
80 

  
ISEIS 

State a
Trans

Depa

R

ABSTRAC
the form o
deterministi
models spa
subsurface 
filter couple
Gaussian n
used to guid
using Mont
Kalman filt
using Mean
with Monte
the Kalman
when Mean
Kalman filt
 
Keywords: 

 
 

It is impor
fate of the cont
water quality m
diction of cont
has been a majo
engineers. How
methods have b
model results a
corporated in t
Latif, 2010). Th
stant in the sim
ria are also setb

The Kalm
that provides a
estimate the st
mean of the sq

                      
* Corresponding a

E-mail address: 
 

ISSN: 1726-2135 
© 2014 ISEIS All

and Param
sport Mod

artment of Civil a

Received 22 June

CT. Accurate con
f mathematical m
ic models do no
atially and temp
contaminant pred
ed with Monte C
oise to reflect re
de the filter at ev
te Carlo sampling
ter coupled with M
n Absolute Error 
e Carlo sampling 
n filter coupled w
n Absolute Error 
ter to the observat

Kalman filter, pa

1. Intro

rtant to understa
taminants in the
management an
taminant conce
or concern for hy
wever, conventi
been used to ma
are known to be 
them in the dis
he hydrologic p
ulation process
backs in the num

man filter (KF) is 

an efficient com
tate of a proces
quared error (W

                      
author. Tel.: +1 336
godwinappiah30

print/1684-8799 o
l rights reserved. d

Journ

meter Estim
deling Using

and Environmenta

e 2012; revised 1

ntaminant predicti
models have bee
ot account for th
orally introduces
diction in time an
arlo sampling wa
al life case of co

very time step to 
g method. The al
Monte Carlo sam
(MAE) and Max
performs better t

with Monte Carlo 
equation is used

tion data used in 

arameter estimatio

oduction 

and the mechani
e subsurface me

nd risk evaluatio
entration and m
ydrogeologist a
onal methods s
ake predictions.
less accurate du
scretization pro
arameters are as
. Stability and c
merical method

a set of mathem
mputational (rec
ss, in a way th

Welch et al., 2004

            
6 2852452; fax: +1
@yahoo.com (G.

online 
doi: 10.3808/jei.20

nal of Environmen

mation in T
g Kalman 

G. A. Assuma

al Engineering, N

1 March 2013; ac

ion is very impor
en used to mode
he heterogeneity 
s approximation 
nd space and to a
as used in a speci
ontaminant move
improve the accu
lgorithms to gen

mpling, Kalman fi
ximum Absolute E
than both the Kalm
sampling is capab

d to estimate the p
the simulation. 

on, data assimilat

ism, transport an
edium to impro
on. Accurate pr
model paramete
and environmen
such as numeric
. These numeric
ue to the errors i
ocess (Chang an
ssumed to be co
convergence crit
d. 

matical equatio
cursive) means 
hat minimizes t
4). It is comput

1 336 3347126. 
. A. Assumaning)

01400280 

ntal Informatics 24

Three-Dime
Filter Cou

 
aning* and S. Y

 
North Carolina A

 
ccepted 8 Septem

 
rtant for risk asse
el the movement
and uncertaintie
and truncation 

assess the impact
fied three-dimens

ement. Set of spa
uracy of the pred
erate the simulat
ilter without Para
Error (Emax) equ
man filter withou
ble of reducing th
prediction error. 

tion, Monte Carlo
 

nd 
ove 
re- 
ers 
tal 
cal 
cal 
in- 
nd 

on- 
te- 

ons 
to 

the 
ta- 

). 

tionally
from an
2001). 
vigation

Se
contam
of the H
late gro
in three
general
al. (199
overcom
comple
a 3-D s
07) ma
quasi-th
menico
dering 
Harrou
Elemen
Extend
Chang 
regiona
port mo

4(2) 80-89 (2014)

ensional Su
upled with M

Y. Chang 

&T State Univers

mber 2013; publish

essment and site 
t and behavior o
s in the subsurfa
errors. In this 

t of first-order de
sional domain sp
arse observation p
diction. The first-
tion results were 
ameter Estimation
uations. The resu
ut Parameter Estim
he error in the nu
The error reduct

o sampling, groun

y more efficien
n entire past ob
It is widely use
n and military t

everal studies h
minant transport

Heat-and Solut
ound-water flow
e dimensional. 
l quasi 3-D cas
93) presented a
mes many of 
ex problems. Gu
solute migration
athematically a
hree-dimension

