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ABSTRACT. The management of natural resources has become an important subject because of the increasing population. To meet 
human requirements for resources such as food and water, many control strategies have been proposed to improve biomass production 
and nutrient supply. However, implementing these strategies may be limited by the expense of large numbers of control devices and by 
the effects of stochastic perturbations. In this study, a robust reference tracking control strategy for the natural resource management of 
nonlinear stochastic biotic-abiotic ecosystems is proposed, using a limited set of controllers, to regulate the systematic dynamics 
achieving a desired reference trajectory under the influence of intrinsic fluctuations and environmental disturbances. To simplify the 
design procedure and make the robust reference tracking control strategy more feasible, we propose a fuzzy stochastic partial differ- 
rential equations system to represent the ecosystem, itself approximated by a fuzzy stochastic spatial state space model, based on a fi- 
nite difference scheme. This allows replacement of a complex Hamilton-Jacobi integral inequality by an equivalent set of local linear 
matrix inequalities which can be easily solved. We verify the efficiency of the proposed approach using a nonlinear stochastic bio- 
mass-nutrient control example and compare the robust tracking control performance for different arrangements of control devices. 
Managers may select appropriate tracking control schemes based on this comparison. The robust reference tracking control strategy 
can be applied not only to agricultural systems but also to biophysical systems in ecological conservation, ecosystem restoration or 
engineering. 

Keywords: natural resource management, spatial state space model, robust reference tracking control, T-S fuzzy interpolation, finite 

difference scheme

1. Introduction

Ecosystems consist of biotic populations and an abiotic 
environment interacting with each other. Both natural and 
artificial ecosystems provide people with fundamental goods 
and services. These ecological services, such as nutrient cy- 
cling, food and water provision or climate regulation, are equ- 
ally important for sustaining the ecosystems themselves. Be- 
cause of the increasing human population and associated eff- 
ects (e.g., pollution and climate change), natural resource ma- 
nagement (NRM) has however become a central issue for sus- 
tainably supporting both present and future generations, espe- 
cially with respect to food and fresh water requirements. Total 
human population is projected to exceed 9 billion in 2050 (US- 
CB, 2011) (Figure 1), raising the question of how enough food 
can be produced to feed this population. Sixty percent of the 
world’s food production comes from rain-fed agriculture (WB- 
CSD and IUCN, 2009), but the full potential of rain-fed agricul- 
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ture is never achieved because water availability is affected by 
climatic events such as droughts. Even in irrigated agriculture, 
irrigation efficiency is only ~ 38% globally, since ~ 62% of the 
water delivered to fields is lost as runoff or to drainage (FAO, 
2003) (Table 1). Since large amounts of water are required for 
food production, improvement of the productivity of existing 
farmland and the efficiency of water usage is an urgent priority. 

Many strategies have recently been proposed to improve 
food production and water use efficiency for human needs 
(Evans et al., 1991; Burke et al., 1999; Ahuja et al., 2008; Bou- 
traa, 2010). Artificial nutrient supply and pest control are the 
principal methods of increasing biomass yield. In intensive 
agricultural production, nutrient supply is increased by the 
application of fertiliser and irrigation water. This is a basic 
control input to improve plant growth. Pest control is carried 
out through the application of chemical pesticide, biological 
control agents or herbivore exclosures. This is an alternative 
control input to decrease plant mortality caused by disease or 
grazing. However, growing global awareness of environmen- 
tal problems and concern for human health have led to increa- 
sing demand for organic foods and pesticide-free products, and 

decreasing use of chemical fertilisers and pesticides (Matthews, 
1999; Tilman et al., 2002; Pearce and Koundouri, 2003). Hu- 
man activities and global climate change have also reduced 
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*Note: Source: U.S. Census Bureau, International Data Base, 2011

Figure 1. World population: 1950 ~ 2050. It will be 
projected to exceed 9 billion people in 2050*. 

the amount of water available for irrigation in some regions 
(Rosegrant et al., 2002; Fereres and Soriano, 2007; Hanjra and 
Qureshi, 2010; Monsef and Abahussain, 2013). More than 40% 
of the global land area is classified as arid or semi-arid (Bou- 
traa, 2010). In these water-poor areas, water is the most impor- 
tant limiting factor in agricultural production, thus improving 
irrigation efficiency is important in these areas. The use of irri- 
gation water, chemical fertiliser and pesticide to improve crop 
yield requires innovative and sustainable research. Techniques 
for improving water use efficiency and crop yield have been 
developed using engineering approaches (Wallace, 2000) or 
innovative subsurface irrigation instead of traditional flood 
irrigation (Batchelor et al., 1996). Systematic perspectives that 
apply systems theory to NRM have also been used to develop 
theoretical strategies for improving crop yield and water use 
efficiency (Amir et al., 1991; Bouman et al., 2005).  

Growth in the demand for natural resources such as food 
and water will be concentrated in arid and semi-arid environ- 
ments in many developing countries. In these areas, population 
growth is generally high, which increases the need to improve 
crop yield and water use efficiency. However, stochastic per- 
turbations such as alien species invasions or variability in irriga- 
tion water availability caused by changes in evaporation, trans- 
piration or rainfall make farming in arid areas an unpredicta- 
ble and high-risk activity. Ensuring that crop yield is maintai- 
ned at a desired level despite stochastic perturbations is there- 
fore a necessity for many developing countries. Strategies in- 
volving a robust reference tracking control, which would help 
to manipulate crop yield and regulate irrigation water in arid 
and semi-arid areas, are essential for NRM aimed at desired 
agricultural production levels. This strategy could also be used 
in ecological conservation and restoration to protect and restore 
land, water, animals, plants and air quality, or in ecological 
engineering to design, monitor, and construct artificial ecosys- 
tems (Bergen et al., 2001). To simplify the theoretical analysis 
of ecosystems, early studies have mainly focused on the inte- 
ractions of uniform (well-mixed) biotic populations and abiotic 
environments, which can be represented by deterministic ordi- 
nary differential equations (ODEs) (Gurney and Nisbet, 1998; 
Cale et al., 2009; Thébault and Fontaine, 2010). However in 

the real world the spatial distribution of natural resources is 
mostly heterogeneous, and their spatiotemporal systematic dy- 
namics are generally nonlinear associated with stochastic intrin- 
sic fluctuations and local environmental disturbances. Systems 
of nonlinear stochastic partial differential equations (PDEs) 
are therefore more suitable for representing real biotic-abiotic 
interactions over space and time. In other words, the design of 
robust reference tracking controls for nonlinear stochastic bio- 
tic-abiotic ecosystems should take into account not only the 
effects of stochastic intrinsic fluctuations and local environ- 
mental disturbances, but also systematic dynamics that depend 
on space and time.  

