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ABSTRACT.  Soil erosion is a severe ecological problem. Most conventional methodologies for soil-erosion assessment are appro- 
priate for small or medium river basins. This paper presents an approach to soil-erosion intensity assessment in large basins, utilizing 
coded polygons identified by spatially overlapping gradation levels of primary environmental factors. Efficient assessment of soil- 
erosion intensity is achieved by matching the coded polygons to selected polygons pre-assigned to reference groups. A case study is 
presented for the soil-erosion assessment of the Yellow River Basin. It is found that the calculated and observed soil-erosion intensities 
are in close agreement for 86% of the total area. Sensitivity analysis indicates that acceptable results are obtained using a 5% sample of 
the original 9,921 coded polygons, thus reducing substantially the computational load. Direct comparisons between the polygon codes 
in the reference and test groups show that uncertainty is reduced with respect to previous methods. This is confirmed by the reduction 
in information entropy from 7.49 to 1.33. The proposed approach should be of particular use in the cost-effective assessment of soil 
erosion in large basins. 
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1. Introduction 

Soil erosion causes 84% of land degradation worldwide 
(

 

Eswaran et al., 2001) and leads to other severe environmental 
problems such as river sedimentation and non-point pollution 
(Pimentel et al., 1995; UNEP, 2007; Telles et al., 2011). The 
global area of land degraded by water erosion covers nearly 
1,100 Mha and is predominantly located in Asia and Africa 
(Oldeman, 1994). In China, the gross quantity of eroded soil 
exceeds 5 billion tons per year, accounting for about 8% of 
the world’s total (Jing et al., 2005). The Second National Sur- 
vey of Soil Erosion indicated that 37% of China’s land area 
was affected by water and soil loss, with an even larger area 
undergoing soil erosion and deposition processes (Jing et al., 
2005). 

In the 20th Century, the primary factors influencing soil 
erosion were fully investigated, including precipitation, ve- 
getation, soil type, and land management (Zingg, 1940; Smith 
and Whitt, 1948; Meyer, 1984). Several empirical models 
were proposed for assessing the status of soil erosion, based 
on knowledge of the environmental factors and physical pro- 
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cesses involved. The Universal Soil Loss Equation (USLE) 
was proposed by the U.S. Department of Agriculture (Wisch- 
meier and Smith, 1965; Meyer, 1984), and later revised as 
RUSLE (Renard et al., 1997). Although USLE/RUSLE has 
been used worldwide (Wang and Jiao, 1996; Biesemans et al., 
2000; Li et al., 2010; Dabney et al., 2011; Xu et al., 2011), it 
is not always exactly applicable and has occasionally been 
misused (Wischmeier, 1976; Boardman, 2006). USLE works 
best for regions in the USA (Stocking, 1995; Vrieling et al., 
2002), with amendments necessary for other areas. Moreover, 
the original USLE model was derived from plot experiments 
and so is only directly applicable at plot-scale (Terranova et al, 
2009; Kinnell, 2010). For large-scale applications, the study 
areas have to be separated into cells or sub-basins until the 
resulting units are sufficiently small for USLE to be correctly 
implemented (Millward and Mersey, 1999; Chen et al., 2011; 
Iroumé et al., 2011; Shinde et al., 2011). Ideally, the para- 
meters required for each unit should be derived using 3S 
technology (Global Positioning System, Remote Sensing, and 
Geographic Information System). Remote sensing can provide 
high-resolution images and GIS enables rapid spatial analysis, 
incurporating the DEM dataset, slope calculations, division of 
river basins, and so on. However, such data requirements are 
presently beyond the capabilities of many developing coun- 
tries in Asia and Africa where soil erosion is particularly se- 
vere (Stocking, 1995; Ananda and Herath, 2003; Vrieling, 
2006). Physically-based models have been developed, inclu- 
ding CREAMS (Chemicals, Runoff and Erosion from Ag- 
ricultural Management Systems; Knisel, 1980), AGNPS (Ag- 
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ricultural Nonpoint Pollution Source; Young et al., 1989), 
WEPP (Water Erosion Prediction Project; Nearing et al., 
1989), ANSWERS (Areal Nonpoint Source Watershed Envi- 
ronment Response Simulation; Beasley et al., 1980), and 
HSPF (Hydrologic Simulation Program Fortran; Johanson et 
al., 1984). Physically-based models are calibrated through 
empirical coefficients or exponents for practical applications 
(Borah and Bera, 2003; Aksoy and Kavvas, 2005), and thus 
are highly dependent on data accessibility (Boardman, 2006; 
De Vente et al., 2006), especially when applied to the asse- 
ment of large areas (Mutekanga et al., 2010). Semi-quan- 
titative models such as PSIAC (PSIAC, 1968) and FSM (Ver- 
straeten et al., 2003) have less strict data requirements (De 
Vente and Poesen, 2005; Haregeweyn et al., 2005), but their 
applications to large basins are still limited owing to the diver- 
gence in empirical parameters for different small basins. With 
the aid of 3S technology, physically-based models (Vrieling, 
2006; Tian, 2010) could be used for larger areas, but new 
challenges arise in how to deal with the massive quantity of 
data. For DMMP, uncertainty resulting from the discrimina- 
tion analysis needs to be further minimized. 

