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ABSTRACT.  A combined genetic algorithm and fuzzy simulation approach (GAFSA) was developed through integrating fuzzy 

chance-constrained programming (FCCP) and genetic algorithm (GA) into a general optimization framework. The major advantage of 

GAFSA is that it could tackle generally-shaped fuzzy membership functions on both sides of the model constraints, rather than handle 

single special forms like triangular or trapezoidal. An agricultural water quality management problem that has been investigated by a 

number of previous studies was used to demonstrate the applicability of the proposed method. The results showed that GAFSA allowed 

violation of system constraints at specified possibilistic confidence levels, leading to model solutions with higher system benefits. A 

conservative planning scheme could bring a more reliable system, but would be less economically attractive. Conversely, planning 

towards a higher system benefit would lead to a higher risk of system failure. The proposed model could help agricultural water 

managers analyse the trade-off between the overall system benefit and the failure risk of environmental compliance. A comparison of 

GAFSA to FCCP was given, and the potential limitations of the proposed method were also discussed. 
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1. Introduction 

For many decades, agriculture has focused on adopting 

new technologies or improving existing farming practices for 

boosting production which leads to many environmental pro- 

blems, such as the soil erosion, non-point sources pollution, 

and water shortage (Huang, 1996). These problems have been 

associated with both water quantity and water quality, and urged 

planners to develop a comprehensive management strategy. 

However, the agricultural water quality management system is 

complicated with a variety of uncertainties derived from many 

factors such as economic objective, environmental requirement, 

and policy regulation (Huang and Xia, 2001). Therefore, effec- 

tive decision-support tools with the capability of tackling un- 

certainties are desired to be developed. 

Over the past years, a large number of inexact optimization 

techniques have been applied to deal with uncertainties asso- 

ciated with water quality management systems. Most of these 

methods were related to fuzzy mathematical programming 

(FMP), stochastic mathematical programming (SMP), and in- 

terval linear programming (ILP) (Beck, 1987; Cardwell and 

Ellis, 1993; Nie et al., 2007; Rong and Lahdelma, 2008; Rehana 

                                                        
*
 Corresponding author. Tel.: +65 6790 5288; fax: +65 6792 1650. 

 E-mail address: xsqin@ntu.edu.sg (X. S. Qin). 

 

ISSN: 1726-2135 print/1684-8799 online 

© 2013 ISEIS All rights reserved. doi:10.3808/jei.201300244 

and Mujumdar, 2009; Aviso et al., 2010; Lv et al., 2010; Fan 

and Huang, 2012). Stochastic chance-constrained programming 

(SCCP) is one of the major methods of SMP, which offers a 

means of allowing the decision makers to consider objectives 

in terms of the probability of their attainment (Charnes and 

Cooper, 1959). The SCCP models were successfully applied 

in a number of environmental management problems (Wagner 

and Gorelick, 1987; Singh and Chakrabarty, 2011). Recently, 

it has been extended from stochastic to fuzzy environments 

(Liu and Iwamura, 1998). Fuzzy chance-constrained program- 

ming (FCCP) model is a novel FMP method, incorporating 

some predetermined confidence levels of fuzzy constraints- 

satisfaction into the models. Similar to SCCP model, the con- 

ventional technique of solving FCCP is to convert the fuzzy 

constraints to deterministic equivalents according to the prede- 

termined confidence levels. Previously, applications of FCCP 

have been reported in many fields, including solid waste mana- 

gement (Huang et al., 1992) and water resources management 

(Guo and Huang, 2009; Li et al., 2009). However, in water 

quality management field, the related studies are very limited. 

Zhang et al. (2009) made the first attempt in applying a robust 

chance-constrained fuzzy possibilistic programming (RCFPP) 

model to water quality management in an agricultural system 

for providing decision schemes for different agricultural activi- 

ties.  

Nevertheless, most of the FCCP studies relied on techni- 

ques that were capable of dealing with fuzzy variables with spe- 

cial distributions, such as triangular and trapezoidal (Liu and 
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Iwamura, 1998). In many real-world applications, the fuzzy 

parameters may have membership functions in various shapes. 

For example, in agricultural activities, the soil loss rate is af- 

fected by many factors such as crop type, climate condition, 

and soil profile; the on-site measurement data may lead to the 

generation of membership functions in complex shapes rather 

than simple triangular ones. Previously, few studies have addre- 

ssed such a problem, particularly under the context of a FCCP 

framework.  

Thus, the objective of this study is to develop a combined 

genetic algorithm and fuzzy simulation approach (GAFSA) for 

solving the fuzzy chance-constrained programming (FCCP) 

model for agricultural water quality management problem. 

Genetic algorithm (GA) is an adaptive heuristic search algori- 

thm premised on the evolutionary ideas of natural selection 

and genetic. It will be used to solve a FCCP model with both 

sides being associated with fuzzy coefficients in varied shapes. 

GAFSA will be applied to an agricultural water quality mana- 

gement problem for demonstrating its applicability. Advanta- 

ges and limitations of the proposed method will be further dis- 

cussed. 

