have assigned the emergy following this path. Then, the Thue 
congruence 2



 applied to sequel of nodes which have assigned 
the emergy detects and eliminates sequence of nodes which con- 
tains a motive of the form l; m; l; l' with l'  0, 1 (i.e. emergy 
at node l is assigned at least twice). In other words, we apply 
the quotient relation


1 / 2



 to any path of the emergy graph 
to detect and eliminate double assignation problem. In order 
to make this paper self-contained the main steps of the 
construction of the relations i



 , i = 1, 2, are given hereafter. 

a) We define the single-step rewriting relations 1 and 2 res- 
pectively induced by 1 and 2, as follows: 

 
, , , : ,

def

is t x y u v s xuy t xvy      and u i v, for i = 1, 
2. (23) 

 

b) We define for i = 1, 2: 

 

1
def

i i
   , (24) 

 
def

i i i    , (25) 

 
def

i



  n
n
i ,  (26) 

 
with the convention: 0

def

i  id (the identity relation). For all 
 0

 the equivalence class
1 2/

cl ( ) 
 

will be denoted cl1/2(ξ). 
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Remark 3.1. Replacing 2 by: 

 

 l  0, m  : l; m; l 3 0. (27) 
 
one obtains the gerbier of null square as mentioned in Benzaken 
(pp. 53 ~ 56) (1968) which has been successfully utilized to 
enumerate elementary paths on a graph. See also Backhouse 
and Carré (pp. 182 ~ 183) (1975) and references therein. 

Binary relations, necessary to eliminate irrelevant words 
(or paths), see block 3 in Figure 1, have been introduced. At first 
sight, one possible approach could be the enumeration of all 
paths of emergy graph by computing the *-closure of the inci- 
dence matrix of the graph, *

GA . Then, for all nodes i and j of the 
graph, compute the quotient set * *

1

* *

2
( , )G GA A i j

 
, recalling  

that * ( , )GA i j is the set of all paths from i to j. The major draw- 
back of this direct method is that there exist loops in the graph 
and hence element of * ( , )GA i j can be paths with infinite length. 
To bypass this problem operator , sum , and product  are 

introduced in what follows. Let us begin by the following 
remark. 

Remark 3.2. For all   *, cl1/2() has only two values: 

 cl1/2() = {0} which is equivalent to say that  = m  m'  
m'' where , m, m'  * and m'' {0, 1}. 

 cl1/2() = {} which is equivalent to say that  has no sequen- 
ce of the form m  m'  m'' where , m,m'  * and m'' {0, 
1}. 

From the above Remark 3.2 we define the operator : 

0
  0

 as follows： 

 

m  0
    1/20 if cl 0

otherwise.

def m
m

m


 


 (28) 

 
For all set  0

 we define: 


def

u u  }. (29) 

This is equivalent to impose that the operator satisfies 

'm m 'm m  . 

From the operator we define two new binary operations 
 , : 0

 × 0
  0

 s.t. for all m, m'  0
 : 

' ', ' ' '
def def

m m m m m m m m m m        (30) 

 
Proposition 3.1. For all m, m1, m2, m3, m4  0

 we have:  

 

m m . (31) 

1 2 3 4 1 2 3 4m m m m m m m m       (32) 

Proof: 

To prove (31) we just have to note that 0 0  because cl1/2(0) 
= {0}.Let us prove (32). Based on (30) we have: 

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

by (31).

m m m m m m m m

m m m m

m m m m

m m m m

m m m m

    

  

  

  

  

 








   

 
The binary operations and   are naturally extended to 

the elements of Matn( 0
 ) as follows. Let A and B be two ele- 

ments of Matn( 0
 ), then: 

 

 ( , ) ( , )
def

i j i jA B A B   (33) 

 
and  

   1( , ) ( , ) ( , ) ( , )
def n

ki j i k k j      A B A B A B   (34) 

 
Remark 3.3. By definition of  ,  and Proposition 3.1 

we compute matrices X A B  and  Y A B  as follows: 

1.  : ( , ) ( , )i j i j X A B A B   

2. :X X  

and:  

1'.  1: ( , ) ( , )n
k i k k j   Y A B A B  

2'. Y Y  

where  ( , )
def

i jX X and  ( , )
def

i jY Y . 

Remark 3.4. Let us note that the product  is a slight modi- 
fication of the so-called latin multiplication (see Kaufmann and 
Malgrange (1963), Kaufmann (Chap. IV, Section 39) (1967), 
see also Gondran and Minoux (Chap. 4, Section 6.2) (2008). 