Ni et al. (2008) proposed a Discrimination Method based 
on Minimum Polygons (DMMP) for assessment of soil ero- 
sion based on the overlay analysis of spatial multi-factors. An 
erosion index (EI) is used for each polygon by multiplying the 
normalized environmental factors by weights determined us- 
ing the Analytic Hierarchy Process (Saaty, 1980). Represen- 
tative polygons are selected and then clustered into reference 
groups according to erosion grade, whereas the others are as- 
signed to test groups. For each reference group, a discrimina- 
tion rule is derived between the soil-erosion grades of mini- 
mum polygons and their EIs in order to assess the soil-erosion 
severity level within each polygon in the test groups. 

This paper proposes a smart coding system (SCS) to en- 
code graded information on each environmental factor. In- 
creasingly large areas are represented by multiple coded poly- 
gons derived from the overlay of coded factors. This permits 
efficient assessment of the severity of soil erosion in large 
basins such as the Yellow River Basin. 

 
2. Methodology 

2.1. Classification and Coding Schema for Geographic 
Information (CCSGI) 

Geographic information is often comprehensive and de- 
rived from different sources, including maps, numerical data 
and texts describing geographical entries. To facilitate data 
handling, Classification and Coding of Information (CCI) 
transforms geographic information into a set of coding ele- 
ments via certain prescribed rules. Coding is based on infor- 
mation classification according to independent attributes (Fi- 
gure 1). Standard methods for CCI include hierarchic classi- 
fication and faceted classification (SAQSIQ, 2002). For CC 
SGI, it is supposed that hierarchic classification is suitable for 
qualitative information, whereas faceted classification is sui- 
table for detailed quantitative information. CCSGI unites qua- 

litative and quantitative information by applying these two 
classification methods together. 
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  Figure 1. Classification and Coding of Information (CCI). 

 
Hierarchic classification is widely used in many fields 

given that hierarchic structures are commonplace (Boulton 
and Wallace, 1973; Zheng, 2000; Dale and Wallace, 2005; 
Dale et al., 2010). Figure 2 shows the dendrogram structure of 
a hierarchy with defined levels. In hierarchic classification, 
the population is divided into N classes, and then each class is 
further subdivided into independent refined sub-classes at the 
next level, based on the hierarchic relationships between sub- 
classes and their node-class. This process repeats until all ter- 
minal classes i.e. class-k at level-j (Figure 2) contain enu- 
merable or numeric information that are inappropriate for hie- 
rarchic classification but suitable for faceted classification. 
For a given level of hierarchic classification, a coding tem- 
plate is derived that consists of the terminal classes at this 
level. The coding template concisely conveys synthetic infor- 
mation concerning the geographic unit, and is represented by 
the following set: 

1 2{ | , , ... , , ..., }i TX X X X X  (1) 

where Xi is an item in the coding template and T is the di- 
mension of the set or the number of attributes considered. 

Each item of this coding template is relatively indepen- 
dent and describes a single attribute of the geographic unit. At 
different levels of the hierarchic classification, the coding 
template changes. Therefore, this classification method adapts 
to different scales at different levels (Dale and Wallace, 2005). 