2. General Methodology 

2.1. Fuzzy Chance-Constrained Programming 

Fuzzy chance-constrained programming (FCCP) was tho- 

roughly discussed by Liu and Iwamura (1998). It allows incur- 

poration of a set of predetermined confidence levels to the op- 

timization framework, which reflects the degree of constraints 

satisfaction due to impacts of possibilistic uncertainties. A ge- 

neral FCCP model could be formulated as follows: 

 

  Minimize f CX  (1a) 

 

Subject to: 

 

 , | Pos A B AX B    (1b) 

 

DX E  (1c) 

 

, 0C A  (1d) 

 

0X   (1e) 

 

where X is a vector of deterministic decision variables; A and 

B are vector items which are expressed as fuzzy sets with mem- 

bership functions ( )A and ( )B , respectively; C, D and E are 

vectors of deterministic auxiliary variables; pos{·} denotes po- 

ssibility of events in {·}; α is a predetermined confidence level. 

In model (1), Equation (1b) represents the fuzzy chance con- 

straints with both side items being described as fuzzy sets. 

Other formulas are similar to those in a general deterministic 

model, including the objective function (1a), the general con- 

straints (1c), the non-zero constraints (1d), and the general 

constraints (1e).  

2.2. Combined Genetic Algorithm and Fuzzy Simulation 

Approach (GAFSA) 

To solve model (1), the fuzzy chance constraints need be 

converted to their respective crisp equivalents. In many real- 

world applications, the fuzzy membership functions usually 

have specific shapes, such as exponential, Gaussian, triangular, 

and trapezoidal. Hence it is difficult to convert them to their 

respective deterministic equivalents unless they are all expre- 

ssed in some special forms like triangular or trapezoidal (Liu 

and Iwamura, 1998). To solve this problem, we incorporate 

GA into a general FCCP model, and try to seek exact or appro- 

ximate solution. Comparing to the conventional linear progra- 

mming algorithms, GA relies on a penalty-based evaluation 

procedure and a number of directional searching algorithms 

(inspired by natural evolutions, such as initiation, mutation, se- 

lection, and crossover) to seek optimal model solutions.  

Based on the concepts and techniques of possibility theory 

established by Zadeh (1978), Equation (1b) can be transformed 

into:  

 

      , | min ,  , ,  
BA

Pos A B AX B Sup a b a b R a b      

 (2) 

 

Based on model (1), a general GAFSA model could be 

written as follows (Liu and Iwamura, 1998; Qin et al., 2010): 

 

  Minimize F CX CPF IPF    (3a) 

 

Subject to: 

 



1

0 if . is met

if . is not met

Pos
CPF

Pos



 

 
 



 (3b) 

 

2

0 if is met

if is not met

DX E
IPF

DX E


 


 (3c) 

 

, 0C A  (3d) 

 

0X   (3e) 

 

where F is a transformed objective function based on Equation 

(1a), which is convenient for GA to seek optimal solutions of 

model (3). According to Poojari and Varghese (2008) and Qin 

et al. (2010), CPF in Equation (3b) is a penalty factor for des- 

cribing the influence of fuzzy chance-constraints violation at a 

predetermined confidence level α; λ1 is a large real number and 

can be used to quantitatively reflect the violation of fuzzy ch- 

ance constraints. Similarly, IPF in Equation (3c) is a penalty 

factor for reflecting the violation of deterministic constraints 

where λ2 is a large real number. The values of λ1 and λ2 are 

much higher than the objective function values in order to get 

applicable solutions. As shown in model (3), it is important to 

calculate the possibilistic value of event {·}. According to Liu 

and Iwamura (1998), a fuzzy-simulation-based iteration proce- 
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ss can be used for such a purpose. The iteration process is des- 

cribed as follows:  

(i) Take the hypercubes A and B containing α-cut for both 

fuzzy numbers a and b , and generate two crisp numbers a and 

b. If aX b , calculate ( )
A

a and ( )
B

b through the fuzzy 

membership functions and set p = min [ ( ), ( )
BA

a b  ].  

(ii) Generate a and b satisfying a X b   and obtain the 

corresponding ( )
A

a  and ( )
B

b  . If p < min[ ( )
A

a  , ( )
B

b  ], 

then set min ( ), ( )
BA

p a b      ; otherwise, p remains unch- 

anged.  

(iii) Repeat the above processes until a given number of 

cycle n is reached. Finally, the maximum value p will be re- 

garded as the desired possibility to be determined. Finally, the 

model solution at a specific confidence level can be obtained. 

Figure 1 shows some common fuzzy membership func- 

tions on both sides of the constraints. Generally, the fuzzy si- 

mulation approach is applicable as long as the fuzzy member- 

ship functions are given. 
 

 

Figure 1. Common fuzzy membership functions on both sides 

of the constraints. 