For all matrix A Matn( 0
 ) we define

def
k   A A A   

(k-fold), if k  1, I if k = 0. Finally, let us define the *-closure 
of the matrix A, *A , by: 

*
0

def
k

k


A A   (35) 

 
Based on the definition of  and   it is not difficult to see 
that the matrices kA and *A have the following interpretation. 

Remark 3.5. The term ( , )k i jA is the set of all emergy flo- 
ws of length k from node i to node j. The term *( , )i jA is the set 
of all emergy flows from node i to node j.  

Theorem 3.1. (Emergy flow enumeration) Assume the ax- 
ioms (p0 ~ p6). Let us consider an emergy graph G = ( , s, i, 

o, F, , id, , //, Ø) defined by (18). Let us consider its inci- 
dence matrix, AG, defined by (19) and its relation array between 
the arcs of , RG, defined by (20). Then, we have: 

(a) The matrix G
A , defined by (35), exists. 

(b) The set of all physical emergy paths coincides with 
the set of emergy paths: 

* ( , )s

def

Gl L
l


 A  (36) 
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recalling that ( , .)G lA denotes the l-row of the matrix G
A . 

Proof. The result (a) is a classical result. In fact, develo- 
ping similar arguments (i.e. Lunc Theorem and Remark 3.5) 
as in Benzaken [Proposition p. 53] (1968) we easily prove that: 
k > | i| + 2, kA = (0). The result (b) is a straightforward 
consequence of the interpretation of the entries (i, j) of the 
matrix G

A (see Remark 3.5) and the definition of an emergy 
flow (see Definition 3.1).  

 

3.3. Emergy Evaluation 

In this subsection it is assumed that the set of all emergy 
paths ε, defined by (36), is given. The block 4 in Figure 1 is 
now detailed. Lets us introduce the following idempotent semi- 
ring called Max-plus algebra: 

 

S = (
def

 + ∪{-}, 
def

 max, 
def

 +, 0
def

 -, 1
def

 0), (37) 
 
where + denotes the set of nonnegative reals. max denotes 
the maximum and + is the usual addition on  (set of real num-  

bers). 
def

 max means that a  b
def

 max(a, b). 
def

 + means  

that a  b
def

 a+b.  

On the max-plus algebra S the power function is s.t.   
 ,  n  , pow(s, n) = s n where  denotes the multiplica- 
tion on . In this context the power function can be naturally 
extended to the power function denoted POW as follows: 

 

 

 (38) 

 
Let us remark that POW is symmetric (i.e. POW(s, s’) = POW 
(s’,s)) and associative (i.e. POW(s, POW(s’, s’’)) = POW(POW 
(s, s’), s’’) = POW(s, s’, s’’)). 

Let us recall that  denotes the set of all nodes of the em- 
ergy graph G. The emergy graph G is defined by (18). We de- 
fine the following functions. The emergy function  :   + 
s.t.  l  s, (l)=0. Emergy function attributes emergy to the 
sources of the graph G. The weight function  : *  + 
which satisfies the following axioms: 
 (.0). (1)=1. 
 (.1). ([l; l']) corresponds to the fraction of emergy (which 

is assumed to be given in this paper) circulating on [l; l'] if 
[l; l'] is an arc of the emergy graph, 0 otherwise. 

 (.2). (m  m’) =(m) · (m’) = POW( (m), (m’)). It 
means that the function  is a (,·)-morphism. 

Until now in this paper, *
0 ( *

0 ) was identified with 
*
02 (2 *

0 ) but at this step of the paper it is clearer to make the  
distinction between *

0 ( *
0 ) and

*
02 (2 *

0 ). Let us define the  
set function :

*
02  + which allows us to compute the em- 

ergy flowing on every arc of the emergy graph. The function 
 satisfies the following axioms: 
 (. 0). (1) = 1, (0) = 0 =(Ø).  
 (. 1).  m  *

0 ,  (m)
def

  ({m}). 
 (. 2).  