The design of robust reference tracking controls for non- 
linear stochastic PDEs systems requires solving a complex Ha- 
milton-Jacobi integral inequality (HJII). This is more difficult 
than solving a Hamilton-Jacobi inequality (HJI) to design a ro- 
bust reference control for nonlinear stochastic ODEs systems. 
At present, there are no direct analytic or numerical solutions 
for HJII or HJI except for some simple cases. The T-S fuzzy 
method, which interpolates several local linear models to app- 
roximate a nonlinear system, has seen recent and widespread 
use in solving HJI problems for nonlinear systems described 
by ODEs (Tanaka and Sugeno, 1992; Chen et al., 1996; Tana- 
ka et al., 1996, 1998; Chen et al., 1999, 2000; Tseng et al., 
2001; Nguang and Shi, 2003; Tanaka and Wang, 2004). Based 
on the method of Galerkin, which is used to derive a set of 
nonlinear ODEs approximating a PDEs system (Wu and Li 
2008; Yuan et al., 2008), several control design schemes have 
been proposed to stabilise nonlinear PDEs systems. A fuzzy 
infinite-dimensional state space model based on the Galerkin 
method has been proposed to represent a nonlinear PDEs sys- 
tem with some truncation error (Chen and Chang, 2009). An 
alternative method, the finite difference scheme (Strikwerda, 
2004), has also been widely applied to obtain the numerical 
solutions of PDEs, and a fuzzy tracking control for nonlinear 
PDEs systems with environmental disturbances has been pro- 
posed based on this scheme (Chang and Chen, 2010). However, 
many control methods remain theoretical, as it is very difficult 
and probably unrealistic to design a controller for the entire 
PDEs system. The feasibility of implementing any control stra- 
tegy over a large area is generally limited by the expense of 
applying a large number of control devices. Applying a limited 
number of control devices at some locations instead of a stra- 
tegy to control the entire system is more realistic. We therefore 
use a limited set of controllers in designing a robust reference 
tracking control by combining a fuzzy interpolation approach 
with a finite difference scheme for nonlinear stochastic PDEs 
systems with random intrinsic and external perturbations. This 
control method can be applied to nonlinear stochastic biotic- 
abiotic ecosystems and other biophysical systems over space 
and time. For practical applications, we also validate the per- 
formance of different distribution control strategies using a 
limited set of controllers. This may help managers to effecti- 
vely reduce the usage amount of control devices, and provide 
an optimal sorting method for control devices. 

We use a fuzzy interpolation approach and a finite diffe- 
rence scheme, taking into account practical design require- 
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ments (minimising the complexity of nonlinear interactions, 
attenuating the effect of environmental disturbances, and limi- 
ting the number of control devices), to select a suitable space 
partition size and numbers of fuzzy local linear systems. We 
use these to represent a nonlinear stochastic biotic-abiotic eco- 
system with a fuzzy spatial state space model, with some app- 
roximation and truncation error. We assume that the effects of 
system spatial dynamics (i.e. diffusion and advection) have 
uniform influences over the unit grid-space. Based on this fu- 
zzy spatial state space model, we propose a robust reference 
tracking control strategy to control the ecosystem and achieve 
the desired reference trajectory tracking in spite of the effect 
of stochastic intrinsic and external perturbations and errors 
resulting from approximation and truncation. In this way, a 
complex HJII (or HJI) can be replaced by an equivalent linear 
matrix inequalities (LMIs) set, which can be solved easily 
using the LMI toolbox in Matlab. 

In this study, we design a robust reference tracking con- 
trol for nonlinear stochastic biotic-abiotic ecosystems for NRM 
using a limited set of controllers. In section 2, we model a 
nonlinear stochastic PDEs system to describe such an ecosys- 
tem, including random intrinsic fluctuations and environmental 
disturbances, and propose a robust reference tracking control 
to attenuate the effect of random disturbances on the tracking 
error. In section 3, we represent the ecosystem as a fuzzy spa- 
tial state space model to overcome nonlinearity and partial 
differentiation in the design of the robust reference tracking 
control, using the following procedures: (a) T-S fuzzy inter- 
polation is used to propose a fuzzy stochastic PDEs system to 
represent the ecosystem by interpolating several local linear 
stochastic PDEs systems. (b) A finite difference scheme is used 
to discretize the continuous spatial domain by dividing it into 
several uniform grids, and a finite difference operator is propo- 
sed to represent the partial differential operator. This allows 
representation of a fuzzy stochastic PDEs system by an equi- 
valent fuzzy spatial state space model. (c) Based on the fuzzy 
spatial state space model, a fuzzy tracking control design is 
proposed to achieve the best possible robust tracking, i.e. atte- 
nuating the effects of intrinsic fluctuation, environmental dis- 
turbance, fuzzy approximation error and truncation error on 
tracking error. (d) Finally, the control gain for the robust fuzzy 
tracking control design is obtained by solving an equivalent 
LMIs-constrained optimisation problem for the ecosystem, 
using the LMI toolbox in Matlab. In section 4, we validate the 
robust fuzzy tracking control using a numerical example, and 
compare and validate the performance of different distribution 
control strategies. Section 5 is devoted to the discussion of the 
results. 

2. Robust Reference Tracking Control Strategy of
Nonlinear Stochastic Biotic-Abiotic Ecosystems 

The biophysical interactions of nonlinear stochastic biotic- 
abiotic ecosystems can be described using abiotic and biotic 
variables whose dynamics are dependent on their two-dimen- 
sional spatial position 1 2[ , ]x x x  and time t  [0, tf]. In 
general, ecological patterns such as the heterogeneous distribu- 
tion of species or substances can be induced by Turing instabi- 
lity, differential flow instability or random environmental fluc- 
tuations (Satnoianu et al., 2000; Tilman et al., 2002; Huang and 
Diekmann, 2003). The heterogeneous spatial distribution of 
these biotic and abiotic natural resources can be represented 
by the following reaction-diffusion-advection equations (Bou- 
man et al., 2005), which incorporate intrinsic parameter fluc- 
tuations and environmental disturbances: 

     2( , )
( , ) ( , ) ( , ) ( , )

x t
f x t f x t n x t D x t

t



  


    


( , ) ( , )V x t d x t  (1) 

where the state vector (x, t) = [1(x, t), …, n(x, t)]T  n con- 
tains all n biotic and abiotic state variables. In (1), the reaction
term (f((x, t)) + f((x, t))n(x, t)) denotes the nonlinear biotic- 
abiotic interaction f((x, t))  n with the random intrinsic pa- 
rameter fluctuation f((x, t))n(x, t)  n, where n(x, t)  1 
is stationary white noise with zero mean and unit variance. 
The diffusion term D2(x, t)  n denotes the spreading of 
state variables with diffusivity D = diag(d1, …, dn)  n×n and 
the advection term V(x, t)   denotes the movement of 
state variables with velocity V = diag(v1, …, dn)  n×n. The 
final term d(x, t)  n denotes the bounded spatiotemporal 
environmental disturbances. In the two-dimensional space case, 
the differential operators  and 2 are defined as follows 
(Gurney and Nisbet, 1998): 

22 2
2

2
1 1

( , ) ( , ),  ( , ) ( , )
k kk k

x t x t x t x t
x x

   
 

 
   

 
   (2) 

where (x,t) / xk ≡ [1(x, t) / xk, …, n(x, t) / xk]T  n, 
2(x, t) / xk

2 ≡ [21(x, t) / xk
2, …, 2n(x, t) / xk

2]Tn, k = 
1, 2. The initial value is given by χ(x, 0) and the boundary 
condition is given by the Dirichlet boundary condition, χ(x, t) 
= 0 on , or the Neumann boundary condition, (x, t) / x = 
0 on .