 

According to Equations (3b) and (3c), a compliance check 

is needed for both the uncertain and deterministic constraints 

for each potential solution (i.e. a chromosome) generated by 

GA iteration. Obviously, the best solution should fall within the 

solution pool without triggering any penalty of constraints vio- 

lation. As the fuzzy simulation process is flexible on the shape 

of fuzzy variables, the proposed GAFSA framework is able to 

tackle complicated forms of fuzzy membership functions. As 

shown in Figure 2, the detailed procedures of GAFSA model 

are summarized as follows: 

Step 1: Identify fuzzy uncertain variables and acquire the rela- 

ted fuzzy possibility distributions; 

Step 2: Formulate a fuzzy chance-constrained programming 

model; 

Step 3: Define the penalty factors of constraints satisfaction and 

build the fitness function based on model (3); 

Step 4: Initiate the GA searching process, with each chromo- 

some representing a potential model solution; 

Step 5: Calculate the confidence levels of fuzzy chance-con- 

straints satisfaction through the iteration-based fuzzy simula- 

tion;  

Step 6: Evaluate the value of fitness function based on a prede- 

termined confidence level; 

Step 7: Check the stop criteria; if satisfied, generate the final 

solutions of fopt and Xopt; if not, proceed with standard GA ope- 

rations of selection, crossover, and mutation, and go back to 

Step 4. 

 

Uncertainties

Ambiguousness of 

human judgments

Fuzzy possibility 

distribution

Vagueness of data 

sources

Check feasibility of 

chance constrants

Fuzzy membership 

functions

Genetic 

algorithm

Penalty 

(CPF)

Evaluate fitness 

function

Optimal solutions 

by GAFSA

Decision 

alternatives

Infeasible

 

 

Figure 2. General framework of a GAFSA model. 

 

2.3. Example of Testing Effectiveness of GAFSA 

In order to test the effectiveness of GAFSA, a standard 

approach for solving triangular-shaped FCCP model proposed 

by Liu and Iwamura (1998) was used for comparison. A small 

numerical example is given as follows: 

 

Maximize f = 3x1 + x2 (4a) 

 

Subject to: 

 

(0.1, 0.15, 0.2)x1 ≤ (0.95, 1, 1.05) (4b) 

 

(0.1, 0.25, 0.3)x2 ≤ (0.175, 0.2, 0.225)  (4c) 

 

0.25x1 – 0.3x2 ≤ 1 (4d) 

 

x1, x2 ≥ 0 (4e) 

 
where the coefficient, like (0.1, 0.15, 0.2) in Equation (4b), re- 

presents a triangular fuzzy set, where 0.1 and 0.2 are the lower 

and upper bounds of the fuzzy set, and 0.15 is the most likely 

value. Table 1 shows the comparison of solutions between 

GAFSA and FCCP. It shows that, at the same confidence level, 

the solutions obtained from GAFSA are close to those obtained 

from FCCP. It is also found that the GAFSA can only reach sub- 
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optimal solutions. For example, at a confidence level of 0.6, 

the objective value obtained from GAFSA (i.e. 17.02) is lower 

than that from FCCP (i.e. 17.08). Generally, GAFSA is capable 

of solving CCP model with fuzzy parameters on both sides of 

constraints and obtaining reasonable solutions. 

 

Table 1. Comparison of Solutions between GAFSA and FCCP  

Confidence level 
GAFSA FCCP 

x1 x2 f x1 x2 f 

0.6 5.31 1.09 17.02 5.33 1.11 17.08 

0.7 5.21 1.01 16.63 5.21 1.01 16.66 

0.8 5.11 0.92 16.26 5.12 0.93 16.29 

0.9 5.03 0.85 15.94 5.03 0.86 15.96 

3. Application in Agricultural Water Quality 
Management 

3.1. Overview of the Study Case 

A hypothetical agricultural water quality management pro- 

blem, which is adapted from Huang (1996) and Nie et al. (2008), 

will be used for demonstrating the applicability of the proposed 

GAFSA model. The model parameters are obtained from lite- 

ratures based on representative cost/benefit and technical data 

(Tisdale and Nelson, 1966; Haith, 1982; Huang, 1996; Nie et 

al., 2008). The total tillable land of the study area is 96.4 ha. 

The main crops are wheat, vegetables and potato, and the main 

livestock are cattle, pig and poultry. The entire area was divi- 

ded into three subareas, with the tillable land being 34.1, 23.9, 

and 40.4 ha, respectively. Irrigation water is withdrawn from 

three canals connected to a river flowing through the area. In 

this rural system, the crop cultivation and livestock breeding 

are two major ways to generate economic benefit. For detailed 

background information, readers are referred to Huang (1996) 

and Nie et al. (2008).  

The hypothetical case is highly simplified and considers 

limited crops, livestock and nonpoint source losses. A real- 

world case is normally more complicated, involving more ele- 

ments of soil pollution (e.g. chemical, biological and physical 

elements), governmental policies (e.g. labor requirement, land 

use restriction, product quality, and environmental standards), 

and agricultural activities (e.g. spraying, weeding and fertili- 

zing). This could lead to the growth of model sizes and com- 

plexity of constraint considerations. 