o solution was 
off-domain co

uni et al. (1997)
nt Method (DR
ded Kalman filt

and Jin (2005)
al noise to impr
odels. Chang a

ubsurface C
Monte Car

sity, Greensboro, 

hed online 3 Nov

remediation. Sev
of contaminants i
face environment
research, to imp
ecay rate parame
ace. The filter is 
points selected a
-order decay rate 
run on Matlab 7

n and the numeri
ults show that the
mation and the nu

umerical solution 
tion is due to the

ndwater, modeling

nt than comput
bserved data at
ed in areas such
technology deve

ave been done 
modeling. Kipp

te-Transport Pro
w and associated

A numerical a
e by Yakirevich
an efficient fin
the challenges
uyonneta and N
n from a plane-
analyzed the fi
nal (quasi-3-D) 

extended to a
ontaminant tran
) established Du

RBEM) as a num
tering for aquif
proposed the u
ove the accurac

and Latif (2010

Journ
Environm

Inform

www.iseis

Contamina
rlo Samplin

NC 27411, USA

vember 2014 

veral predictive to
in groundwater. 
t. Discretization 
prove the accura
ter estimation, K
perturbed with ra

at specific locatio
parameter is esti

7.1. The efficacy 
cal method were 

e Kalman filter co
umerical method.
by approximately
 adaptive nature 

g

ting the estimat
t each time step
h as signal proce
elopment.  

in the area of s
p (1987) propos
ogram (HST3D
d heat and solute
lgorithm was u
h et al. (1998). 
ite-element mo

s encountered i
Nevilleb (2004)
-source. Zhang 
nite element s
groundwater fl

a prism source 
nsport (Promm
ual Reciprocity 
merical tool cou
fer parameter e
use of Kalman 
cy of a contamin
) used Extende

al of 
mental 
atics 

 

 

 

s.org/jei         
 

ant 
ng 

ools in 
These 
of the 

acy of 
Kalman 
andom 
ons are 
imated 
of the 
tested 

oupled 
. Also, 
y 75% 
of the 

te directly 
p (Haykin, 
essing, na- 

subsurface 
sed the use 

D) to simu- 
e transport 

used for in 
Panday et 

odel which 
in solving 
developed 
et al. (20 

olution of 
ow. A Do- 
by consi- 

ma, 2010). 
Boundary 

upled with 
estimation. 
filter with 
nant trans- 
ed Kalman 



 G. A. Assumaning and S. Y. Chang / Journal of Environmental Informatics 24(2) 80-89 (2014) 

 

81 

filter as data assimilation tool in subsurface porous environ- 
ment. Hendricks Franssen and Kinzelbach (2009) applied En- 
semble Kalman filtering (EnKF) to off-line calibration of tr- 
ansient groundwater flow models with many nodes. Li et al. 
(2012) applied ensemble Kalman filter to jointly calibrate 

porosity and conductivity by assimilating concentration data. 
To handle the large computational cost of EnKF on the flow 
and transport model, Li et al. (2012) proposed to couple en- 
semble KF with upscaling to reduce the intensive compu- 
tational cost. An alternative to reduce computational cost, Xu 
et al., (2012) proposed a parallel version of ensemble Kalman 
filter for the aquifer characterization. Chang and Assumaning 
(2010) also worked on 2-dimensional subsurface radioactive 
contaminant modeling using Particle and Kalman filter sche- 
mes. A 3-D subsurface transport model was used by Cheng 
(2000) to generate the analytical, numerical and Kalman filter 
results spatially and temporally under continuous contaminant 
input conditions. Extended Kalman Filter (EKF) was used to 
recalculate the polynomial chaos expansions for the uncertain 
states and the uncertain parameters (Blanchard et al., 2007). 
Wagner (1992) used parameter estimation/source characteri- 
zation inverse model combined with groundwater flow and 
contaminant transport. Aguirre and Haghighi (2003) further 
developed a finite element solution of the stochastic differ- 
ential equation for transient contaminant transport. Zhou et al. 
(2011) proposed the use of normal-score ensemble KF (NS- 
EnKF) compared to the standard EnKF in log-conductivity 
characterization and transport predictions. Li et al. (2011) de- 
veloped a 3-D transport upscaling in highly heterogeneous 
media. 