For each item quantified by enumerative or numeric in- 
formation in the coding template, the faceted classification 
method is further used to categorize the information into a 
specific state or facet according to predefined partitioning 
rules. Each facet or state may represent several enumerable 
values or a range of detailed values between two thresholds. 
Hence, information on the population can be reduced to 
multi-states. Item Xi in set Ω is given as follows: 

1 2{ | , , ..., , ..., }j k
i i i i i iX X x x x x  (2) 

where j
ix is the state j of Xi; k is the total number of states 

belonging to Xi. 
This classification scheme is inherently able to describe 
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the subject domain using simplified quantitative information 
(Prieto-Diaz, 1991; Herring, 2007). Moreover, a specific nu- 
meric code is assigned for each state/facet and considered as a 
substitute for the source information. As classification infor- 
mation, the code is much more tolerant to data deficiency and 
inaccuracy than the quantitative numeric information. In other 
words, faceted classification helps the data requirement to be 
fulfilled. 

In short, a mass of given geographic information is par- 
titioned into T classes by hierarchic classification rules. Sub- 
sequently, the codes are obtained by faceted classifica- tion 
rules as follows:  

1 2

1 1 2 2

{ | ( , , ..., , ..., ),

, , ..., , ..., }
i T

i i T T

C C c c c c

c X c X c X c X



   
      (3) 
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Figure 2. Classification and Coding Schemafor Geographic Information (CCSGI). 
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Figure 3. Hierarchical classification of factors influencing soil erosion. 
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where ic is the code of element Xi in set Ω. 
The code value ic is either assigned an ordered integer 

ranging from 1 to k, or else values based on its application so 
as to facilitate easy expansion of the coding system (and 
hence its usefulness). Adaptability of the code template at di- 
fferent levels in the hierarchical classification facilitates to- 
lerance to data deficiency and inaccuracy; in other words, the 
CCSGI is self-adaptive at different spatial scales for data of 
moderate scarcity in a large basin. 

 
2.2. Selection, Classification, and Coding of Soil Erosion 
Environmental Factors 

The CCSGI is implemented in the selection, classifica- 
tion and coding of soil erosion environmental factors in order 
to complete the representation of environmental factors. Al- 
though information describing the environmental factors might 
be scale-dependent, the factors are generally classified under 
four main headings of climate, topography, soil, and vegeta- 
tion (Ni et al., 2008). Figure 3 depicts the hierarchical classi- 
fication scheme of environmental factors systematically se- 

lected for soil erosion. Here Level 1 is at the highest level, 
whereas Level 4 the lowest level in the hierarchy. The attri- 
butes at Level 1 are more qualitative than those at lower levels. 
Macroscopic variables appear at Level 2 corresponding to 
basin-scale. For example, the climate variable at Level 1 is fur- 
ther specified as annual precipitation at Level 2 for soil loss 
caused by rainfall. At Level 3, the topographical variables are 
further specified as length and gradient, and slope pattern. Si- 
milarly, the vegetation could be interpreted more specifically 
than vegetation cover at the lower levels. Attributes repre- 
senting precipitation, gully density and soil type may remain 
but be resampled at higher spatial resolution. It should be 
noted that the rain regime is more important in small than in 
large basins (Nearing et al., 2005; Fang et al., 2012). 

Table 1 lists the faceted classification codes for each en- 
vironmental factor at Level 2, based on the standard released 
by the Ministry of Water Resource (MWR), China (2008), 
which has been widely cited in the literature (see e.g. Shi et al., 
2004; Yang et al., 2005; Fu et al., 2006; Zhou et al., 2008; Liu 
et al., 2012). Table 1 lists the multi-states and corresponding 
ranges of values or facets corresponding to each state. For 

Table 1. Classification and Gradation for Environmental Factors 

Grade/ 
Code 

Annual Rainoff 
(mm) 

Gully Density 
(km/km2) 

Erosion 
Base (m) 

Relative 
Height (m) 

Soil Erodibility Cover 
(%) 

1  < 1 0 < 50  > 90 
2 < 300 1~2 1000 50~200 Black soils, chernozems, 

alpine/sub-alpine felty soils 
70~90 

3 300~600 2~3 4000 200~500 Cinnamon soils, brown earths, 
yellow-brown earths 

50~70 

4 600~1000 3~5  500~1000 Yellow earths, red earths, latosols 30~50 
5 1000~1500 5~7  1000~1500 Loess parent materials 10~30 
6 > 1500 > 7  > 1500 Sandy soils, desert soils, loose 

weathering materials 
< 10 

 

 
Notes: 
E-F: Environmental Factors; C-S: Coding Sequences. 
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       Figure 4. From Classification and Coding Schemafor Geographic Information (CCSGI) to Smart Coding System (SCS). 
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example, annual rainfall less than 300 mm is coded as 2; soil 
erodibility of loess parent material is coded as 5. This makes 
the categorization scheme more reliable than conventional 
empirical methods such as simple clustering or equal division 
(MWR, 2008). Alternative methods like clustering discrimi- 
nation could be used in cases where standardized classifi- 
cations of factors such as vegetation type, slope length and 
slope pattern are lacking (MWR, 2008). For example, cover 
indices of different vegetation types (SEPA, 2006) could be 
simply calculated and graded for further coding. 
 