 

3.2. Formulation of a GAFSA Model 

In this agricultural system, the nonpoint source losses of 

soil, nitrogen and phosphorus from fertilizer and manure have 

led to the pollution problems in the canal (Huang, 1996). The 

water contamination problem could decrease the amount of 

available water resources, and aggravate the water-shortage 

problems. This, in turn, would influence the crop cultivation 

and agricultural income. The decision makers are responsible 

for generating desired decision alternatives for agricultural ac- 

tivities and water usages based on the given objectives/restric- 

tions, in order to maximize the total system benefit. Due to the 

features of vagueness and imprecision, parameters associated 

with environmental loading capacities (such as soil loss amou- 

nts from land planted to crop, allowable soil loss and pollutants 

discharge amounts) could be expressed by fuzz sets with various 

membership functions. This is deemed reasonable as, in prac- 

tical applications, these data are normally difficult to be accu- 

rately defined or measured, and some empirical judgement or 

statistical analysis has to be made in order to quantify the rela- 

ted uncertainties. The distributions of these data could have lar- 

ge variations due to various reasons like spatial-temporal chan- 

ges, climate impact, and data shortage; if fuzzy set theory is 

used to describe such uncertainties, the corresponding member- 

ship functions could hardly be fitted by simple forms like trian- 

gular shapes. For demonstration purpose, in this study, the soil 

loss rate from the land planted with crops and the maximum al- 

lowable soil loss rate are assumed as fuzzy sets with triangular 

and trapezoidal shapes, respectively. The maximum allowable 

soil-phase nitrogen and phosphorus loss rates are expressed as 

fuzzy sets in exponential forms (as shown in Table 2 and Figure 

3). In reality, the procurement of the related information should 

rely on site survey, literature review, and expert consultations. 

Other deterministic model parameters are referred to Nie et al. 

(2008) and Xu and Qin (2010) (listed in Tables 2 and 3).  

 

 

2600 5100 7700
0

1

Soil loss rate from land to wheat

9000 17500 26500
0

1

Soil loss rate from land to vegetable

3870 7600 11400
0

1

Soil loss rate from land to potato

3700 5000 6500 9000
0

1

Maximum allowable soil loss rate

17.8
0

1

Maximum allowable soil-phase

nitrogen loss rate

8.2
0

1

Maximum allowable soil-phase

phosphorus loss rate

 

Parameters obtained 

Error calculation 

 
Figure 3. Fuzzy membership functions for fuzzy coefficients. 

 

Hence, the model for agricultural effluent control could 

be formulated as follows (Nie et al., 2008; Xu and Qin, 2010): 

 

1 1 1 1 1 1

1 1 1

                        

T I J T I I

i i it j j i it M i

t i j t i i

I T I

F i it it it

i t i

Maximize f Y S Z G S G M

G F v W S CPF IPF

 
     

  

   

   

   

 

  

 (5a) 

Subject to: 

 

1

0 if ( , ) is met

if ( , ) is not met

G X
CPF

G X



 


 


 (5b) 



T. Y. Xu et al. / Journal of Environmental Informatics 22(1) 39-48 (2013) 

 

43 
 

Table 2. Model Parameters Related to Crops and Livestock 

Parameters related to crops 
Wheat Vegetable Potato  

(i = 1) (i = 2) (i = 3) 

Unit yield of crop i (kg/ha) 6000 21500 15000 

Dissolved nitrogen concentration in wet season runoff from the land planted with crop i (mg/l) 1.5 2.7 2.2 

Dissolved nitrogen concentration in dry season runoff from the land planted with crop i (mg/l) 0.8 1.7 1.4 

Dissolved phosphorus concentration in wet season runoff from the land planted with crop i (mg/l) 0.15 0.26 0.23 

Dissolved phosphorus concentration in dry season runoff from the land planted with crop i (mg/l) 0.08 0.22 0.21 

Unit nitrogen requirement of crop i (kg/ha) 105 155 100 

Wet season runoff from the land planted with crop i (mm) 65 82 86 

Dry season runoff from the land planted with crop i (mm) 45 51 55 

Net energy potential of crop i (Mcal/kg) 3.3 0.22 0.8 

Digestible protein content of crop i (%) 0.108 0.01 0.018 

Flow rate of irrigation water required by crop i in subarea 1 [(m
3
/s)/ha] 0.032 0.051 0.043 

Flow rate of irrigation water required by crop i in subarea 2 [(m
3
/s)/ha] 0.031 0.05 0.042 

Flow rate of irrigation water required by crop i in subarea 3 [(m
3
/s)/ha] 0.033 0.052 0.044 

Soil loss rate from the land planted with crop i (kg/ha) 5100 17500 7600 

Unit price of crop i ($/kg) 0.45 0.97 0.72 

Unit farming cost of crop i ($/ha) 1650 10500 2750 

Unit cost to deliver water to Sit in Subarea 1 {$/(m
3
/s)} 2450 2800 2600 

Unit cost to deliver water to Sit in Subarea 2 {$/(m
3
/s)} 4000 4400 4200 

Unit cost to deliver water to Sit in Subarea 3 {$/(m
3
/s)} 5200 5600 5400 

Parameters related to livestock 
Cattle Swine Poultry 

j = 1 j = 2 j = 3 

Unit manure amount generated by livestock j (t/unit) 18 1.8 0.04 

Unit digestible protein requirement of livestock j (kg/unit) 350 35 1.8 

Unit net energy requirement of livestock j (Mcal/unit) 5200 515 188 

Unit average return from livestock j ($/unit) 900 75 5.4 

* The related data are adapted from Huang (1996) and Nie et al. (2008). 