For the purpose of system analysis and control design, the 
reaction-advection-diffusion equations in the above ecosystem 

Table 1. Water Use Efficiency in 1998 and 2030 (Predicted) in 93 Developing Countries (FAO 2003)*

Sub-Saharan 
Africa 

Latin 
America 

Near East & 
North Africa 

South 
Asia 

East 
Asia 

All 
countries 

Water use efficiency in irrigation (%) 

1998 33 25 40 44 33 38 

2030 37 25 53 49 35 42 
*Source: FAO, 2003. 
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(1) can be represented by the following Ito stochastic system 
(Øksendal, 2003): 

  2( , )  ( , ) ( , ) ( , ) ( , )d x t f x t D x t V x t d x t dt         

 ( , ) ( , )f x t d x t    (3) 

where ω(x, t) with dω(x, t) = n(x, t) denotes a standard Wiener 
process, or Brownian motion. By limiting the set of controllers 
used for the tracking control design (i.e. control devices are 
only set up at p locations), the ecosystem in (3) can be re- 
written as follows: 

2( , )  ( ( ( , )) ( , ) ( , ) ( ) ( , )d x t f x t D x t V x t g x u x t         

( , )) ( ( , )) ( , )d x t dt f x t d x t    (4) 

where the control input set up at p point locations is defined 
as u(x, t) = [u(x1, t)T, …, u(xp, t)T]T  np. The control influen- 
ce function ( )g x incorporates p point locations, i.e. g(x) = 
[g(x1), …, g(xp)]  n × np in which g(xi) = In, to influence the 
n state variables at location xi  x, i = 1, …, p.

.
 

To manage natural resources for human needs, a manage- 
ment strategy must control the state variables to track a desired 
trajectory, such as an annual production plan. The reference 
model incorporating a desired dynamic response is described 
as below, following the Ito formula (Øksendal, 2003): 

 2( , ) ( , ) ( , )  ( , ) ( , ) r r r r r r rd x t A x t D x t V x t r x t dt        

(5) 

where the reference state vector r(x, t)=[r1(x, t), …, rn(x, 
t)]T  n.. The linear reference matrix Ar  n × n is specified 
with negative eigenvalues to guarantee the stability of the refe- 
rence model to achieve a desired transient reference trajectory. 
The bounded reference input signal r(x, t)  n is specified to 
achieve a desired steady state reference trajectory according 
to the practical requirtment on state variables. The diagonal 
matrices Vr  n × n and Dr  n × n can also be specified if re- 
quired. To allow the ecosystem in (4) to track the reference 
model in (5), a robust reference tracking control strategy is gi- 
ven as the following nonlinear error state feedback design: 

 ( , ) ( , )u x t K x t   (6) 

where ( , )x t = (x, t)  r(x, t) denotes the tracking error. And 

     1( , ) [ ( , ) , , ( , ) ]
T T T np

pK x t K x t K x t      is the non- 
linear function of error states, and is specified at p locations in 
Ω, so that the tracking error ( , )x t can be reduced to below an 
acceptable level despite the effects of random intrinsic parame- 
ter fluctuations and environmental disturbances. 

The bounded environmental disturbance d(x, t) is uncer- 
tain and unpredictable, and the bounded reference input signal 
r(x, t) can be arbitrarily assigned by users and is thus unavai- 
lable to the designer beforehand. The robust reference tracking 

control is therefore designed so that the spatiotemporal effects 
of uncertainties d(x, t) and r(x, t) on the tracking error ( , )x t  
can be attenuated below a prescribed level ρ as follows: 

 
 

20

0

( , ) ( , )

( , ) ( , )

f

f

t
T

t
T

E x t Q x t dxdt

E v x t v x t dxdt

 





 

 

 
(7) 

which can be represented as: 

   2

0 0
( , ) ( , ) ( , ) ( , )

f ft t
T TE x t Q x t dxdt E v x t v x t dxdt  

 
    

(8) 

where Q is the positive definite weighting matrix and v(x, t) = 
[r(x, t)T, d(x, t)T]T is considered a vector of external disturban- 
ces. If the effect of the initial value ( , 0)x is considered, i.e. 

( , 0) 0x  , then we get: 

    2

0
( , ) ( , ) ( , 0)

ft
TE x t Q x t dxdt E V x dx E   

 
     

 
0

( , ) ( , )
ft

Tv x t v x t dxdt
  (9) 

for some positive Lyapunov function V() > 0. The inequality 
in (7) or (8) is the two-dimensional spatiotemporal robust H∞ 
tracking control performance. In other words, the effect of all 
possible disturbances on the tracking error with respect to ave- 
rage energy over the total space Ω must be attenuated below a 
prescribed level ρ.  

Remark 1: To develop the optimal robust tracking con- 
trol, the above two-dimensional robust H∞ tracking control 
problem must be solved. Then the upper bound ρ2 can be mi- 
nimised to derive the real optimal robust tracking control for 
the ecosystem, i.e. to minimise the tracking error under all po- 
ssible disturbances over the spatiotemporal dimain. An optimal 
attenuation level ρ0 can thus be obtained by solving the follo- 
wing constrained optimisation via the robust reference trac- 
king control design u(x, t) in (6): 

0
( , )

min
u x t

   (10) 

subject to (7) or (8) 
To solve this problem, an augmented system that combi- 

nes the dynamics of the ecosystem in (4) and the reference mo- 
del in (5) is proposed as follows: 

 ( , ) ( ( , )) ( , ) ( ( , )) ( , )d x t F x t Ev x t dt F x t d x t      (11) 

where 

( , )
( , )

( , ) 

r x t
x t

x t






 
  

 
,

0

0
n

n

I
E

I

 
  

 
,

( , )
( , )

( , ) 

r x t
v x t

d x t

 
  

 
, 
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 
 

2

2

( , ) ( , ) ( , )
( ( , )) ,

( ( , )) ( , ) ( , ) ( ) ( , )

r r r r r rA x t D x t V x t
F x t

f x t D x t V x t g x u x t

  


  

    
 
      

0
( ( , ))

( ( , ))
F x t

f x t







 
  

 
. 

Thus, robust H∞ tracking control performance in (7) or 
(8) can be represented by:  

 
 

20

0

( , ) ( , )

( , ) ( , )

f

f

t
T

t
T

E x t Q x t dxdt

E v x t v x t dxdt

 





 

 
(12) 

or: 

   2

0 0
( , ) ( , ) ( , ) ( , )

f ft t
T TE x t Q x t dxdt E v x t v x t dxdt  

 
   

(13) 

where 

Q Q
Q

Q Q

 
  

 

 

 
. 