([ ; '])

([ ; ']) POW( ( ), ([ ; ']))

0

l l

l l l l l


  


 



 

', if ll s 

l if s ' and l s

otherwise 

 

 (.3).  m  * ,   
*
02 , (m ) = POW((m), ( )) 

 (.4). Let us consider the situation where the quantity flows 
have a common upstream flow m and are reunited at arc [l; 
l’] after a split () or a co-product (//). That is  m  * ,  
a1, ..., ak   s.t. a1 † a2, ...., † ak with †  {, //},  1, ..., 

k  
*
02 : 

 (.4.1). If the arcs ai are linked by the relation  then the 
total quantity flowing on arc [l; l’]  1

k
i im a  i) is equal to 

the sum of the quantities flowing on arc [l; l’] of the system 
as if there was only one arc ai after the upstream flow m, 
(m ai i), i = 1, …, k, when reunited, i.e. 

 

 1
k
i im a  i) 1

k
i im a  i) if † = . 

 
(See the explanation in Appendix A). 

 (.4.2). If there are co-products just after m then the total 
quantity flowing on arc [l; l’],  1

k
i im a  i), is equal to the 

maximum of the quantities flowing on arc [l; l’] of the system 
as if there was only one arc ai after the upstream flow m, 
(m ai i), i = 1,…, k, when reunited, i.e.: 

 

 1
k
i im a  i) 1

k
i im a  i) if † = //. 

 
(See the explanation in Appendix B). 

We call (.3) ~ (.4) the tree property. And we are now in po- 
sition to define the emergy measure flowing on an arc of an 
emergy graph. 

Definition 3.2 (Emergy measure) Assume the axioms (p0 
~ p6). Assume also the axioms (.0 ~ .2), (.0 ~ .2) and the 
tree property (.3 ~ .4). Let us consider the emergy graph G 
= ( , s, i, o, F, , id, , //, Ø) defined by (18). Let us con- 
sider its incidence matrix, AG, defined by (19) and its relation 
array between the arcs of , RG, defined by (20). Then, the 
emergy flowing on arc [l; l'] with l, l'  , Em ([l; l']), is defi- 
ned by: 

Em ([ ; ']) ( ([ ; ']))
def

l l l l  , (39) 

where ([ ; '])l l denotes the subset of the elements of the set ε 
(defined by (36, Theorem 3.1)) ending by [l; l']. 

4. Algorithm for Emergy Computation 

In this Section we present a recursive algorithm to 
compute Em([v0; v1]) which is as follows (see Figure 1): 

Enter G, AG, RG, v0 and v1. 

[A] Validation of the graph G based on (p0 ~ p6). 

[B] Compute 
GA  (see equation 35):  

X: = I, S: = I 

POW : \{0}  \{0}   \{0} 
  (s,s’)    POW(s, s’)

def

 s·s’. 
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Do 
X: = AG  X  
X: = X , recalling  is defined by (28) 
S: = SX 

Until X = (0) 
recalling that (0) denotes the null matrix 

[C] Compute ε([v0; v1]) the subset of the elements of set ε 
(defined by (36, Theorem 3.1)) ending by [v0; v1]. 

[D] Compute φ(ε([v0; v1])) (see Definition 3.2) recursively. 
Let  be the current set (initially = ε([v0; v1]), we have: 

While   Ø, do the following: 
1. Factorize  according to (.4) using the same no- 

tations. 
2. Apply (.4.0) if † = id or (.4.1) if † =  or (.4.2) 

if † = //. 
3. Apply (.3) to each m ai i, i=1, …, k if †  {, //} 

or Apply (.3) to m a1  1
k
i i) if † = id. 

4. : =  \   1
k
i im a . 

End. 
Return Em([v0; v1]). 

Proposition 4.1. The previous algorithm terminates. 

Proof. Based on the result of Theorem 3.1 the steps [B] 
and [C] of the algorithm terminate trivially. Thus, it remains 
to prove that the recursive step [D] also terminates.  

Initially, = ε([v0; v1]). By definition of set ε([v0; v1]) and 
axiom (p6) all elements are of the form: [li, l’i] wij, with li  s, 
l’i  \ s, wij  *[v0; v1], i = 1, ... , k, j = 1, ..., q(i), for some 
2  k  | s| (note that the case k=1 is trivial) and q(i)  1. Then, 
we write: 


 = m a1 1   ...   m ak k 
 
with m = 1, i =  ( )

1
q i
j ijw  and by axiom (p5) we have: a1 = 

[l1; l’1]  a2 = [l2; l’2]  ...   ak =[lk; l’k]. 

Thus, we can apply (.4.1) and (.3) to each m ai i, i = 
1, ..., k. And hence, it remains to prove that the sets i can be 
decomposed accordingly to the axiom (.4). 