In this research, the concentrations of a groundwater con- 
taminant are simulated spatially and temporally in porous sub- 
surface environment using prediction techniques such as nu- 
merical (finite-difference) method, Kalman filter without 
Parameter Estimation and Kalman filter coupled with Monte 
Carlo sampling. The first-order decay rate parameter is initially 
estimated using Monte Carlo sampling method. The contami- 
nant concentration is then predicted at each time step with the 
estimated first-order decay rate parameter and compared to 
the other prediction techniques. A Simulated True value is ge- 
nerated as reference data set to test the accuracy of the results 
generated from all the techniques. A computer simulation is 
performed using a 3-D subsurface contaminant transport mo-  
del in partial differential form with a first-order decay rate 
parameter. The objective of this work is to improve the accu- 
racy and effectiveness of the 3-D subsurface contaminant tra- 
nsport modeling using the Kalman filters with sparse obser- 
vation data points and also to assess the impact of estimating 
the first-order decay rate parameter using Monte Carlo samp- 
ling method. 

2. Methodology 

2.1 Model Description 

The subsurface environment is made up of a complex, 
three-dimensional, heterogeneous and hydrogeologic setting. 

This variability influences groundwater flow and transport, 
and such a reality can be described accurately only through 
careful hydrogeologic practice in the field (Konikow, 2011). 
In this research, a 3-D subsurface advection-dispersion model 
for a non-conservative solute in a uniform, isotropic, saturated 
groundwater flow field along the x direction is used. The gene- 
ral advection-dispersion equation obtained when absorption 
and decay mechanisms are added is given in Equation 1. The 
deterministic mathematical model was used by Domenico and 
Schwartz (1990). The model is used to simulate a solute tran- 
sport in the subsurface in a quasi 3-D form (layers). The dis- 
persion mechanism is in the x-, y- and z- directions. The model 
considers the concentration of solute sorbed to the porous me- 
dium. The presence of first-order decay rate parameter makes 
the solute reactive (non-conservative): 

 
2 2 2

2 2 2
b

x y z

C C C C C S
D D D V

t x y z x t




                                       
 

kC  (1) 
 
where C is the concentration of contaminant, (mg/L); V is the 
linear velocity, (m/day); b is bulk density of the porous me- 
dium, (mg/L); Dx, is the dispersion coefficients in the x-direc- 
tion, (m2/day); Dy is the dispersion coefficients in the y-direc- 
tion, (m2/day); Dz is the dispersion coefficients in the z-direc- 
tion, (m2/day); S is the contaminant concentration in the sorbed 
phase, (mg/L); η is the porosity, x, y and z are the Cartesian 
coordinates; k is the first-order decay rate parameter, (1/day) 
and t is time in days. The amount sorbed into the porous me- 
dium is given as: 

 

dS K C  (2) 

 

1 d
b

K
R 


 

   
 

  (3) 

 
where Kd is the linear partition coefficient and R is the retar- 
dation factor. By assuming a linear partitioning between the C 
and S, and incorporating retardation factor R into the model, 
the deterministic model for subsurface contaminant transport 
is represented in a partial differential equation (PDE) form in 
Equation 4 (Cheng, 2000):  

 
2 2 2

2 2 2

yx z
DC D C C D C V C kC

t R x R y R z R x R

    
    

    
  (4) 

 
The initial and boundary conditions of the subsurface tran- 

sport model with instantaneous point source are given in Equa- 
tions 5 and 6, respectively: 

 

0 0 0 0 0( , , , ) ( , , )tC x y z t C x y z   (5) 

 
( , , , ) 0tC x y z t    (6) 
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Ω is chosen as the boundary. The initial conditions are simply 
the values of the state specified everywhere inside the boun- 
dary at the start of the simulation.  

 

2.2. Data Assimilation with Sparse Observation Data 
Points 

Practically, sparse observation data can be used in the data 
assimilation process since it is quite expensive and laborious 
to take field measurement at every location in the domain spa- 
ce. The idea of few observation points is also to test the accu- 
racy of the data assimilation filters. It is for these reasons that, 
few observation points were chosen and used to run the data 
assimilation filters. The domain space used in this research 
was represented as (10  10  3) in a 3-D form with the num- 
ber of grid points on x-direction, y-direction, and z-direction 
being 10, 10 and 3, respectively. Therefore, the total grid points 
in quasi 3-D form is 300, representing a full observation data 
set. The 300 data points indicate that there are 100 data points 
on each of the three layers. Six observation data points were 
selected from each layer to test the efficacy of the filtering 
methods. In practice, full data points are expensive and labor- 
intensive to gather hence the use of six observation data points. 
The six data points also represent 6% of the full observation 
data points. Hence a total of 18 observation points were cho- 
sen to run the simulation. The six observation nodes on the 
top layer (x-y plane) in the domain space were taken at loca- 
tions (2, 2), (5, 2), (8, 2), (2, 8), (5, 8) and (8, 8). These sparse 
observation points were introduced into the filtering process 
at every time step. Chang and Boateng (2011) adopted the 
concept of sparse observation data points for their two-dimen- 
sional subsurface contaminant modeling.  