2.3. Comparison of Coding Sequences 

CCSGI produces representations of environmental fac-   
tors affecting soil erosion, and then SCS compares the derived 
codes (Figure 4). The code with information on graded en- 
vironmental factors in a mini-polygon indicates the severity 
level of soil erosion in the same geographic unit.  

For comparison, reference groups are established in terms 
of coding sequences of environmental factors, and rapid soil- 
erosion assessment is undertaken as follows. 
(i) Coding of Mini-polygon 

The mini-polygon is the basic spatial geographical unit 
for evaluation of soil erosion (Wang, 1993), and is directly 
derived from the overlay of environmental factors using GIS 
(Cowen, 1988; Burrough, 1992). By coupling CCSGI with 
tools in ArcGIS, the geographic information stored in a mi- 
nimum polygon is further transformed into a coding sequence 
that is easy to handle. Via CCSGI, geographic maps of the 
grades of each environmental factor are generated in vector 
format. Using ArcGIS overlay analysis, a coding-sequence 
map is produced that contains all graded environmental fac- 
tors, from which the mini-polygons are generated and coded. 
Detailed advice on ArcGIS tools is available at ArcGIS Res- 
ource Center ( http://resources.arcgis.com ). 
(ii) Establishment of the Reference Group 

A sample of coded mini-polygons is used to establish the 
reference groups. The remaining coded mini-polygons consti- 
tute the test groups. Random sampling is used for large num- 
bers of coded polygons to ensure the reference groups are re- 
presentative. 
(iii) Matching of Polygons in the Test Group 

Matching of coding sequences of test and reference po- 
lygons is the key step to predict the severity level of soil ero- 
sion in the mini-polygons. To measure the similarity of a pair 
of coding sequences, a coding sequence with n bits is consi- 
dered as an n-dimensional vector c= (c1, c2, ···, cj, ···, cn) T. 
Then, the cosine of the vector angle between two coding se- 
quences is calculated from: 

1 2

1 2

=
Tc c

c c
  (4) 

in which c1, c2 are multi-dimensional vectors representing the 

two coding sequences to be compared. Taking the weights of 
the different factors into account, equation (4) becomes: 

1, 2,
1

1 2

=

n

i i i
i

w c c

c c
 


 (5) 

in which wi is the weight of factor Xi with respect to soil loss; 
and ic ,1 , ic ,2 are elements of vectors c1 and c2 respectively. 

A series of similarity values α (α’) is acquired through 
comparison of the coding sequences in the test and reference 
groups. Consequently, similar soil erosion grades are found in 
the mini-polygons with maximum similarity values. 

 
3. Assessment of Soil Erosion Status in the Yellow 

River Basin 

3.1. Study Areas and Data Presentation 
The Yellow River Basin covers a total area of 795,000 

km2. It flows through the Loess Plateau which is experiencing 
severe soil erosion. As shown in Figure 5, the annual gross 
rate of hydraulically-induced soil erosion in 1990s exceeded 
5,000 t/km2 (MWR, 2002).  

 

 
 

Figure 5. Hydraulically-induced soil erosion in 1990s.  
 
Referring to CCSGI, information on environmental fac- 

tors is classified into the attributes at Level 2 in Figure 3. 
Datasets (i) ~ (v) are described as follows: 

(i) Soil-erosion information extracted from 1:1,000,000 
digital map of soil-loss intensity based on the 2nd National 
Soil Erosion Survey conducted in the 1990s by the Ministry 
of Water Resources, China and used as a data source for 
World Soil Information (Dijkshoorn et al., 2008). Figure 5 
shows the soil erosion zonation map, with 6 grades ranging 
from slight erosion (Grade 1) to severe erosion (Grade 6). 