If the effect of the initial value ( , 0)x is considered, the robust 
H∞ tracking control performance in (13) can be represented 
by: 

    2

0
( , ) ( , ) ( , 0)

ft
TE x t Q x t dxdt E V x dx E   

 
   

 
0

( , ) ( , )
ft

Tv x t v x t dxdt
  (14) 

This leads to the following result for the robust reference 
tracking control strategy (6) for nonlinear stochastic biotic- 
abiotic ecosystems. 

Theorem 1: For the augmented system (11), with a pre- 
scribed disturbance attenuation level ρ in (13) or (14), if there 
exists a robust reference tracking control strategy u(x, t) in (6), 
such that the following HJII holds for ( ( , )) 0V x t  : 

 
 

   

 
 

 

2

2

2

( , )
( , ) ( , ) ( , )

( , )

( , ) ( , )1
0

4 ( , ) ( , )

( , )1
( , ) ( , )

2 ( , )

T

T

T

T

T

V x t
x t Q x t F x t

x t

V x t V x t
EE dx

x t x t

V x t
F x t F x t

x t
 


  



 

  


 





  
   

  
 

     
     

     
  
  
   



(15) 

then (i) the robust H∞ tracking performance in (13) or (14) is 

guaranteed by the robust reference tracking control strategy in 
(6); and (ii) if the ecosystem is free of environmental distur- 
bance, (x, t) will asymptotically track the reference r(x, t) in 
probability. 

Proof: See Appendix A. 

3. Robust Fuzzy Tracking Control Design Approach

To achieve the robust H∞ tracking control performance 
in (14), it would be necessary to solve a very complicated HJII 
in (15), which is difficult to do analytically or numerically. 
Even if we solve either, it is not easy to estimate (x, t) and 
r(x, t) for the whole space Ω so that we can implement the 
robust reference tracking control strategy u(x, t). In this situa- 
tion, the following control design is proposed in order to sim- 
plify the robust reference tracking control design for nonlinear 
stochastic biotic-abiotic ecosystems. It uses a fuzzy interpola- 
tion scheme to overcome the nonlinearity and a finite differ- 
rence scheme to overcome the differential operators  and 2. 

The T-S fuzzy model is described by fuzzy “If-then” rules 
and used here to solve the HJII in (15). The ith rule of the T-S 
fuzzy model for the ecosystem in (4) is proposed as follows 
(Chen and Chang, 2009; Chen et al., 2012): 

1 1Rule :   ( , ) is , ..., ( , ) is ,i l ili If z x t F z x t F

 2 ( , ) ( , ) ( , ) ( , )ithen d x t A x t D x t V x t        

 ( ) ( , ) ( , ) ( , ) ( , ) , 1, 2, ...,ig x u x t d x t dt A x t d x t i L    

(16) 

where Ai  n × n and Ai  n × n are the local linearised sys- 
tem matrices; zi(x, t)is the premise variable; Fis, s = 1, 2, …, m, 
is the fuzzy set and m  n is the number of premise variables. 
If all state variables in (x, t) are used as premise variables 
then m = n. Following the “If-then” rules in (16), the overall 
fuzzy stochastic PDEs system for the ecosystem in (3) can be 
represented as follows (Chen et al., 1999; Tseng et al., 2001; 
Chen and Chang, 2009): 

  2

1

( , ) ( , ) [ ( , ) ( , ) ( , )
L

i i
i

d x t z x t A x t D x t V x t    


     

( ) ( , ) ( , ) ( , ) ( , ) ( , )ig x u x t d x t x t dt A x t d x t     

( , ) ( , )x t d x t  (17) 

where the fuzzy interpolation bases i(z(x, t)) = 1
m
s Fis(z(x, 

t))/
1 1

L m
i s   Fis(z(x, t)) for i = 1, 2, …, L, z(x, t) = [z1(x, t), …, 

zm(x, t)], and Fis(z(x, t)) are the grade or membership functions 
of z(x, t) in Fis. We assume 1

m
s Fis(z(x, t)) ≥ 0 and 

1 1
L m
i s  

Fis(z(x, t)) > 0. Therefore, we get fuzzy bases i(z(x, t)) ≥ 0 
and the total sum of fuzzy bases 1

L
i i(z(x, t)) = 1. The fuzzy 

approximation errors are defined as: 

   
1

( , ) ( , ) ( , ) ( , );
L

i i
i

x t f x t z x t A x t   


 
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   
1

( , ) ( , ) ( , ) ( , )
L

i i
i

x t f x t z x t A x t     


   (18) 

Remark 2: In (17), applying the T-S fuzzy approach (Ta- 
kagi and Sugeno, 1985) and the interpolation of L local linear 
systems to approximate a nonlinear system, the effects of fuzzy 
approximation errors (x, t) and (x, t) are usually omitted for 
concise representation. The fuzzy approximation error is not 
only dependent on the complexity of the nonlinear system but 
also on the number of fuzzy rules L, i.e. (x, t) and (x, t) de- 
crease as L increases. For a more precise approximation, the 
influence of the fuzzy approximation errors in (18) can be in- 
corporated in the design of the robust reference tracking con- 
trol, or it can be merged with the external disturbance d(x, t), 
whose effect could be attenuated by the proposed robust 
reference tracking strategy. The details of how to deal with the 
effect of fuzzy approximation errors can be found in our pre- 
vious studies (Tseng et al., 2001; Chen et al., 2009; Chang and 
Chen, 2010). In this study, we estimated the fuzzy approxima- 
tion errors based on the following assumption: 

Assumption 1 (Chen and Chang, 2009): If the functions 
f((x, t)) and f((x, t) are defined for a compact set U  n, 
then the fuzzy approximation errors would be bounded, i.e. 
||(x, t)||2  2||(x, t)||2 and ||(x,t)||2  

2||(x, t)||2, where  
and  are the positive scalar values that depend on the num- 
ber of fuzzy rules L.  

Using the same logic, the nonlinear robust reference trac- 
king control strategy in (6) could be redesigned based on the 
following fuzzy control law: 

1 1Rule :  ( , ) is ,... ( , ) is ,j l jlj If z x t F z x t F

        ( , ) ( , ) ( , ) ( , )( ( , ) ( , )),j j rthen u x t K x t x t K x t x t x t    

1, 2, ...,j L (19) 

where Kj(x, t) = [Kj(x1, t)T, …, Kj(xp, t)T]Tnpn is the linear 
control gain at p locations. 