 

2.3. Numerical Method  

In this work, the 3-D subsurface contaminant transport 
model is numerically solved using a Finite-differencing sche- 
me called Forward-Time and Central-Space (FTCS). FTCS is 
a numerical analysis method based on central difference in 
space and the forward Euler method in time with a first-order 
convergence in time. The space and time steps chosen satisfy 
the numerical stability and convergence criteria of the Peclet 
number. Jin (1996) and Chang and Assumaning (2011) pro- 
posed the use of FTCS in their contaminant modeling app- 
roach using the Kalman filter and Particle filter. Zou and Parr 
(1995) used finite-difference method (FDM) to predict two- 
dimensional aquifer transportation. The FTCS provides the 
deterministic solution of the model in Equation 4. Typically, 
finite difference approximations requires the use of Taylor’s 
expansions to the equations i.e. flow and transport and appro- 
ximating the derivatives in the equation. 

The state transition matrix (STM) generated from the 
model discretization clearly determines the contaminant con- 
centration of the next time step if the prior state is known. The 
initial concentration, boundary conditions and the STM deter- 
mine the results of the numerical scheme. The algorithm for 
the numerical scheme was coded in Matlab 7.1 to estimate the 
concentration of the contaminant. A pulse input and constant 

hydraulic parameters were used to generate the numerical solu- 
tion. The next concentration vector is obtained by multiplying 
the prior concentration vector with the State Transition Ma- 
trix.  

 

2.4. Process and Observation Models  

Two main data sets are required to run the data assimila- 
tion filters. The two governing equations needed to generate 
these data sets are process and observation equations. These 
two equations are dynamic and stochastic in nature. Stochastic 
approaches have resulted in many significant advances in cha- 
racterizing subsurface heterogeneity and dealing with uncer- 
tainty (Gelhar, 1993). The process or system model in this re- 
search is the numerical model with an additional white (Gau- 
ssian) noise. The process equation is a discrete-time controlled 
process (Cheng, 2000). The generic form of the process equa- 
tion is given as: 

 

1t t tX AX w    t = 0, 1, 2, 3, …  (7) 

 
where 1tX  is the vector of contaminant concentration at all 
nodes at time, t + 1; tX is the vector of contaminant 
concentration at all nodes at time, t, A is the STM that runs till 
the last time step, tw  is the vector of system noise at time, t. 
The system noise vector tw  is assumed to be normally dis- 
tributed with covariance of Qt and a zero mean. A standard 
deviation of 10% as part of the error component was added to 
the numerical scheme to generate the dynamic system states.  

Typically, field data is used as observation. However in 
this research, the observation/measurement data set is genera- 
ted from the Simulated True value with additional white Gau- 
ssian noise. The noise component in the model reflects the he- 
terogeneous and stochastic nature of the subsurface environ- 
ment. The equation governing the observation data is given 
as: 

 
T

t t tZ HX O    (8) 

 
where tZ is the vector of the observed values for all nodes at 
time step t, T

tX  is the Simulated True value of the state for 
all nodes at time step t, tO  is vector of the observation error 
and H  is the measurement sensitivity matrix. The observa- 
tion error vector tO  is assumed to be normally distributed with 
covariance of Rt and zero mean. A standard deviation of 5% 
was chosen and added to the Simulated True value to generate 
the observation data set. The parameters chosen are based on 
typical hydrologic values and values from literature. 

 

2.5. Kalman Filter without Parameter Estimation 

The Kalman filter is considered to be a very powerful tool 
since it supports estimation of past, present and even future 
states even when the precise nature of the modeled system is 
unknown (Welch et al., 2004). The solution is recursive since 
updated estimate of the state (concentration) is computed from 
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the previous estimate and new input data (Haykin, 2001). The 
Kalman filter approach only stores the previous (prior) esti- 
mate. Cheng (2000), Chang and Jin (2005) and Chang and 
Assumaning (2010) used the Kalman filter to predict the con- 
centration of contaminant in 2- and 3-dimensional subsurface 
environment. Kalman filter is used in this study to estimate 
the state (concentration) of the contaminant in a groundwater. 
The data assimilation is carried out primarily to reduce the va- 
riance estimates of the states. The two state-space models pre- 
sented in Equations 7 and 8 represent the process and observa- 
tion equations, respectively control the dynamics of the Kal- 
man filter estimation. The Kalman filter estimation equation 
depicting the stochastic condition is given as: 