 

Table 3. General Model Parameters 

Deterministic parameters  

Maximum allowable total nitrogen loss rate (kg/ha) 38 

Nitrogen concentration of manure (kg/t) 13 

Nitrogen content of soil (%) 0.02 

Phosphorus content of soil (%) 0.0009 

Nitrogen volatilization/denitrification rate of manure (%) 0.3 

Phosphorus volatilization/denitrification rate of manure (%) 0.1 

Maximum loss rate of dissolved nitrogen by runoff (kg/ha) 2.3 

Maximum loss rate of dissolved phosphorus by runoff (kg/ha) 0.02 

Unit cost of fertilizer application ($/kg) 1.5 

Unit cost of manure collection/disposal ($/t) 7.8 

Fuzzy parameters    

Maximum allowable soil loss rate (kg/ha)  (3700, 5000, 6500, 9000) 

Maximum allowable soil-phase nitrogen loss rate (kg/ha)  17.8 / 2.5Exp    

Maximum allowable soil-phase phosphorus loss rate (kg/ha)  8.2 / 1.2Exp    

Soil loss rate from the land planted with wheat ( i = 1)  (2600, 5100, 7700)* 

Soil loss rate from the land planted with vegetable ( i = 2)  (9000, 17500, 26500) 

Soil loss rate from the land planted with potato ( i = 3)  (3870, 7600, 11400) 

* Data are adapted from Huang (1996) and Nie et al. (2008); (a, b, c, d)* represents a trapezoidal-shaped fuzzy set with a, b, c, and d being the four 

sequential parameters from left to right. (d, e, f)* represents a triangular fuzzy set, where d and f are the minimum and maximum possible values and e 

is the most likely value. Exp[·] represents an exponential fuzzy set. 
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2

0 if ( , ) is met

if ( , ) is not met

H X
IPF

H X



 


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

 (5c) 
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, , , 0,  , , ,int in in jS M F Z i j n t   (5f) 

 

where f = net system income ($); t, i and j (t = 1, 2, ..., T; i = 1, 

2, …, I; j = 1, 2, …, J) are indexes of subarea, crops and live- 

stock, respectively; T, I and J are numbers of subarea, crops 

and livestock, respectively; Yi = unit yield of crop i (kg/ha); Sit 

= area of crop i in subarea t (ha); Zj = number of livestock j in 

the study area; i = unit price of crop i ($/kg); j = unit ave- 

rage return from livestock j ($/unit); iG = unit farming cost for 

crop i ($/ha); MG = unit cost of manure collection and dispo- 

sal ($/t); HG  = unit cost of fertilizer application ($/kg); itv  

= unit cost to deliver water to Sit ($/m
3
/s); Mi = amount of ma- 

nure applied to crop i (t); Fi = amount of fertilizer nitrogen ap- 

plied to crop i (kg); Wit = flow rate of irrigation water required 

by crop i in subarea t (m
3
/s/ha); Bj = unit amount of manure ge- 

nerated by livestock j that needs to be disposed (t/unit); p1 = 

nitrogen volatilization/denitrification rate of manure (%); g = 

nitrogen concentration of manure (kg/t); p2 = nitrogen volatili- 

zation/denitrification rate of fertilizer (%); qi = unit nitrogen 

requirement of crop i (kg/ha); i = net energy potential of crop 

i (Mcal/kg); Ej = unit net energy requirement of livestock j 

(Mcal/unit); i = digestible protein content of crop i (%); Dj 

= unit digestible protein requirement of livestock j (kg/unit); 

Kt = tillable area in subarea t (ha); iL  = soil loss rate from land 

planted with crop i (kg/ha); b  = maximum allowable soil loss 

rate (kg/ha); 1c = maximum allowable solid-phase nitrogen loss 

rate (kg/ha); 2c = maximum allowable solid-phase phosphorus 

loss rate (kg/ha); a = maximum allowable total nitrogen loss 

rate (kg/ha); h1 = nitrogen content of soil (%); h2 = phosphorus 

content of soil (%); N1i = dissolved nitrogen concentration in 

wet season runoff from land planted to crop i (mg/l); N2i = di- 

ssolved nitrogen concentration in dry season runoff from land 

planted to crop i (mg/l); R1i = wet season runoff from land plan- 

ted to crop i (mm); R2i = dry season runoff from land planted 

to crop i (mm); u1 = maximum allowable loss rate of dissolved 

nitrogen by runoff (kg/ha); u2 = maximum allowable loss rate 

of dissolved phosphorus by runoff (kg/ha); P1i = dissolved 

phosphorus concentration in wet season runoff from land 

planted to crop i (mg/l); P2i = dissolved phosphorus concen- 

tration in dry season runoff from land planted to crop i (mg/l); 

Qt = maximum canal flow within subarea t (m3/s); α = pre- 

scribed confidence level. 