Let us first remark that elements of i begin by [l’i by de- 
finition of a path in a graph. Then, by axioms (p1 ~ p4) there is 
only one possible relation †  {, //, id} between the arcs star- 
ting from [l’i. Thus, once again it is possible to factorize i ac- 
cording to the axiom (.4). Based on the same arguments al- 
ready used, we recursively decompose at each step of the algo- 
rithm the sets of the form i until i = Ø.   

5. Numerical Examples 

5.1. Tennenbaum-like Example 

Let us consider the emergy graph G2 corresponding to the 
Figure 4. 2 = {1, 2, 3, 4, 5}, s

2 = {1, 2}, i
2 = {3,4}, o

2 = 
{5}. 2 = {[1; 3], [2; 4], [3; 4], [4; 3], [4; 5]}. Incidence 
matrix

2GA   
2

1
GA . The relations between the arcs are stored 

in the array 
2GR (see Table 3). 

We give the detailed computation of the matrix
2G

A in the 
sequel: 

1

2 

3 4 51 1

1 

2/5 

3/5 
 

Figure 4. Tennenbaum-like net. 
 
Table 3. Array 

2GR  

 [1;3] [2;4] [3;4] [4;3] [4;5] 

[1;3] id  Ø Ø Ø 

[2;4]  id Ø Ø Ø 

[3;4] Ø Ø id Ø Ø 
[4;3] Ø Ø Ø id  
[4;5] Ø Ø Ø  id 

 

1
2GA























00000

]5;4[0]3;4[00

0]4;3[000

0]4;2[000

00]3;1[00

 

2 2

2 2

0 0 0 [1;3][3;4] 0

0 0 [2;4][4;3] 0 [2;4][4;5]

0 0 [3;4][4;3] 0 [3;4][4;5]

0 0 0 [4;3][3;4] 0

0 0 0 0 0

G G
 

 
 
 
  
 
 
 
 

A A  

2

3

0 0 [1;3][3;4][4;3] 0 [1;3][3;4][4;5]

0 0 0 [2;4][4;3][3;4] 0

0 0 0 0 0

0 0 0 0 [4;3][3;4][4;5]

0 0 0 0 0

G


 
 
 
 
 
 
 
 

A  

 
and  

2

3

0 0 [1;3][3;4][4;3] 0 [1;3][3;4][4;5]

0 0 0 [2;4][4;3][3;4] 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

G


 
 
 
 
 
 
 
 

A  

Let us explain why
2

3
G
A = 0. Indeed, we have: 

2

3 (4,5)G
A =

2 2

2 1(4, ) ( ,5)G G
   A A  

 = (0, 0, 0, [4; 3] [3; 4], 0)  (0, 0, 0, [4; 5], 0)t 
 0 0 0 0 0 0 [4;3][3;4] [4;5] 0 0        
 [4;3][3;4][4;5]  
 = 0 , by definition of . 

 
We stop computation because: 
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2

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

G


 
 
 
 
 
 
 
 

A  

Finally, we have
2 2 2 2

1 2 3
G G G G
   A I A A A   : 

 
 

 
 

 
2

1 0 [1;3],[1;3][3;4][4;3] [1;3][3;4] [1;3][3;4][4;5]

0 1 [2;4][4;3] [2;4],[2;4][4;3][3;4] [2;4][4;5]

0 0 1,[3;4][4;3] [3;4] [3;4][4;5]

0 0 [4;3] 1,[4;3][3;4] [4;5]

0 0 0 0 1

G


 
 
 
 
 
 
 
 

A
 

 
For example, let us give the closed formula for emergy circu- 
lating on arc [4; 5]. First, look at the following column: 

 

2

2

(1, 5)

(1, 5)

G

G





 
 
 
 

A

A
 

 
and take all words which terminate by [4; 5], that is: ([4; 5]) 
= {[1; 3] [3; 4] [4; 5], [2; 4][4; 5]} and compute  ([4;5])  as 
follows: 

1. 1 and 2 are emergy sources, thus by definition of  we have 
[1; 3]  [2; 4] (note that this was already summarized in the 
array

2GR . 

2. Rewrite  ([4; 5])  as:  

 

      ([4;5]) [1;3] [3;4][4;5] [2;4] [4;5]    , 

 
with [1;3]  [2;4]. 