After approximating the nonlinear function using the fu- 
zzy interpolation scheme, we use a finite difference scheme to 
treat the partial differential operators  and 2 in the ecosys- 
tem. Finite difference schemes have been widely used to obtain 
numerical solutions for PDEs. The main advantages of the fi- 
nite difference method are that it is easy to understand and to 
implement. Because discretization is often intuitive, it is an 
efficient scheme for some PDEs problems. To design a robust 
reference tracking control for the ecosystem using a limited 
set of controllers, we should take into account the effects of 
environmental disturbances, the available number of control 
devices and the practical space partition size. Here, we con- 
sider a typical grid mesh with a uniform mesh space ∆ as sh- 
own in Figure 2. The state vector (x, t) at the grid node xk,l = 
[k∆, l∆]T is represented by k,l(t)  n, i.e. (x, t)|x = xk,l = k, l(t), 
where k = 1, …, N1, l = 1, …, N2. To satisfy the Dirichlet bou- 
ndary conditions (Evans et al., 2000), the values of k,l(t) at 
boundaries are fixed, i.e., if χ(x, t) = 0 at , we have k,l(t) = 
0 at k = 0, N1 + 1 or l = 0, N2 + 1. The spatial state vector (t) 

 nN for state vectors at all grid nodes in the spatial domain 
 is defined as follows: 

1 21,1 ,1 ,1 , 1,( ) [ ( ) ( ) ( ) ( ) ( )T T T T T
k N k l Nt t t t t t            

2 1 2, ,( ) ( ) ]T T T
k N N Nt t  (20) 

where N ≡ N1 + N2. To simplify the index of the states χk,l(t) 
in the spatial state vector (t), we denote j(t) ≡ k,l(t), where 
j = (l  1)N1 + k. We use the two-dimensional index (k, l) to ex- 
press the finite difference schemes of the two-index system, 
while the one-dimensional index j is used in the equivalent 
one-index system. These two-dimensional indexing systems 
coincide in the one-dimensional case. Therefore, the two-di- 
mensional index in (20) can be reduced to a one-dimensional 
index as follows: 

1 11 1( ) [ ( ) ( ) ( ) ( ) ( )T T T T T
k N j N Nt t t t t t            

1
( ) ( ) ]T T T

N N k Nt t    (21) 

 

X
1
 

X2 

Figure 2. Finite difference grids (●) for two dimensional 
variables X1 and X2. 

Remark 3: To satisfy the Neumann boundary conditions 
(Evans et al., 2000), i.e. (x, t)/x = 0 on , the boundary is 
given as (x, t)/x|x = xk,l = 0 at k = 0, …, N1 + 1 or l = 0, …, 
N2 + 1. Therefore, if the grid nodes at boundaries are also 
considered in the spatial state vector (t)  nN, then χ(t) in 
(20) should be modified as follows: 

1 20,0 ,0 1,0 , 0, 1( ) [ ( ) ( ) ( ) ( ) ( )T T T T T
k N k l Nt t t t t t           

2 1 2, 1 1, 1( ) ( ) ]T T T
k N N Nt t    (22) 

where N ≡ (N1 + 2) + (N2 + 2). Similarly, if we let j = l(N1 + 2) 
+ (k + 1), the two-dimensional index in (22) can also be redu- 
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ced to a one-dimensional index as follows: 

1 11 1 2 ( 2) 1( ) [ ( ) ( ) ( ) ( ) ( )T T T T T
k N j N Nt t t t t t              

1( 2) ( ) ( ) ]T T T
N N k Nt t     (23) 

From (17), the fuzzy finite difference model of k,l(t) at 
the grid node xk,l = [k∆, l∆]T could be represented by χj(t) as 
follows: 

2

1

( )  ( ( )){[ ( ) ( ) ( ) ( )
L

j i j i j j j j
i

d t z t A t D t V t B u t    


      
2( ) ( ) ( )] ( ) ( ) ( ) ( )}j j j i j j jd t t O dt A t d t t d t           (24) 

where the influence matrix Bj = [Bx1, …, Bxp]nnp is defined 
as Bxi = In for xj = xi if a control device is located at xj, or Bxi = 
0n for xj  xi; the control input u(t) = [u(t)x1

T, …, u(t)xp
T]T

  
np.We assume that for any grid node j, the system spatial 
dynamics of χj(t) have a uniform influence over a unit of grid 
space, and that the differential operators  and 2 defined in 
(2) can be approximated by the finite difference matrices j  
n  nN and 2

j  n  nN. We express the interactions of other 
grid nodes with node j using the following central difference 
approximation (Evans et al., 2000; Strikwerda, 2004): 

 , 1, 1, , 1

1 1
( ) ( ) ( ) ( ) ( ( )

2 2
j k l k l k l k lt t t t t            

 

1, 1 ,1 , 2 , 1 , , 1

1
( )) [0 0 0

2
k l n n j N n j n j n jt I I I      


 

1, ,0 0 ] ( )n n j N n NI t  (25a) 

 2 2
, 1, 1, ,2 2

1 1
( ) ( ) ( ) ( ) 2 ( )j k l k l k l k lt t t t t          

 

1, 1 , 1 , ,1 , , 12

1
( ( ) ( ) 2 ( )) [0 0k l k l k l n n j N n n jt t t I I       


 

1, , 1 , ,4 0 0 ] ( )n j n j n n j N n NI I I t    (25b) 

The remainder term Oj(∆2) ≡ Oj(∆2) + O2j(∆2) in (24) is 
called the local truncation error. For concise representation, 
the local truncation errors Oj(∆2) ≡ Vχ(xj, t)  Vjχ(t) and 
O2j(∆2) ≡ D2χ(xj, t)  D2

jχ(t),
 
dependent on the size of grid 

space Δ, are usually omitted. This is possible because it has 
been proven that if the grid node points in the spatial domain 
are dense enough then the truncation error will be small enough 
to disregard (Yoo, 2000). Here however, we take the effects of 
these local truncation errors on tracking control performance 
into account. They can also be attenuated using our robust re- 
ference tracking control design. 

 After collecting all states χj(t) of the grid nodes in (24) 
into the spatial state vector χ(t) in (21), the fuzzy interpola- 
tion bases i(zj(t)) can be transformed into a matrix of dia- 
gonal fuzzy interpolation bases i(z(t)) = diag(μi(z1(t)), …, 
μi(zN(t)))  N  N. Using the Kronecker product, the represen- 

tation can be simplified and some properties of i(z(t)) can be 
obtained as follows. 

Lemma 1: Properties of Kronecker product of fuzzy inter- 
polation bases 

1. μi(z(t))  Ai = (μi(z(t))  In)(IN  Ai)  nN  nN where Ai 
n  n. 

2. (μi(z(t))  In) (μj(z(t))  In) = (μi(z(t)) μj(z(t))  In) 
nN  nN. 

3   
1

( )
L

i
i

z t

 = IN,   

1

( )
L

i n
i

z t I


 = InN and  
1 1

( ( )
L L

i
i j

z t
 
  

 ( )j n nNz t I I   . 