 

 ( ) ( ) ( )t t t t tX X K Z HX        (9) 

 
where ( )tX  is the vector of estimated states after the Kal- 
man filter adjustment, ( )tX  is the vector of estimated states 
before the Kalman filter adjustment and tK is the Kalman 
gain matrix. The tK  is derived by minimizing the trace of the 
posterior error covariance matrix, ( )tP  . tK determines how 
much the estimated value using Kalman filter can gain from 
the observation. The tK is determined by: 

 
1( ) ( ( ) )T T

t t t tK P H HP H R       (10) 

 
( )T and ( )-1 denote the transpose and inverse of matrix res- 
pectively in Equation 10. The posterior and prior error cova- 
riance matrices given in Equations 11 and 12, respectively are 
advanced recursively for all time steps by: 

 
( ) ( ) ( )t t tP I K H P      (11) 

 

1( ) ( ) T
t t tP AP A Q       (12) 

 
The initial value of the posterior error covariance matrix 

is given as; 

 

   0 0 0 0 0( )( )TP E X E X X E X       (13) 

 
where X0 is the initial estimated state at time step zero. 

 

2.6. Kalman Filter Coupled with Monte Carlo Sampling 

Since the subsurface environment is heterogeneous in na- 
ture, the hydrologic parameters are characterized by uncertain- 
ties. These uncertainties in parameters are mostly due to chan- 
ges in chemical, physical and biological processes of the con- 
taminant. For this reason, the first-order decay rate parameter, 
k is estimated using Monte Carlo sampling method. Walker 
(2006) estimated the model parameters using Extended Kal- 
man filter. Moradkhani et al. (2005) also used Ensemble Kal- 
man filter for dual state-parameter estimation of hydrological 
models. The algorithm used in the parameter estimation is sh- 

own in Figure 1. 

The initial first-order decay rate parameter, k to be sam- 
pled is taken from the k used in the numerical scheme. A Monte 
Carlo sampling technique is initiated with k value of 0.35 1/day, 
standard deviation of 5% and normally distributed random 
error. The idea of Monte Carlo technique is to randomly gene- 
rate inputs from a probability distribution over the domain. 
The standard deviation and normally distributed random error 
are incorporated at every time step. A total of n samples of k 
are generated to begin the estimation process. The k values in 
practice cannot be negative, so a condition is set in the algori- 
thm to store positive k values and set negative values to zero. 
Out of these samples, n number of new STM and states vectors 
is generated. The error differences between the states and the 
observations at every time step are evaluated. The k that pro- 
duces the minimum error is selected to be the actual k value 
for the numerical scheme and it is also sampled to begin the 
next time step. Similarly, the state vector with minimum Mean 
Absolute Error (MAE) values is selected for the next time step. 
In this research, fifty number of k samples were generated at 
each time step. 

The Kalman filter algorithm is then applied to generate 
the states after the k is estimated for all the time steps. 
However, a modification is made to the process equation as 
shown in Equation 7 to incorporate the new k estimated. The 
parameter estimation is also performed as a means to calibrate 
the numerical model and to determine the actual decay rate 
parameter value. Automated parameter-estimation techniques 
improve the efficiency of model calibration (Konikow, 2011). 
The algorithm used to estimate the states after the parameter 
estimation of the first-order decay rate parameter k is shown 
in Figure 2. The estimated k is introduced into the process 
model at each time step to begin the evolution of the states. 
The new k alters the STM at every time step. The posterior and 

prior error covariance matrices are subsequently changed due 
to the change in the State Transition Matrix. The posterior and 
prior error covariance matrices are required to be positive 

 

Figure 1. Flowchart of first-order decay rate parameter 
estimation using Monte Carlo sampling method. 
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semi definite matrices to avoid degeneracy and numerical in- 
stability.  

The sparse observation data are introduced at each time 
step to guide the estimation made. Also, priori knowledge of 
process error covariance, Qt and measurement error covariance, 
Rt are required to begin the filtering process. However, the Qt 

and Rt are updated with time. The optimal Kalman gain, Kt 
which acts a weight factor is a function of the measurement 
sensitivity matrix, the posterior and prior error covariance ma- 
trices and the measurement error covariance. The difference 
[Zt - HXt(-)] is called the measurement innovation. The inno- 
vation reflects the discrepancy between the estimated state 
and the measurement. The Kalman filter basically applies mi- 
nimum mean-square error to estimate the states (concentra- 
tions) with time and involves matrix manipulation. 