The GAFSA model is implemented in the platform of 

MATLAB 2008a. The hardware settings are: (1) CPU: AMD 

Phenom(tm) X4 B95 Processor 3.00GHz; (2) SIMM: 4GB (D      

DR3 1333MHZ). The parameters of using genetic algorithm 

are: (1) pop sizes = 100; (2) maximum generations = 2000; (3) 

single-point crossover rate = 0.8; (4) the mutation rate = 0.01; 

(5) termination tolerance on fitness function value = 1 × 10
-6

; 

(6) the penalty factor for fuzzy violation ( 1 ) = 2 × 10
6
; (7) the 

penalty factor for infeasibility ( 2 ) = 2 × 10
6
. Generally, the 

average computational time of solving the agricultural water 

quality management model took about 50 minutes with the cir- 

cle number n = 3000.  

4. Result Analysis 

Table 4 shows the results obtained from the GAFSA mo- 

del, including the system benefit and the amounts of crops, li- 

vestock, manure and fertilizer under different confidence levels. 

It indicates that the majority of the area in subarea 1 would be 

used for planting crops, while the subareas 2 and 3 would not 

be utilized completely and the land left over in subarea 3 would 

be larger. For example, under the confidence level of 0.7, the 

cropping areas are determined to be 34.02, 18.56, and 32.46 

ha
 
for subareas 1 to 3, respectively. This is mainly due to the 

stricter irrigation requirement on water quantity and the higher 

cost for delivering water in subarea 3. From Table 4, the num- 

ber of cattle and swine would be relatively lower than that of 

the poultry. This may be caused by multiple factors, including 

the related energy and protein demands, market prices and ma- 

nure. It is also shown that the number of poultry would increase 

as the confidence level increases. For example, the number of 

poultry is 1912, 3000, 3045, and 3728 at the confidence levels 

of 0.7, 0.8, 0.9, and 0.95. This is because the potato and wheat 

have higher energy potential and digestible protein for breeding 

poultry. When the confidence level increases, the cropping areas 
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for both of them would increase, leading to the growth of poul- 

try size. 

 

Table 4. Solutions of GAFSA Model Based on Generally- 

Shaped Fuzzy Membership Functions of Uncertain Parame- 

ters 

Decision Variables 
Confidence Level 

0.7 0.8 0.9 0.95 

S11 Wheat 2.28  3.68  3.72  4.50  

S12 Wheat 0.01  2.46  1.52  1.97  

S13 Wheat 0.70  1.31  5.47  5.80  

S21 Vegetable 20.10  16.40  12.23  10.70  

S22 Vegetable 15.15  10.60  7.69  5.44  

S23 Vegetable 22.40  12.90  13.31  10.41  

S31 Potato 11.64  14.00  18.85  18.89  

S32 Potato 3.40  7.00  11.17  12.52  

S33 Potato 9.36  20.06  13.65  14.23  

Z1 Cattle 43  40  44  42 

Z2 Pig 3  1  1  2 

Z3 Poultry 1912  3000  3045  3728  

M1 Wheat 0.14  5.06  49.09  81.43  

M2 Vegetable 766.87  530.38  481.50  387.81  

M3 Potato 82.79  315.94  386.80  447.81  

F1 Wheat 352.20  872.54  910.04  619.66  

F2 Vegetable 2207.30  1565.06  858.78  653.17  

F3 Potato 1875.00  1514.78  949.87  657.90  

Net Income ($10
5
) 8.06 7.58 7.06 6.65 

* i = type of crop; Sit = cropping area (ha), where t = index of subarea; 

Mi = applied manure amount (t); Fi = amount of applied nitrogen 

fertilizer (kg); Zj = size of livestock husbandry (unit), where j = 

livestock. 

 

Figure 4 shows the optimized cropping areas under various 

confidence levels. It is indicated that the vegetable and potato 

would occupy most of the areas, while the wheat would only 

cover a small portion. For example, under the confidence level 

of 0.8, the crop areas of wheat, vegetable, and potato is 7.46, 

39.91, and 41.06 ha, respectively. Figure 4 also shows that the 

cropping area would have large variations under different con- 

fidence levels. The crop area of wheat and potato under the con- 

fidence levels of 0.7 to 0.95 increases from 2.99 to 12.27 ha, 

and from 24.40 to 45.64 ha, respectively; while the crop area 

of vegetable under the confidence levels of 0.7 to 0.95 decrea- 

ses from 67.65 to 26.55 ha. The decrease of crop area of vege- 

table is due to the fact that the vegetable has a good market pri- 

ce which could contribute to the net income; however, the po- 

llution generated by the vegetable is higher than those by other 

crops. Conversely, the cropping areas for potato would increase 

when the confidence level increases, which is because, when 

the confidence level and system reliability become higher, the 

environmental loading capacities and the standard of pollutant 

discharge would be stricter; the system prefers to choose a crop 

with a relatively lower environmental impact and a higher yiel- 

ding capacity (and thus a higher benefit). The potato, with mo- 

derate levels of yield, market price, and pollutant discharge, 

could not only contribute to the system benefit, but also satisfy 

the water quality requirement; it is more desirable under a stri- 

cter environmental standard. 
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Figure 4. Optimized cropping areas under various confiden-

ce levels. 