 

3. Apply (.4.1) with m = 1, k = 2, a1 = [1; 3], 1 = {[3; 4] [4; 
5]}, a2 = [2; 4] and 2 = {[4; 5]}. Then, 

 

      ([4;5]) [1;3] [3;4][4;5] ) ([2;4] [4;5]      

 
4. Compute ([2;4] {[4;5]}) as follows: 

 
 

 
([2;4] [4;5] )

POW( ([2;4]), ( [4;5] ))



 
 

by (m = [2; 4] = {[4; 5]}) 
 POW(POW( (2), ([2;4]), ( [4;5] )))    

by (l = 2, l' = 4)  
POW(POW( (2), ([2;4]), ([4;5])))    

by (noticing m = [4; 5])  
POW(POW( (2), ([2;4])), ([4;5]))    

by noticing that 4, 5 s
2   

 
5. Compute  ([1;3] {[3;4][4;5]} as follows: 

 
 

([1;3] [3;4][4;5] )

POW( ([1;3]), ( [3;4][4;5] ))



 
 

 POW( ([1;3]), ([3;4] [4;5] ))   

by definition of the Minkowski product: 

 POW( ([1;3]),POW( ([3;4] [4;5] )))   

by (and m  = {[4; 5]} 
 

Then, applying (.2) to ([1;3]), ([3; 4]) and ([4; 5]), we 
have: 

([1; 3]) = POW((1),([1;3])) 
 
([3; 4]) =([3;4]) 
 
([4;5]) = ([4;5]). 
 
Finally, by associativity of POW we have: 

 
 ([4;5]) POW( (1), ([1;3]), ([3;4]), ([4;5])) POW( (2),       

([2;4]), ([4;5]))   

 
Using usual notations we have: 

 
 ([4;5]) (1) ([1;3]) ([3;4]) ([4;5]) (2) ([2;4]) ([4;5])         

 
 
Numerical application: Brown and Herendeen (1996) cho- 

se for emergy sources (1) = 400, (2) = 100 and for weights 
of the arcs ([4; 5]) = 2/5,  ([4; 3]) = 3/5,  a  2 \ {[4; 3], 
[4; 5]} (a)=1. Thus, one gets: 

 
 ([4;5]) 400 0.4 100 0.4 200     , 

 
which is the value obtained at the output of the graph (Brown 
and Herendeen 1996 (Figure 8b, p. 226)). 

Remark 5.1. The emergy computed corresponds to the 
entry (4, 5) of the matrix FRM in the Tennenbaum's program 
(see Tennenbaum (pp. 122 ~ 126) (1988)). 

 

5.2. Example 3.1 Continued 

Let us remark that the emergy graph of this example (see 
Figure 3) does not have splits. It possesses only co-products at 
nodes 3 and 6. From the computation of the matrix

1G
A , we ha- 

ve: 

 
 

 

1

0

0

[1;3]

[1;3][3;4](1, )

[1;3][3;5],[1;3][3;5][5;6][6;5],[1;3][3;4][4;6][6;5]

[1;3][3;4][4;6],[1;3][3;5][5;6],[1;3][3;4][4;6][6;5][5;6]

[1;3][3;4][4;6][6;7],[1;3][3;5][5;6][6;7]

t

G


 
 
 
 
 

   
 
 
 
 
 

A
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and  
 

 

1

0

0

0

(2, ) [2;4]

[2;4][4;6][6;5]

[2;4][4;6],[2;4][4;6][6;5][5;6]

[2;4][4;6][6;7]

t

G


 
 
 
 
 

   
 
 
 
 
 

A  

 
As an illustrative example, let us compute the emergy flowing 
on the arc [6; 5], i.e.  ([6;5])  with ε([6; 5]) = {[1; 3] [3; 5] 
[5; 6] [6; 5], [1; 3][3; 4] [4; 6] [6; 5], [2; 4][4; 6][6; 5]}. 

Because 1, 2  s
1  we have: [1; 3]  [2; 4], by definition 

of . Thus, we express ε([6; 5]) as follows: 

 
ε([6; 5]) = [1; 3] 1 [2; 4] 2, 
 
with 1 = {[3; 5] [5; 6] [6; 5], [3; 4] [4; 6] [6; 5]} and 2 = 
{[4; 6] [6; 5]}. And we obtain: 

 
(ε([6; 5])) =([1; 3] 1 ∪ [2; 4] 2) =([1; 3] 1) ( [2; 
4] 2) by (.4.1) 
 
By an easy computation we have: 


( [2; 4] 2)=POW((2), ([2; 4] [4; 6][6; 5])), 
 
with ([2; 4] [4; 6] [6; 5]) = POW(([2; 4]), ([4; 6]), ([6; 

5])). Let us detail the computation of ([1; 3]  1). It comes: 

 
([1; 3] 1) = POW(([1; 3]),( 1))            by () 
          = POW(POW((1),([1;3])), ( 1))   by () 
 
Now, we just have to compute ( 1). We remark that: 1 = [3; 
4] {[4; 6][6; ∪5]} [3; 5] {[5; 6] [6; 5]}, with [3; 4] // [3; 5] 
because there is a co-product at node 3. Then, by applying 
(.4.2) we have: ( 1) = ([3; 4]{[4; 6][6; 5]})  ([3; 5] {[5; 
6] [6; 5]}).  