The Kronecker product is a special case of the tensor pro- 
duct, so it is bilinear and associative. Properties 1 and Pro- 
perties 2 are both derived from the so-called “Mixed-product 
property” of Kronecker product, because it mixes the matrix 
product and the Kronecker product, i.e., if A, B, C and D are 
matrices that can form the matrix products AC and BD, then 
(A  B) (C  D) = AC  BD, which is the fundamental proper- 
ties for the Kronecker product. And Property 3 can be easily 
proven via the fuzzy fundamental property: 1( ( ( )))L

i i jz t  = 
1 for j = 1, 2, …, N. These properties of Kronecker product of 
fuzzy interpolation bases i(zj(t)) could simplify the system 
representation and tracking control design procedure of fuzzy 
reaction-diffusion-advection system in (24). 

Using Lemma 1, the overall fuzzy finite difference mo- 
dels in (24) and (25) in Ω can be written as the following fuzzy 
spatial state space system to represent the ecosystem in (4): 

  2

1

( )  ( ) {[ ( ) ( ) ( ) ( )
L

i i
i

d t z t A t D t V t Bu t    


      
2( ) ( ) ( )] ( ) ( ) ( ) ( )}id t t O dt A t d t t d t            (26) 

where  ( )i z t = (i(z(t))  In)  nN × nN, iA = (IN  Ai)  
nN × nN, D = (IN  D)  nN × nN , 2 2 2

1[ , , ]T T T
N     

nN × nN,V = (IN  V)  nN × nN,
1[ , , ]T T T

N     nN × nN, 

1[ ,TB B …, ]T T nN np
NB  ,

1( ) [ ( ) , , ( ) ] ,T T T nN
Nd t d t d t  ε(t) 

= [ε1(t)T, …, εN(t)T]  nN, 2 2 2
1( ) [ ( ) , , ( ) ]T T T

NO O O   
 nN, iA    nN nN

N iI A
  , εω(t) = [εω1(t)T, …, εωN(t)T] 

 nN and ( )t  1[ ( ) , , ( ) ] .T T T nN
Nt t    

Similarly, the reference model in (5) can be transformed 
into a linear spatial state space reference model as follows: 

 2 2( )  ( ) ( ) ( ) ( ) ( )r r r r r r r rd t A t D t V t r t O dt          

(27) 

where 1( ) [ ( ) , , ( ) ]T T T nN
r r rNt t t    , rA = (IN  Ar)  nN, 

,1 ,[ , , ]T T T nN nN
r r r NV V V   , ,1[ ,T

r rD D …, , ]T T
r ND  nN×nN, 

r(t) = [r1(t)T, …, rN(t)T]  nN and Or(Δ2) = [Or1(Δ2)T, …, 
OrN(Δ2)T]T  nN. Based on the fuzzy spatial state space 
system in (26) and the linear spatial state space reference mo- 
del in (27), the robust reference tracking control strategy in (6) 
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or the overall robust fuzzy tracking control designed according 
to fuzzy control law in (19) can be represented by the follo- 
wing robust fuzzy tracking control strategy to simplify the de- 
sign procedure: 

     , ,
1 1 1

( ) ( ) ( ) ( ) ( ) ( ( )
L N L

i j i j j r j i i
i j i

u t z t K t t K z t t    
  

    

( ))r t  (28) 

where ,1 , ,[ , ..., , ..., ] np nN
i i i j i NK K K K    is the linear control 

gain to be designed, i.e. only the p  locations of j = 1, 2, …, 
N are selected to locate controllers. 

By substituting the design of the fuzzy tracking controller 
in (28) into the fuzzy spatial state space system in (26) and 
combining with the linear spatial state space reference model 
in (27), the augmented stochastic system in (11) could be mo- 
dified to the following fuzzy augmented system: 

     
1 1

( ) ( ) ( ) ( ) ( ) ( )
L L

i j ij
i j

d t z t z t A t Ev t t dt    
 

   

  ( ) ( ) ( )iA t t d t     (29) 

where     2( ) ( )i iz t I z t   , ( )t = [χr(t)T χ(t)T]T, ( )v t = 
[r(t)T Or(Δ2)T d(t)T O(Δ2)T]T, ( )t = [0 ε(t)T]T, and ( )t = [0 
εω(t)T]T, ( )t = [0 ω(t)T]T. The other notations are defined as 
follows: 

2
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    

Because the spatial state vector is used to represent χ(x, t) 
at all grid points, the spatiotemporal forms of 0 ( ( , )ft TE x t 

( , ))Q x t dxdt and 0 ( ( , ) ( , ))ft TE v x t v x t dxdt  in the two-di- 
mensional H∞ tracking control performance in (12) or (13) can 
be transformed to the temporal forms 2

0 ( ( ) ( ))ft TE t Q t dt  
and 2

0 ( ( ) ( ))ft TE v t v t dt  , respectively. In this situation, the 
Lyapunov function ( ( , 0))E V x dx in (14) can also be 
transformed to   2(0)EV   , where   1( ) ( ( ))N

j jV t V t   . 
The two-dimensional H∞ tracking control performance in (12) 
is therefore equivalent to the following inequality: 

 
 

 
 

2

20 0

2

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f f

f f

t t
T T

t t
T T

E t Q t dt E t Q t dt

E v t v t dt E v t v t dt

   



 



 

 
(30) 

where the weighting matrices Q = Q  IN. If the initial condi- 

tion is set as (0) 0  , i.e. there exists some positive function 

 (0)V  , then the H∞ reference tracking performance in (14) 
can also be represented by the following inequality:  

     2

0 0
( ) ( ) (0) ( ) ( )

f ft t
T TE t Q t dt EV E v t v t dt       (31)

To solve the H∞ reference tracking problem in (31), let 
us choose a Lyapunov function:  

( ( )) ( ) ( ) 0TV t t P t     (32) 

where 0TP P  . Because the Lyapunov function is of the 
form   1( ) ( ( ))N

j jV t V t    in the finite difference system, 
we can define it for the augmented system of the j-th fuzzy 
finite difference system in (24) and the j-th reference finite di- 
fference system as follows: 

    , 11, 12, ,

,
12, 11,

( ) ( )
( ) ( ), ( ) ,

( ) ( )

T

r j j j r j

j r j j
j j j j

t P P t
V t V t t

t P P t

 
  

 

     
       

     
1, ,j N 

The following form for the matrix P  can therefore easily 
be obtained for the Lyapunov function in (32) as: 

11 12

12 11

0
P P

P
P P

 
  

 
 (33) 

where P11 = diag(P11,1, …, P11,N)  nN  nN and P12 = diag 
(P12,1, …, P12,N)  nN  nN. If there exist some Lyapunov 
functions such as (32), then based on the positive matrix P in 
(33), we can obtain the following sufficient conditions for the 

H∞ tracking performance in (30) or (31). 

Theorem 2: For the augmented system (29), with a pre- 
scribed disturbance attenuation level ρ in (30), if there exists a 
symmetric, positive definite matrix P  and the control gains 

iK  for fuzzy rules , 1, 2, ,i j L  , such that the following 
matrix inequalities hold: 

   
2

2

0

0

TT T T
ij ij i j

T

A P PA Q A P A PE

E P I

I

   



        
 
 
 

  
 

< 0, i, j = 1, 2, …, L (34) 

where  = [0 δI],  = diag(0, δωI), then (i) the H∞ tracking 
control performance for (31) with disturbance attenuation level 
ρ is guaranteed by the robust fuzzy tracking control strategy 
in (28); and (ii) if the external disturbance ( )v t  0 , then χ(t) 
will asymptotically track χr(t) in probability. 