 

2.7. Testing Numerical and Data Assimilation Filters 
Results 

The accuracy and effectiveness of the data assimilation 
filters and the numerical solution were determined by compa- 
ring their results to the Simulated True value at each time step. 
Two error estimation equations were used to analyze the pre- 
diction results. These methods are Mean Absolute Error 
(MAE) and Maximum Absolute Error (Emax). The MAE and 
Emax equations are defined in Equations 14 and 15, respec- 
tively: 

 

( , , , ) ( , , , )
( )

EC x y z t C x y z t
MAE t

N


  (14) 

 

max
max

( , , , ) ( , , , )
( )

( , , , )

EC x y z t C x y z t
E t

C x y z t


   (15) 

 
where N is the number of sampling nodes, CE is the estimated 
concentration of the contaminant at time, t, C is the Simulated 
True value at time, t and Cmax is the maximum Simulated True 

value at time, t.  

3. Results and Discussion 

3.1. Model Parameters 

The hydrogeologic properties like porosity, advection and 
dispersion are needed to perform the simulations using the data 
assimilation filters and the numerical scheme. The model para- 
meters used were assumed based on the previous research done 
by Cheng (2000) and typical parameter values used in litera- 
ture. The parameter values used in this 3-D contaminant tran- 
sport modeling is provided in Table 1. An instantaneous conta- 
minant was injected into the grid point at coordinates (5, 5, 1). 

 

3.2. Numerical Solution (FTCS) 

From Figure 3 where numerical solution at time step 30 
for all three layers is shown, the concentration of the contami- 
nant decreases with corresponding increase in time. The con- 
centration reduction is as a result of the decay, dispersion and 
flow of the contaminant. The minimum concentration for layer 
1, 2 and 3 are 22, 10 and 2.6 mg/L, respectively. The contours 
of the contaminant plume shows that the plume from numeri- 
cal method moves slower than the Simulated True value main- 
ly due to the relatively smaller linear velocity used in the esti- 
mation. The numerical solution is characterized with error due 
to the constant parameters in the simulation model. These erro- 
rs tend to propagate with time.  

 

3.3. Kalman Filter without Parameter Estimation Results 

The Kalman filter without Parameter Estimation and Si- 
mulated True value contours of the contaminant plume deve- 
loped for time step 30 are shown in Figure 4. The contours are 
represented in quasi 3-D form to depict the concentration and 
plume at each of the three layers. The closeness of estimated 
results to the Simulated True value is visibly shown. However, 
the Kalman filter without Parameter Estimation results are 
randomized due to the random Gaussian noise introduced into 

 
Figure 2. Flowchart of Kalman filter algorithm with 
estimated first-order decay rate parameter. 

Table 1. Model Parameters and Corresponding Values  

Model Parameter Value 

Initial contaminant concentration, Co 10,000 mg/L 
Total number of nodes or grid points, N 300 (10103) 
Sparse observation points, M 18 
First-order decay rate parameter, k 0.35 1/day 
Linear velocity for numerical method, Vn 0.15 m/day 
Linear velocity for Simulated True value, Vs 0.22 m/day 
Retardation factor, R 1.125 
Dispersion in x-direction, Dx 0.35 m2/day 
Dispersion in y-direction, Dy 0.35 m2/day 
Dispersion in z-direction, Dz 0.3 m2/day 
Grid interval in x,y and z direction (dx,dy,dz) 2 m 
Simulation time 12 days 
Time interval, dt  0.3 day 
Total time steps 40 
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the simulation at each time step.  

Similarly, the concentration of the subsurface contaminant 
tends to decrease with increase in time as depicted by the nu- 
merical method. However, the Kalman filter without Parameter 
Estimation results is relatively closer to the Simulated True 
value than the numerical solution. The closeness is primarily 
due to the data assimilation nature of the Kalman filter. From 
Figure 4, the concentration contours spread out with time and 
reduces from the top layer to the bottom layer. The spread of 
the contaminant is more along the x direction. The presence of 
dispersion coefficients and linear velocity parameters in the 
contaminant model contributed to the spreading of the conta- 

minant with time. The Kalman filter without Parameter Esti- 
mation with sparse observation data (18 data points) introduced 
into the assimilation process to estimate the concentration of 
the contaminant spatially and temporally yielded a relatively 
better solution than the numerical solution. The maximum con- 
centration shown in Figure 4 for layers 1, 2 and 3 are 88, 40 
and 10.4 mg/L, respectively. 