Using (.3), (.2), associativity of POW and (.2) we 
have: ([3; 4] {[4; 6] [6; 5]}) = ([3; 4] [4; 6] [6; 5]) and ([3; 
5] {[5; 6] [6; 5]}) = ([3; 5] [5; 6] [6; 5]). with ([3; 4] [4; 6] 
[6; 5]) = POW(([3; 4]), ([4; 6]), ([6; 5])) and ([3; 5] [5; 
6] [6; 5]) = POW(([3; 5]), ([5; 6]), ([6; 5])). Finally, we 
obtain:(ε([6;5]))=POWPOW 

POW((1), ([3;5][5;6][6;5]))). 
Using usual notations we have:  

 
(ε([6; 5])) =max((1)([3; 
4])([4; 6])([6; 5]), (1)([3; 5])([5; 6])([6; 5])). 


Numerical application: Brown and Herendeen (1996, Fi- 
gure 9b) chose for emergy sources (1) = 400, (2) = 100 and 

for the weights,  a  1 (a) = 1. Thus, one gets: 

 
(ε([6; 5])) = 100 + max(400, 400) = 500. 
 
5.3. Emergy Graph with Splits and one Co-product 

Let us consider the emergy graph of Figure 5 as illustrated 
by Li et al. [Figure 8 and 9] (2010). There are splits at nodes 3, 
5, 6, 7 and 10, and a co-product at node 4. The set of sources 
is s = {1, 2}, the set of internal nodes is i = {3, 4, 5, 6, 7, 8, 
9, 10} and the set of the output nodes is o = {11, 12, 13, 14}. 
Because 1 and 2 are sources we have: [1; 3]  [2; 10]. Because 
3, 5, 6, 7 and 10 are spited we have: [3; 4]  [3; 5], [6; 8]  [6; 
9], [7; 9]  [7; 10] and [10; 4]  [10; 11]. Because of the co- 
product at node 4 we have: [4; 6] // [4; 7]. 

 

1

2

3

5

4

6 

7 

9 

8 

10 11

12

13

14

1

1

3/8

5/8

1

1

1/5 

4/5
1/3

2/3 

4/5 

1/5 

1/3

2/3 

 
Figure 5. Net with splits and one co-product at node 4. 

 
Let us give the main steps of the computation of the emer- 

gy circulating on the arc [9; 13] denoted (ε([9; 13])), recalling 
that ε([9; 13]) is the set of all physical emergy paths ending by 
[9; 13]. 

Step 1. The computation of the set ε([9; 13]) based on the 
computation of the *-closure of the incidence matrix of the gra- 
ph gives: 

  
ε ([9; 13]) =  

[1; 3][3; 5][5; 7][7;10][10; 4][4; 6][6; 9][9;13],

[1; 3][3; 5][5; 7][7; 9][9;13],

[1; 3][3; 4][4; 6][6; 9][9;13], [1; 3][3; 4][4; 7][7; 9][9;13],

[2;10][10; 4][4; 6][6; 9][9;13], [2;10][10; 4][4; 7][7; 9][9;13]

 
 
 
 
 
  

 

 
Step 2. We apply (.0) ~ (.2), (.0) ~ (.4) and obtain 

the following closed formula for (ε([9; 13])): 

(ε([9; 3])) = POW((1), ([1; 3] [3; 5] [5; 7] [7; 10][10; 
4][4; 6][6; 9] [9; 13]))  POW((1),([1; 3][3; 5][5; 7][7; 9][9; 
13]))  (POW((1),([1; 3][3; 4][4; 6][6; 9][9; 13]))  POW 
((1),([1;3][3;4][4;7][7;9][9;13])))  (POW((2),([2; 10] 
[10; 4][4; 6][6; 9][9; 13]))  POW( (2),([2; 10][10; 4][4; 
7] [7; 9][9; 13]))) 

Using usual notations we have: (ε([9;13])) = (1) ([1; 
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3][3; 5][5; 7][7; 10][10; 4][4; 6][6; 9][9; 13]) + (1)([1; 3] 
[3; 5][5; 7][7; 9][9; 13]) + max((1)([1; 3][3; 4][4; 6][6; 9] 
[9; 13]), (1)([1; 3] [3; 4] [4; 7] [7; 9] [9; 13])) + max (θ(2)  

([2; 10] [10; 4] [4; 6] [6; 9] [9; 13]), (2) ([2; 10] [10; 4] [4; 
7] [7; 9] [9; 13])). 