Proof: See Appendix B. 

We see from ijA , defined for the augmented system in (29), 
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that the control gains K would couple with the Lyapunov ma- 
trix P in the matrix inequality (34) when solving such tracking 
control problems (Chen et al., 2000). In this situation, the ma- 
trix inequality in (34) will be a complex bilinear matrix inequ- 
ality (BMI). Because the BMI problem is non-convex, some 
algorithms for solving local BMI solutions using the augmen- 
ted Lagrangian method (Kocvara and Stingl, 2003) and the ite- 
ration method (Chen et al., 2000; Huang and Nguang, 2006; 
Wu and Li, 2008) have been proposed. However, these algori- 
thms are inefficient for solving BMI problems with multiple 
variables. To reduce the BMI problem in (34) to an LMI pro- 
blem, let us define the following matrix:  

1

11 12 11 12

12 11 12 11

X X P P
X

X X P P


   

    
   

(35) 

The BMI problem in (34) can then be transformed, which resu- 
lts in the following LMI problem. 

Theorem 3: For the augmented system (29), with a pre- 
scribed disturbance attenuation level ρ in (30), if there existse 
a symmetric, positive definite matrix X  and the control gains 

iK  for i, j = 1, 2, …, L, such that the following LMIs hold: 

 

 

1
2

1
2

2

0 0 0

1 0,0 0 0
2

0 0 0

0 0 0

TT T T
ij ij j

i

T

XA A X I XQ X A E X

Q X I

A X X

E I

X I

 

 



     
 
 
 
    
 

 
   

i, 

j = 1, 2, …, L. (36) 

where 1
2

Q = [Q1/2 – Q1/2]  IN and 1 1
2 2

TQ Q Q , then (i) the H∞ 
tracking performance in (31) with a disturbance attenuation 
level ρ is guaranteed by the fuzzy reference tracking control 
strategy in (28); and (ii) χ(t) will asymptotically track χr(t) in 
probability if ( ) 0v t  . 

Proof: See Appendix C. 

Solving the above LMIs, the robust H∞ tracking control 
strategy for nonlinear stochastic biotic-abiotic ecosystems can 
be designed with a prescribed disturbance attenuation level ρ. 
The optimal disturbance attenuation design is to specify trac- 
king control gains jK in (28) such that ρ is as small as possible. 
To achieve the optimal robust H∞ tracking control performan- 
ce, we can solve the following constrained optimisation pro- 
blem: 

0
, 1, ...,
min

jK j L
 


  (37) 

Subject to 0X  , 0Q   and the LMIs in (36). 

The minimum disturbance attenuation level ρ0 can be used 
to measure the optimal robust H∞ tracking control perfor- 
mance. 

The design procedure for robust H∞ tracking controls for 
nonlinear stochastic biotic-abiotic ecosystems can therefore 
be summarised as follows. 

Design procedures: 

Step 1: Given the desired reference model in (5), generate 
the reference output χr(x, t) and a prescribed disturbance atte- 
nuation level ρ. 

Step 2: Select the fuzzy membership functions and fuzzy 
rules to establish the fuzzy stochastic PDEs system in (17) to 
approximate the nonlinear stochastic PDEs system in (4). 

Step 3: Assign values to grid spacing Δ and grid number 
N to construct the fuzzy spatial state space model in (26) and 
(27), and determine the p locations of controllers. 

Step 4: Obtain the control gains jK for j = 1, 2, …, L in 
(28) by solving the LMIs problem in (36) or solving (37) for 
the optimal robust H∞ tracking control performance. 

Step 5: Construct a fuzzy reference tracking control strate- 
gy in (28) to control the ecosystem in (4) and track the desired 
reference model in (5). 

4. Computer Simulation and Results

To evaluate the performance of the proposed robust fuzzy 
tracking control for nonlinear stochastic biotic-abiotic ecosys- 
tems, the following nonlinear biomass-nutrient ecosystem 
(Klausmeier, 1999; Tilman et al., 2002) with stochastic para- 
metric fluctuation and environmental disturbance is given as 
an example: 
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    

(38) 

In the above nonlinear stochastic PDEs system, m(x, t) de- 
notes mineral nutrient concentration; b(x, t) denotes plant bio- 
mass density; W denotes basic nutrient supply; L denotes nu- 
trient loss; R denotes nutrient uptake by biomass; J denotes 
biomass yield; and M denotes biomass mortality. The stochas- 
tic parametric fluctuations can be separated into deterministic 
and random parts, where W , L , R , J and M are the stan- 
dard deviations of parametric fluctuations, and n(x, t) is stan- 
dard white noise with zero mean and unit variance. The terms 
dm(x, t) and db(x, t) denote environmental disturbances due to 
rainfall variability, droughts, pest outbreaks or infectious disea- 
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ses. In this case, nutrient flows with speed v1 and diffusion rate 
d1, and biomass dispersal is modelled by a diffusion term with 
diffusion coefficient d2.  

For NRM, a control input u(x, t) = [um(x, t) ub(x, t)]T is in- 
troduced to regulate the biomass-nutrient ecosystem in (38), 
where um(x, t) denotes nutrient pumps or conduits to regulate 
nutrient supply, and ub(x, t) denotes chemical pesticides or her- 
bivore exclosures to regulate biomass production. By using a 
set of control devices set up at p points, the ecosystem in (38) 
can be represented as the following Ito stochastic system: 

1
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( , ) 0

( , )
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(39) 

In this case, the values of system parameters are given in 
Table 2 (Tilman et al. 2002), W = 0.1W, L = 0.1L, R = 0.1R, 
J = 0.1J, and M = 0.1M. The initial value is given as [m(x, 0) 
b(x, 0)]T = [4 10]T and the Dirichlet boundary condition is 
given as [m(x, t) b(x, t)]T = [0 0]T at boundary . 

To verify the performance of the robust fuzzy tracking 
control, we use a prescribed reference model based on human 
demand. The transient response and steady state of the refe- 
rence model is specified by setting Ar and r(x, t), respectively, 
to determine the prescribed trajectory behaviour of the biomass- 
nutrient ecosystem. In this case, to control the nonlinear bio- 
mass-nutrient ecosystem and let its spatial distribution appear 
a prescribed time dynamic, the following reference model is 
used: 
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(40) 

In other words, by using the robust fuzzy tracking control, 
the trajectory of the nonlinear stochastic biomass-nutrient eco- 
system can achieve a default spatial distribution according to 
the above prescribed reference model. In this case, the tracking 
controls u(x, t) set up at p points are also used to attenuate the 
effects of uncertainties on the tracking error χ(x, t) – χr(x, t) be- 
low a prescribed attenuation level ρ, or to obtain the optimal 
robust H∞ tracking control performance ρ0.  