(ii) Daily rainfall records at 66 hydrological stations in 
the Yellow River Basin available from 1990 to 1999 via Chi- 
na Meteorological Data Sharing Service System (http://c- 
dc.cma.gov.cn/index.jsp). 

(iii) Topography data extracted from a 90m resolution 

http://resources.arcgis.com/�
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DEM provided by International Scientific & Technical Data 
Mirror Site, Computer Network Information Center, Chinese 
Academy of Sciences (http://datamirror.csdb.cn). The DEM 
dataset was derived from SRTM (Shuttle Radar Topography 
Mission) digital elevation data V4.1. 

(iv) Soil data from 1:1,000,000 digital map of soil type, 
provided by the Institute of Soil Science in Nanjing, Chinese 
Academy of Sciences (http://www.soil.csdb.cn/). 

(v) Vegetation data from normalized difference vegeta- 
tion index (NDVI) raster maps of 8 km resolution for the 
period from 1990 to 1999, obtained from the Environmental 
and Ecological Science Data Center for West China, Na- 
tional Natural Science Foundation of China (http://westdc. 
westgis.ac.cn, source for this dataset is the VITO (Flemish 
Inst. Technological Research, Belgium), http://www.vgt.vito). 
The data form part of the GIMMS (Global Inventory Mo- 
delling and Mapping Studies)-NDVI dataset with temporal 
scale 15-days and spatial scale 8km. The annual NDVI is the 
averaged value within each year, from which the multiple 
annual NDVI is further derived. 

Within the period of interest from 1990 to 1999, Dataset 
(i) is used for validation of assessment results of SCS, whereas 
Datasets (ii) ~ (v) are used as input information of SCS. The 
data are considered sufficiently accurate if they provide enou- 
gh information is provided for the coding of each environ- 
mental factor based on Table 1. 

 
3.2. Assessment Process 
3.2.1. Data Processing 

(i) Rainfall factor: Mean annual rainfall are derived from 
the daily rainfall at each meteorological station, and then a 
scatter map is created using ArcGIS with corresponding in- 
formation on the latitudes and longitudes of the stations. Kri- 
ging interpolation is used to obtain a raster map of mean an- 
nual rainfall throughout the basin. 

(ii) Topographical factors: Datum values of erosion sur- 
face elevation, gully density and relative height of terrain are 
determined using ArcGIS from the DEM (Tang and Yang, 
2006). 
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    Figure 6. Application of Smart Coding System (SCS) approach to water erosion assessment in the Yellow River Basin. 

 
 

Modify Math Math 

http://datamirror.csdb.cn/�
http://www.soil.csdb.cn/�


J. R. Ni et al. / Journal of Environmental Informatics 23(2) 47-57 (2014) 
 

 

53 

(iii) Soil factor: Erodibility grades are assigned to diffe- 
rent soil types according to the classification rules listed in 
Table 1. 

(iv) Vegetation factor: Vegetation cover (C) is obtained 
from the NDVI map by (Zhao, 2003): 

min

max min

NDVI NDVIC
NDVI NDVI

-=
-

 (6) 

where minNDVI and maxNDVI are the minimum and maxi- 
mum values of NDVI, respectively. 
 
3.2.2. Coding and Identification of Mini-polygons 

The CCSGI is used to encode the environmental factors 
by faceted classification. Table 1 indicates how the rainfall, 
topography and vegetation cover factors are graded accor- 
ding to standard classification rules. Coding maps are de- 
rived from the raw data on the environmental factors. All 
spatial gradation data at different scales are then transformed 
into vector format. Furthermore, all coded vector maps are 
overlaid and the mini-polygons generated. Each mini-poly- 
gon is identified by a specific coding sequence. The spatial 
accuracy of yielded polygons is determined by the minimum 
scale within the maps. 
 
3.2.3. Polygon Matching 

The coded minimum polygons are randomly divided into 
reference and test groups. For each mini-polygon within the 
reference group, the grade of soil erosion intensity is deter- 
mined as follows. Six grades of soil-erosion intensities are 
classified in reference polygons according to the 1990s’ sur- 
vey results. Polygon matching based on coding sequences is 
then undertaken to determine the soil-loss intensity of the test 
group. Equation (4) is used to examine the similarity of the 
coding sequence without considering the weights of the en- 
vironmental factors. Figure 6 illustrates the pre-processing, 
coding, and classification procedure as applied to the assess- 
ment of soil erosion in the Yellow River Basin. 