 

Figures 5 and 6 indicate that, with the change in the crop- 

ping areas, the manure/fertilizer requirement for the vegetable 

would be lower than that under a higher confidence level; while, 

the amount of the wheat and potato has the opposite trend. It 

is also found that the amount of manure is much higher than 

that of fertilizer by orders of magnitude. Meanwhile, with the 

increase of the confidence level, the total amount of fertilizer 

would decrease, while the total amount of manure does not ha- 

ve an obvious trend. The reason is that the manure and fertili- 

zer not only provide nutrient and energy to the crops but also 

cause the nonpoint sources pollution problems; their usage sh- 

ould then be controlled to meet the environmental requirements. 

Manure is locally produced and related to livestock husbandry, 

which could contribute to the net income; while fertilizer is pur- 

chased from external sources, which is much more expensive 

than manure. Therefore, the total amount of fertilizer would 

be lower under a higher confidence level.  
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Figure 5. Applied manure amounts for different crops. 

 

The net income of the system would decrease with the in- 

crease of the confidence level. For example, at the confidence 

levels of 0.7, 0.8, 0.9, 0.95, the net incomes would be 8.06, 
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7.58, 7.06, and 6.65 (×10
5
 $), respectively. This implies that 

the system benefit would become higher when the environ- 

mental requirement for water quality is less strict. Thus, a con- 

servative plan may lead to more reliable system; conversely, 

planning for a higher system benefit may result in a higher risk 

of failure.  
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Figure 6. Optimized total manure/fertilizer amounts under 

various confidence levels. 

 

Generally, the proposed GAFSA is capable of handling fu- 

zzy parameters existing in agricultural water quality manage- 

ment system with generally shaped membership functions. The 

results obtained from GAFSA model could reflect the various 

trend of system benefit under different system reliabilities. The 

higher the system reliability, the less the net income the system 

would get. The results would provide useful information for 

water quality managers to make or select a more profitable de- 

cision at a reasonable reliability level. 

The cycle index n for calculating the possibility p not only 

influences the accuracy of the model results, but also determines 

the time required for solving the model. Therefore, several te- 

sts were performed to search for a suitable number with lower 

computational requirement but acceptable accuracy. The follo- 

wing equation is recommended to check the relative errors using 

various cycle numbers: 

 

100%n N
n

N

p p
RE

p


               (6) 

 

where pn is the possibility calculated using n cycles in fuzzy si- 

mulation and n is the number of cycle index; pN is the possibi- 

lity under a sufficiently large number of cycles (i.e. 5 × 10
5
); 

REn is the relative error under the cycle index of n. 

Figure 7 shows the number of cycle index vs. the accuracy 

of the value of possibility. Obviously, the number of cycle 

index would greatly infl- uence the accuracy of the value of 

possibility. An increase of the cycle index would lead to the 

reduction of relative errors. When the number of cycle index 

increases from 100 to 5000, the relative error would decrease 

from 42 to 4.5%; however it would take a longer time to fi- 

nish the fuzzy simulation pro- cess and thus make the GA- 

based optimization process more time-consuming. Therefore, 

a trade-off should be made between the computational require- 

ment and simulation accuracy. It is recommended that the de- 

cision makers define an acceptable criterion for relative error 

(such as 5%) before launching the fuzzy simulation. 
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Figure 7. Relative errors under various cycle indexes. 

5. Discussion 

5.1. Comparison with FCCP Method 

In order to demonstrate the applicability of GAFSA, we 

also applied the traditional FCCP method to solve the same pro- 

blem. The parameters expressed as generally-shaped fuzzy sets 

were all replaced with triangular-shaped fuzzy sets in order to 

make sure the model can be solved using the algorithm propo- 

sed by Liu and Iwamura (1998). Table 5 lists the results obtained 

from traditional FCCP method. The table shows that the system 

benefits obtained from FCCP at confidence level of 0.7, 0.8, 

0.9, 0.95 are 8.61, 7.75, 6.97, and 6.61 (× 105 $) are close to 

the results obtained from GAFSA. The table also shows that 

there exist deviations in solutions of decision variables. This 

is due to the fact that (i) the shapes of fuzzy distributions would 

influence the optimization results, and (ii) GA could only reach 

suboptimal solutions, especially when the number of decision 

variables is large. Generally, GAFSA is more advantageous 

than FCCP in terms of its capability in dealing with gene- 

rally-shaped fuzzy variables, but inferior in its weakness of 

achieving less optimal solutions.  