Numerical application. Li et al. (2010) chose for emergy 
sources (1) = 1000, (2) = 500 and for the weights ([1; 3]) 
=([2; 10]) =([4; 6]) =([4; 7]) =([9; 13])=1 and ([3; 
4]) = 5/8, ([3; 5]) = 3/8, ([5; 7]) = 4/5, ([6; 9]) = 1/5, ([7; 
9]) = 2/3, ([7; 10]) =([10; 4]) = 1/3. The numerical applica- 
tion gives: 

(ε([9; 13])) = 1000 
3 4 1 1 1

8 5 3 3 5
+ 1000 

3 4 2

8 5 3
+ max(1000 

1 1

3 5
, 1000 

1 2

3 3
) + max(500 

1 1

3 5
, 500 

1 2

3 3
) = 

20

3
+ 200 

+
1250 100 1000

max(125, ) max( , )
3 3 9

 =  6610
734.44

9
  

6. Discussion 

Let us first remark that the method/algorithm has two main 
parts. The first part is the enumeration of emergy flows. The 
second part is the numerical computation of the emergy flo- 
wing on an arc of the emergy graph. The emergy rules R1 ~ 
R4 do not clearly reveal this difference. Nevertheless, 

 The rule R1 has been translated as a particular case of 
axiom (.4.1) with  i = 1,… ,k: ai [ s; l], i = {[l; l']} for 
some l, l'  \ s, and the axioms (.0 ~.3). This rule is 
illustrated in e.g. Brown and Herendeen (Figure 6b, p. 225) 
(1996). However, let us remark that this rule is not always 
written the same way in the literature (see e.g. Sciubbia and 
Ulgiati (2005) --also used in the Introduction of this paper--, 
Li et al. (2010), Lazzaretto (2009), Ridolfi and Bastianoni 
(2008)). The case of one output is completely treated by 
axioms (.4.0) and (.0 ~ .3). 

 The rule R2 concerning splits has been translated by axioms 
(.1), (.4.1) and (.0 ~ .3). 

 The rule R3 is translated as a particular case of the axiom 
(.4.2) with i = {1}, i = 1, …, k and the application of (.0 
~ .3). 

 The rule R4 concerning the double counting problem is sol- 
ved as follows. For the qualitative part we have introduced 
the idempotent semiring  defined by (5). Then, we have de-  

fined the relations (or Thue congruences) 1



 and 2



 and 

the quotient relation 1



 / 2



 . This quotient relation allows 
us to define the operator and the operation and  . The 
Theorem 3.1 and the step B of the Algorithm Section 4 clear- 
ly show that the qualitative double counting problem of em- 
ergy is solved in an algebraic structure of the form 
(Matn( 0

 ), ,  , (0), I). 

 The rule R4.2 (i.e. the quantitative part of R4) is traduced 
by the application of the axioms (.4.2) and (.0 ~ .3). 

The axioms (p0 ~ p6) characterize the binary relations Ø, 

id,  and //. They are used to insure the coherency of the array 
RG defined by (20) and to prove that the computation algori- 
thm of the emergy on an arc terminates. 

7. Conclusions 

In this paper we have extended the Tennenbaum's Track 
Summing method to the case of emergy networks with both 
splits and co-products. To obtain this extension we have refor- 
mulated the emergy rules R1 ~ R4 (see the Introduction) into 
the axiomatic basis (p0 ~ p6) (see subsection 3.1), and axioms 
(.0 ~ .2), (.0 ~ .4) (see subsection 3.3). The main conce- 
pts used are idempotent semirings instead of linear algebra and 
the tree property allowing a recursive definition of the emergy 
flowing on an arc of the emergy graph. The method is progra- 
mmable and partially parallelizable. Even if authors cannot for- 
mally prove that the axiomatic basis is logically equivalent to 
the rules R1 ~ R4 the method has been tested on classical exa- 
mples of the literature and has given the same results. A last 
point one should note is that the method is not only a computa- 
tional method. It also provides a rigorous framework based on 
an axiomatic basis to complete the emergy evaluation of an 
emergy graph. 