 
3.3. Evaluation Results 

The Yellow River Basin is divided into 9916 coded po- 
lygons, of which ~90% of the total area is covered by poly- 
gons each of area less than 100 km2, and ~75% by polygons 
each of area less than 50 km2. Each polygon is represented by 
a corresponding coding sequence generated from graded en- 
vironmental factors. Figure 7 shows the soil erosion inten- 
sity with a sample ratio (SR) of 5%, i.e. ratio of the number of 
coded polygons in reference groups to the total number of 
coded polygons. 

To quantify the degree of consistency between the cal- 
culated and observed results, a variable defined as area over- 
lap ratio (R) is introduced as follows: 

ci
i

i

A
R

A



 (7) 

where Ri is the overlap ratio of the i-th grade soil erosion, Ai is 
the surveyed area of mini-polygons with i-th grade soil ero- 
sion over the whole basin area, and Aci is the area of mini- 
polygons with the same calculated and surveyed grades of soil 
erosion. 
 

 
 

 Figure 7. Water erosion evaluation results using Smart Cod- 
ing System (SCS), Yellow River Basin. 
 

Figure 8(a) presents the area overlap ratios for the six soil 
erosion grades. The mean value of R is about 86.1% (with a 
standard error of 1.2% for 8 sets of calculations) over the 
entire Yellow River Basin, whilst the minimum value of R is 
75% for the sixth grade. The overall accuracy is enhanced by 
the SCS approach, as is evident by comparison against the 
average R of 76% by DMMP (Ni et al., 2008) for the same 
basin with the same input data. For the consistency ratio of 
each soil erosion grade in terms of the number of coded poly- 
gons, the accuracy ratio is 89.1% on average. Figure 8(b) de- 
picts the detailed overlap ratios for each grade, showing that 
the minimum overlap ratio in terms of the number of coded 
polygons is 76.9% for the 6th grade of soil erosion intensity. 

 
4. Discussion 

Based on a Smart Coding System, the relationship has 
been properly established between environmental factors and 
soil erosion intensity. For the Yellow River Basin, a sample 
ratio of 5% achieves an average area overlap ratio of 86.1% 
with standard error of 1.2% over the whole study area. More- 
over, the sensitivity analysis demonstrates that the sample ra- 
tio/number can be reduced further, with hardly any effect on 
prediction accuracy. Meanwhile, the modeling uncertainty al- 
so reduces compared to DMMP. SCS is not only applicable to 
larger basins but also more efficient through data compre- 
ssion via CCSGI. 

 
4.1. Sensitivity Analysis of Sample Ratio/Number 

A sensitivity analysis is undertaken to examine the influ- 
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ence of sample ratio/number on the predicted results. Figure  
9 shows the change of mean area overlap ratio (R) as sample 
ratio (SR) is increased from 0.2 to 15%. At least 8 simulations 
are carried out for each SR to avoid uncertainty from random 
sampling. It can be seen that R increases monotonically 
whereas the standard error decreases with increasing SR. For 
SR > 5%, R and its standard error reach 95 and 0.5% res- 
pectively. 

The relationship between the mean value of R and the 
sample number (SN) of coded polygons in the reference group 
is investigated to test the minimum number of coded polygons 
required for satisfactory prediction of soil loss intensity. There 
is a positive correlation between R and SN (Figure 9). An 
overlap ratio of R ~ 80% is achieved for SN ~ 200, whereas 
further increase of SN does not lead to any significant gain in 
R. To reduce workload, SN = 200 is sufficient as a reference 
value. 
 
4.2. Uncertainty of Assessment 

Similarity between coded polygons is related to uncer- 

tainty in application of the SCS, and is quantified using the 
vector cosine between each pair of coding sequences derived 
from CCSGI. The closer to unity the cosine value, the more 
reliable is the matching result. Figure 10 presents a histo- 
gram illustrating the percentages of coded polygons with di- 
fferent similarity bands; the values of similarities range from 
0.96 to 1 with the majority close to 1. This distribution of si- 
milarities implies the assessment is highly reliable. SCS 
seems to have more advantages over discrimination analysis 
for assessing test groups (Ni et al., 2008) through discri- 
mination using geographical information and reduction in 
uncertainty. A distance index, denoted 0 0| | /DI EI EI EI= -  
where EI is the erosion index of a test polygon and EI0 is the 
central value of within its matched group, is now used to 
measure the relative distance from EI to EI0 and hence to 
indicate the uncertainty of the matching results. As DI ap- 
proaches 0, the matching result is more accurate (and less 
uncertain). Figure 11 plots the cumulative percentage of the 
number of DI values determined using discrimination analy- 
sis. Here, DI is generally not close to 0, with more than 50% 
of values greater than 0.5, and 20% greater than 1. 