 
5.2. Further Discussions on GAFSA 

(1) In real world application, the generation of member- 

ship functions is a complicated task. Some membership func- 

tions are based on the engineer’s experience and are generated 

intuitively; others are determined by statistical techniques, su- 

ch as direct rating, polling, and reverse rating (Mazloumzadeh 

et al., 2008). However, in our study, some parameters are con- 

sidered to have specific shapes of fuzzy membership func- 

tions (such as triangular, trapezoidal, and exponential form) in 

order to simplify the fuzzy simulation process and better de- 

monstrate the applicability of GAFSA. 

(2) Parameters associated with environmental loading ca- 

pacities (such as soil loss amounts from land planted to crop, 

allowable soil loss and pollutants discharge amounts) are nor- 
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Table 5. Solutions from FCCP Method Based on Triangular 

Fuzzy Membership Functions of Uncertain Parameters 

Decision Variables 
Confidence Level 

0.7 0.8 0.9 0.95 

S11 Wheat 0 0 0 0 

S12 Wheat 0 0 0 0 

S13 Wheat 0 0 0 0 

S21 Vegetable 29.64 21.54 13.78 10.28 

S22 Vegetable 0 0 0 0 

S23 Vegetable 0 0 0 0 

S31 Potato 4.46 12.56 20.32 23.82 

S32 Potato 23.90 23.90 23.90 23.90 

S33 Potato 2.72 2.89 3.69 3.93 

Z1 Cattle 33 33 32 32 

Z2 Pig 0 0 5 4 

Z3 Poultry 1785 2059 2506 2659 

M1 Wheat 0 0 0 0 

M2 Vegetable 589.00 171.87 70.99 204.32 

M3 Potato 76.40 504.49 614.25 485.24 

F1 Wheat 0 0 0 0 

F2 Vegetable 0 2220.58 1757.43 0 

F3 Potato 2790.72 0 0 1532.72 

Net Income ($10
5
) 8.61 7.75 6.97 6.61 

*i = type of crop; Sit=cropping area (ha), where t = index of subarea; Mi 

= applied manure amount (t); Fi = amount of applied nitrogen fertilizer 

(kg); Zj = size of livestock husbandry (unit), where j = livestock. 

 

mally estimated based on empirical experience and subject to 

human judgments. Hence they could be expressed by fuzzy sets 

with various membership functions, and other parameters are 

deemed as deterministic. The parameters in objective function 

(e.g. economical parameters) may also be subjected to uncer- 

tainties. To simplify the fuzzy simulation process for an easier 

demonstration, we assume these parameters are deterministic. 

However, in real-world applications, identifying the uncertainty 

of a specific parameter is not an easy task. We need to analyze 

them according to history record, experiment data, or survey 

information. If too many uncertain inputs are encountered, we 

can conduct a sensitive analysis first and find out the most sen- 

sitive parameters for uncertainty assessment. 

(3) GA could give better optimal solution than that of con- 

ventional algorithm when the amount of decision variables is 

not so many. However, it is generally time-consuming to obtain 

convergent solutions when there are hundreds of decision va- 

riables. Also, the accuracy of solutions is also affected by local 

optima that cannot be easily solved by GA. Therefore, it is re- 

commended that GA is more suitable for small scale problems. 

According to our study, it is suggested that the number of de- 

cision variables is better controlled within 20. Further test is 

required for larger-scale applications. 

(4) GA was used by Qin et al. (2010) to solve a stocha- 

stic chance constrained model. Monte Carlo simulation techni- 

que was proposed to estimate the probability of meeting the 

stochastic constraint and check the feasibility of potential 

solutions. However, Monte Carlo technique can only handle 

stochastic parameters. The fuzzy-simulation-based iteration 

process, as applied in this study, can be used to estimate the 

possibilistic value of fuzzy constraint satisfaction. 

6. Conclusions 

A combined genetic algorithm and fuzzy simulation app- 

roach (GAFSA) was developed in this study and applied to a 

study case of water quality management within an agricultural 

system. GAFSA incorporated genetic algorithm (GA) into a fu- 

zzy chance-constrained programming framework, allowing so- 

me constraints with fuzzy variables to be satisfied at specified 

confidence levels. Moreover, with the assistance of GA, GA- 

FSA was capable of tackling fuzzy parameters with generally 

shaped membership functions. The results indicated that hi- 

gher confidence level would result in lower system benefit. A 

conservative planning scheme could bring a more reliable sys- 

tem, but would be less economically attractive. Conversely, 

planning towards a higher system benefit would lead to a hi- 

gher risk of system failure. Moreover, the results could also 

assist agricultural water managers to make a trade-off be- 

tween the overall system benefit and the failure risk of envi- 

ronmental compliance.  

This study made a new attempt to apply the GAFSA to so- 

lve FCCP model in an agricultural water quality management 

system. The results implied that the integrated technique was 

applicable to practical problems associated with highly com- 

plex and uncertain information, and could be further applied 

to many other environmental problems. However, GAFSA also 

showed some limitations: (i) the evaluation process in GA may 

lead to a suboptimal solution; (ii) the solution process is time- 

consuming when number of cycle index is large. Further study 

is needed to tackle these limitations. 
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