Appendix A: Explanation of axiom (.4.1) 

Let us consider the emergy graph of Figure 6 such that 
(1) = 300. Let us compute (([6; 5])). We have ([6; 5]) = 
{[1; 3][3; 4][4; 6][6; 5], [1; 3][3; 5][5; 6][6; 5]}. Because there 
is a split at node 3: [3; 4]  [3; 5], thus the set ([6; 5]) is de- 
composed as follows: 


([6; 5]) = [1; 3][3; 4] 1 ∪ [1; 3][3; 5] 2 
 
with: 1 = {[4; 6][6; 5]} and 2 = {[5; 6][6; 5]}. 

 

1 3

5

4 6 7

8

1

5/6

1/6

1/2 

1/2 

4/5

1/5 

1 

 
Figure 6. Emergy graph with split. 
 

1 3

5

4 6 
1

1/6

1/5 

1 

(300)

10=300*1/6*1/5

 
Figure 7. First pathway from 1 to 5. 
 

Figure 7 explains how to compute the emergy flowing on 
arc [6; 5] of the system where there is only the arc [3; 4] after  
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the upstream flow [1; 3], that is ([1; 3][3; 4] 1). 

 

1 3 

5 

6 
1 

5/6 

1/2 

1/5 

(300) 

25 = 300*5/6*1/2*1/5

 
Figure 8. Second pathway from 1 to 5. 
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1/6 
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Figure 9. Total emergy flowing on arc [6;5]. 
 

1 3 4 6 7
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1 1 1 
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4/5
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1/2 

 
Figure 10. Emergy graph with co-product. 
 

1 3 4 6 
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1 1 1 

1/5 

(500) 

100 = 500*1/5

 
Figure 11. Emergy on the first pathway from 1 to 5. 
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Figure 12. Emergy on the second pathway from 1 to 5. 
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1 1 1 
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1/5 
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100 = 500*max(1/5,1/2*1/5)

 
Figure 13. Total emergy flowing on arc [6;5]. 
 

Figure 8 explains how to compute the emergy flowing on 
arc [6; 5] of the system where there is only the arc [3; 5] after 
the upstream flow [1; 3], that is ([1;3][3;5] 2). 

Finally, when reunited Figure 9 explains how to compute 

the whole emergy flowing on arc [6; 5] and illustrates the for- 
mula: 

 
([1; 3] [3; 4] 1 ∪ [1; 3] [3; 5] 2) = ([1; 3] [3; 4] 1)  
 ([1; 3] [3; 5] 2). 
 
In the general case we have: 

 

( 1
k
i m ai i) = 1

k

i  (m ai i), 

 
and the operation  (i.e. addition) is well associated with re- 
lation . 

Appendix B: Explanation of axiom (.4.2) 

Let us consider the emergy graph of Figure 10 such that 
(1) = 500. Let us compute ([6; 5])). We have ([6; 5]) = 
{[1; 3] [3; 4] [4; 6][6; 5], [1; 3] [3; 5] [5; 6] [6; 5]}. Because 
there is a co-product at node 3: [3; 4] // [3; 5], thus the set ([6; 
5]) is decomposed as follows: 


([6; 5]) = [1; 3] [3; 4] 1 ∪[1; 3] [3; 5] 2 

 
with: 1 = {[4; 6] [6; 5]} and 2 = {[5; 6][6; 5]}. 

Figure 11 explains how to compute the emergy flowing 
on arc [6; 5] of the system where there is only the arc [3; 4] af- 
ter the upstream flow [1; 3], that is ([1; 3][3; 4] 1). 

Figure 12 explains how to compute the emergy flowing 
on arc [6; 5] of the system where there is only the arc [3; 5] 
after the upstream flow [1; 3], that is ([1; 3] [3; 5] 2). 

Finally, when reunited Figure 13 explains how to compute 
the whole emergy flowing on arc [6; 5] and illustrates the for- 
mula: 

 
 ([1; 3] [3; 4] 1 ∪ [1; 3] [3; 5] 2) = ([1; 3] [3; 4] 1)  
([1; 3] [3; 5] 2). 

 
In the general case we have: 

 

 ( 1
k
i m ai i) = 

1

k

i  (m ai i), 

 

and the operation  (i.e. maximum) is well associated with 
the co-product //. 
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