  
    Figure 8. Estimate of accuracy of each water-erosion grade. (a) In terms of coded polygons; (b) In terms of coding sequences. 

 

 
Figure 9. Sensitivity of R with varying sample ratios. 

 

0% 

20% 

40% 

60% 

80% 

100% 

1 2 3 4 5 6 

O
ve

rla
p 

R
at

io
 

Erosion Grade 

(a) 

0% 

20% 

40% 

60% 

80% 

100% 

1 2 3 4 5 6 

O
ve

rla
p 

R
at

io
 

Erosion Grade 

(b) 

0 300 600 900 1200 1500 

0% 

1% 

2% 

3% 

4% 

5% 

6% 

0% 

20% 

40% 

60% 

80% 

100% 

0% 3% 6% 9% 12% 15% 

Sample Number 

St
an

da
rd

 E
rr

or
 o

f R
 

O
ve

rla
p 

R
at

io
 

Sample Ratio 

平均重叠率 

重叠率标准差 

Average R 
 
Std. Err. of R 



J. R. Ni et al. / Journal of Environmental Informatics 23(2) 47-57 (2014) 
 

 

55 

 
Information entropy is introduced to quantify the uncer- 

tainty of the assessed results derived from the DMMP and the 
SCS. Information entropy φ indicates the uncertainty of infor- 
mation Xi based on its probability distribution p(Xi) as follows 
(Shannon, 1948; Li and Du, 2005): 

2[ ( ) log ( )]i ip X p Xϕ = −∑  (8) 

Larger information entropy means greater uncertainty. 
The calculated information entropies of coded-polygon DIs 
and similarities are φ = 7.49 and φ = 1.33 for DMMP and SCS 
respectively, confirming the higher reliability of SCS based on 
coding sequences. 

 
4.3. Efficiency for Large Basins 

SCS reduces data redundancy and hence promotes effi- 
ciency of data processing. For example, the number of poly- 
gons in the whole Yellow River Basin is reduced by nearly  
90% (from 81,054 in DMMP to 9916 in SCS). For a given 
number N of basin polygons and a sample ratio SR, the num- 
ber of matches has previously been calculated from mN   

2(1 )SR SR N . When N is reduced by 90%, mN accounts for 

only 1.5% of the original number of matches required before 
CCSGI is implemented. Improved efficiency is to be expected 
as the number of polygons increases. By setting a sample ratio, 
the reduction in the total number of polygons also leads to a 
decrease in the number of polygons in reference group. For 
the Yellow River basin, only 200 coded polygons in the re- 
ference group are needed as matching polygons in the test 
group. SCS is therefore potentially useful for a cost-effective 
assessment of soil erosion in large basins. 

 
5. Conclusions 

Efficient assessment of soil loss is essential for sustain- 
able river basin management. This paper proposes an ap- 
proach based on a smart geo-coding system coupled with a 
rapid soil loss assessment framework. The system encodes the 
graded environmental factors in a generated polygon and 
thereby determines the soil erosion intensity in the polygon. 
Following the basic assumptions underpinning SCS, the soil 
erosion intensity values in polygons of the test group should 
be similar to corresponding values in polygons of the refe- 
rence group, provided similar coding sequences are imple- 
mented. When SCS is applied to assessment of soil erosion 
intensity throughout the entire Yellow River Basin, satisfac- 
tory agreement is reached between the expected and obser- 
ved results for about 86% of the total area. Sensitivity analysis 
indicates that the number of samples in the reference groups 
can be greatly reduced without loss of accuracy. Herein, reli- 
able results are obtained using less than 200 reference samples 
from the 9916 coded polygons, which implies that only 2% 
representative polygons are required to ensure accurate as- 
sessment. SCS inherits most of the advantages of DMMP, in- 
cluding loose data requirement. By a simple coding-sequence 
matching of the polygons in reference and test groups, SCS si- 
gnificantly reduces computational load and uncertainty. SCS 
offers an alternative method for cost-effecttive assessment of 
soil loss or conservation in large river basins. 
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