 

3.4. Kalman filter coupled with Monte Carlo Sampling 
Results 

Parameter estimation is essential in heterogeneous field 
like the subsurface environment. This helps the prediction 
model to mimic real life situation of contaminant transport 
and it improves the prediction accuracy. However, the compu- 
tational cost and challenges can be higher due to the volume 
of data used in the data assimilation process. In practice, the 
hydrologic parameters are not constant due to the change in 
physical, biological and chemically processes and other un- 
certainties in the subsurface environment. Thiemann et al. 
(2001) used Bayesian recursive approach for parameter estima- 
tion and hydrologic prediction. As part of the research, a 
first-order decay rate parameter is estimated using Monte 
Carlo sampling method. The estimated value is then intro- 
duced into the Kalman filter to predict the contaminant con- 
centration at every time step. 

The profile of the first-order decay rate parameter is sh- 
own in Figure 5. The estimation of the parameter converges 
and fairly stabilized at time step 3 with a value of about 0.25 
1/day. This indicates that the actual first-order decay rate para- 
meter is around 0.25 1/day. The first-order decay rate parame- 
ter value estimated at the beginning of the simulation is 1.2 
1/day. Although higher initially, the estimated values were fou- 
nd to be closer to the actual value with time. A small degree of 
randomness is shown in the profile from time step 3 to 39 due 

 

 
Figure 3. Numerical solution contours at time step 30 for 3 
layers. 

 

 
Figure 4. Kalman filter without Parameter Estimation 
contours at time step 30 for 3 layers. 
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Figure 5. Profile of first-order decay rate parameter 
estimation using Monte Carlo sampling method. 
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to the sampling technique used. 

The improvement in concentration prediction when first- 
order decay rate parameter estimated is incorporated into the 
model can be seen in Figure 6. The figure exhibits characteris- 
tics similar to that of Kalman filter without parameter estima- 
tion in terms of contour shape and concentration values. The 
distinction between the two is visible in the error estimation 
profiles. The quasi 3-D contour shape of the contaminant sh- 
ows the contaminant plume in layers along the z-direction. 
Every layer is a cross-sectional view of the contaminant shape 
in 2-D form along the x and y directions. The closeness of the 
predicted concentration to the Simulated True value can also 
be realized in the figure. Similarly, sparse observation data 
were introduced into the assimilation process to estimate the 
concentration of the contaminant. The predicted concentration 
profile shows erratic contaminant plume mainly due to the sto- 
chastic nature of the Kalman filter and the parameter estimation 
processes.  

 
3.5. Comparison of all Prediction Techniques Results 

To further analyze the accuracy of each prediction results 
at different location and time concurrently, the contour of all 
techniques results for layer 1 at time step 40 were plotted as 
shown in Figure 7. The contour plot is aimed at facilitating 
comparative analysis of the prediction results. From Figure 7, 
numerical solution is farther away from the Simulated True 
value. This indicates that the error in the numerical solution is 
relatively the largest compared to other prediction techniques. 
The closest prediction technique to the Simulated True value 
is Kalman filter coupled with Monte Carlo sampling. The de- 
viation by this technique from the Simulated True value is re- 
latively smaller. This suggests that the Kalman filter coupled 
with Monte Carlo sampling is relatively better than the rest of 
the techniques used in this research. 

3.6. Accuracy of the Numerical Method and Data 
Assimilation Filters 

The measure of accuracy of the results of each prediction 
technique is assessed using Mean Absolute Error (MAE) and 
Maximum Absolute Error (Emax). The purpose of the error/resi- 
dual analysis is to show the deviation from the Simulated True 
value with time. 

The Mean Absolute Error (MAE) is used in this work to 
find the absolute difference between the predicted and the Si- 
mulated True value at every time step. Figure 8 shows the pro- 
file of the MAE profiles for all prediction techniques. The data 
assimilation filters were found to be unstable in nature due to 
fewer observation data used and the random Gaussian noise 
introduced into the data assimilation process. The deviation 
by the numerical solution from the data assimilation filters is 
very visible and indicates the degree of error in the results. The 
profile also shows the erratic nature of the filters from time 
step 1 to 20. The randomized nature of the filters is as a result 
of the stochastic Markov chain process used in simulating the 
contaminant transport. At the end of the simulation, errors in 
the numerical solution and the filters were approximately 1.8 
and 0.4 mg/L, respectively. This indicates that the filters are 
capable of reducing the error in the numerical method by 77% 
at the end of the prediction. Also, the Kalman filter coupled 

with Monte Carlo sampling has the least error estimate. 

In other to establish which prediction technique works 
better, Maximum Absolute Error (Emax) was calculated at each 
time step for all the techniques. Figure 9 shows the plot of the 
Emax for all the prediction techniques. The error in the numeri- 
cal solution is highly increasing due to the accumulation of error 
with time. Among the data assimilation filters, the Kalman fil- 
ter without Parameter Estimation shows the result which is 
highly randomized. The profiles further confirm the accuracy 
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Figure 7. Contaminant concentration contours for all the 
prediction techniques at time step 40 for 1 layer. 

 

 
Figure 6. Kalman filter coupled with Monte Carlo sampling 
contours at time step 30 for 3 layers. 
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of the Kalman filter coupled with Monte Carlo sampling.  

 4. Conclusions 

Several numerical and analytical models have been used 
as predictive tool in solute transport. In this research, data 
assimilation filters namely Kalman filter without Parameter 
Estimation and Kalman filter coupled with Monte Carlo sam- 
pling were used as tools for predicting contaminant concen- 
tration in subsurface porous environment. Monte Carlo sam- 
pling method was also adopted as a first-order decay rate 
parameter estimation technique due to the uncertainties asso- 
ciated with hydrologic parameters and aquifer properties. Fif- 
ty samples were drawn from a known probability distribu- 

tion for the parameter estimation process. 

The filters used sparse observation data points (18 points) 
as opposed to the full data set (30 points) used by Chang and 
Jin (2005) and Chang and Li (2008) in their research. 
However, the filters guided by the sparse observation data in 
the filtering process, provided a better contaminant concen- 
tration prediction than the numerical method. The discretiza- 
tion of the 3-D subsurface contaminant transport model by 
FTCS introduces round-off, truncation and approximation err- 
ors into the numerical model.  

The filters are initiated with unknown noise statistics and 
uncertain states. However, they show a strong convergence 
trends in the error estimation profiles given. They are initially 
erratic but subsequently stabilize and converge with time indi- 
cating the effectiveness of the filtering process. The filters have 
an advantage of minimizing the error or residual between the 
observed values and the estimated values. From the MAE pro- 
file, the errors in the numerical solution and the filters were 
approximately 1.8 and 0.4 mg/L, respectively at the end of the 
simulation. This indicates that the data assimilation filters are 
capable of reducing the error in the numerical method by 75% 
at the end of the prediction. All the profiles on MAE and Emax 
confirm the higher accuracy of the Kalman filter coupled with 
Monte Carlo sampling.  

The contaminant transport simulations for all the data 
assimilation filters and the numerical method were run on a 
personal computer (PC) with processor speed of 2.99 GHz 
and RAM of 3.25 GB. The filters with Parameter Estimation 
take about eight minutes each whilst the numerical method ta- 
kes three minutes. The filters have high computational time 
and challenges demands due to the Parameter Estimation, pre- 
diction and updating processes of the algorithm. However, it 
is worth using the Kalman filter coupled with Monte Carlo 
sampling due to its accuracy in prediction and effectiveness. 
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Notations 

The following symbols are used in this paper: 

A = state transition matrix (STM)  

C = concentration of the contaminant  

dx, dy, dz = grid interval at the x, y and z-coordinate, res- 
pectively 

Dx, Dy, Dz = dispersion coefficients in the x, y and z di- 
rection, respectively 

H = measurement sensitivity matrix 

k = first-order decay rate parameter 

kt + 1 = vector of estimated first-order decay rate parame- ter at 
time, t + 1; 
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Figure 8. Mean Absolute Error (MAE) profiles for all 
prediction techniques. 
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Figure 9. Maximum Absolute Error (Emax) profile for all 
prediction techniques. 
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kt = vector of first-order decay rate parameter at time, t; 

Kt = Kalman optimal gain matrix 

Kp = linear partition coefficient 

η = porosity  

N = number of sampling nodes  

Ot = observation error vector 

b = bulk density of the porous medium, (mg/L)  

Pt(-) = prior optimal estimate error covariance matrix 

Pt(+) = posterior optimal estimate error covariance matrix 

R = retardation factor 

Rt = measurement covariance matrix 

S = contaminant concentration in the sorbed phase 

t = time in days 

V = average linear velocity 

tw = vector of process error  

Xt = vector of contaminant concentration at all nodes at time, t 

Xt+1 = vector of contaminant concentration at all nodes at time, 
t + 1 

Xt(-) = vector of estimated value before the Kalman filter 
adjustment 

Xt(+) = vector of estimated value after the Kalman filter 
adjustment 

T
tX  = Simulated True value of the state for all nodes at time 

step t 

x, y, z = Cartesian coordinates 

Zt = state vector for observed values for all nodes at time step 
t 
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