For the purpose of designing a robust reference tracking 

control using a set of p controllers, the spatial domain Ω = [0, 
1] × [0, 1] is divided into 6 × 6 grid points with Dirichlet boun- 
dary conditions, so that the grid spacing Δ is 0.2. The ecosystem 
can then be represented as a fuzzy spatial state space model 
using four T-S fuzzy rules and 36 finite difference grid points. 
The parameters Ai and Ai can easily be identified using the 
fuzzy toolbox in Matlab, based on the triangular fuzzy mem- 
bership function, which is shown as:  

1 2 3

 -1.8500   -0.3681  -4.1557   -0.3780
, ,

  6.9565  1.2624 20.8449    1.8135
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   
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,
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A

   
   

   

We can calculate the bounds of the fuzzy approximation 
errors as  = 0.3219 and  = 0.0322, according to the defini- 
tion in (18) and Assumption 1. By solving the LMIs-constrained 
problem in (36), we can calculate the control gains jK for di- 
fferent distribution control strategies. To investigate the robust 
tracking performance of different control strategies, we use 
three examples of distribution control strategies (Figure 6). In 
Case 1, the all-points distribution control, the control devices 
were set up at all interior grid points. In Case 2, the gap-points 
distribution control, half the number of control devices was 
set up, and they were placed at non-adjacent interior grid 
points. In Case 3, the column-points distribution control, half 
the number of control devices was set up, and they were placed 
in non-adjacent columns of interior grid points. The three opti- 
mal H∞ robust tracking control performance ρ0 as shown in 
Figure 6 can thus be obtained by solving the optimal robust 
tracking control problem in (37) for each case. These control 
strategies utilising different arrangements and numbers of 
control devices may then be compared. 

Table 2. Interpretation of Symbols and Parameter Values Used 
(Tilman et al., 2002) 

Symbols Interpretation Value 

L nutrient lost 0.72 

R nutrient uptake by biomass 1 

J yield of biomass 6.10 

W basic nutrient supply 0.72 

M biomass mortality 5.14 

v1 nutrient flow -1.315 

d1 nutrient dispersal 1 

d2 biomass dispersal 2 

The simulation results show that the ecosystem can be ro- 
bustly controlled by the finite control devices to track a pre- 
scribed reference system dynamic (Figures 3 to 5) with an opti- 
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mal disturbance attenuation level ρ0. This efficiently attenua- 
tes the effects of random parameter fluctuations, environmen- 
tal noise and truncation errors. Managers can therefore manage 
natural resources in the field according to their needs using a 
set of controllers placed at a limited number of points, using 
the proposed tracking control strategy. Ecological patterns can 
also be adjusted as desired, regardless of the effects of advec- 
tion, diffusion or external disturbances. The current distribution 
of natural resources, dictated by slope, plant tropism or animal 
taxis, random movement or environmental change, can there- 
fore be overridden in this controlled ecosystem. The different 
distribution control strategies yielded the following robust trac- 
king results to efficiently attenuate the effect of stochastic dis- 
turbances on the desired reference tracking: in Case 1, 2

0 = 
20.0153 , in Case 2, 2 2

0 0.0173  , and in Case 3, 2
0 = 0.04292 

(Figure 6). The optimal H∞ robust tracking control performan- 
ce ρ0 is therefore affected by both the number and arrange- 
ment of control devices. Under an acceptable tracking control 
performance, managers can control nutrient supply and bio- 
mass production via a set of control devices arranged according 
to the real constraints. These results are conservative, due to 
the conservative way in which we solved LMIs in the robust 
reference tracking control design, but the method nonetheless 
has many advantages, such as intuitive and easy implementa- 
tion, practical use, and applicability to many different biophy- 
sical PDEs systems. 

5. Discussion and Conclusions

In recent years, sustainable development has received in- 

creasing attention from scientific workers, governments and 
policy-makers around the world. Related studies are dedicated 
to preventing ecosystem degradation or managing agricultural 
production. In preventing ecosystem degradation, analyzing 
ecological data could help people access critical ecological in- 
formation, e.g., wetland water quality, therefore people could 
introduce flow regulation to recharge the drying wetland for 
maintaining ecological balance, or change the land use pattern 
to reduce pollution for improving reservoir water quality (Chen 
et al., 2013; Recknagel, 2013; Yang and Chen, 2013). In mana- 
ging agricultural production, a conservative planning scheme 
that could allow specific system violation has been proposed 
to solve the water quality management problem (Xu and Qin, 
2013). Previous works have proposed helpful methods to regu- 
late ecosystems, but none of them talking about regulating the 
ecosystem according to predetermined dynamic behaviours. 
With the population increasing, issues related to food security 
become increasingly severe especially in tropical developing 
countries. Thus managing the agricultural production for satis- 
fying human demands (i.e., the projected human population) 
via efficient nutrient supply and pest control is important and 
urgent. In this study, we devote to developing the natural re- 
source management for natural ecosystems and agricultural 
ecosystems via model reference tracking control design. Since 
the crop yields may be affected by individual differences and 
climate changes, managing the crop yield for achieving a de- 
sired amount needs to regulate a biomass-nutrient ecosystem 
under the influence of random intrinsic fluctuations and uncer- 
tain external disturbances. Because the statistical properties of 
environmental disturbances and artificial reference signals are  

Figure 3. The spatiotemporal profiles of the optimal robust H∞ tracking control of the nonlinear stochastic 
nutrient-biomass system in (39) with control device distribution arrangement in Case 1 of Figure 6. 
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mostly unknown in reality, we propose a robust H∞ tracking 
control to ensure that the control strategy is effective and that 
the desired yield is achieved, irrespective of these intrinsic 
and external uncertainties.  

Most analyses and manipulations of ecosystems are con- 
ducted in homogeneous conditions, either in highly artificial 
environments or in the field. However, in real ecosystems na- 
tural resources are always spatially and temporally heteroge- 
neous. We develop a robust reference tracking control strategy 
for heterogeneously distributed natural resources (water or cro- 
ps) that have additional complexities for shaping the spatiote- 
mporal distribution, and attempt to eliminate the effects of ran- 
dom intrinsic fluctuation and uncertain external disturbance 
on reference tracking. To design the robust reference tracking 
control strategy of a nonlinear stochastic PDEs system, it is ne- 
cessary to solve a complex HJII, which is difficult to do analy- 
tically or numerically. Even if the HJII can be solved, it is im- 
possible to implement this control method in the real world as 
this would require an infinite number of control devices to re- 
gulate the PDEs system, placed at all grid points of the global 
space domain simultaneously. A more feasible method is to re- 
gulate the PDEs system via a limited set of controllers placed 
at a selection of locations subject to environmental noise and 
system fluctuations. We combine fuzzy interpolation and finite 
difference schemes to approximate a nonlinear stochastic PDEs 
system. We then design a robust fuzzy tracking control based 
on this fuzzy spatial state space model, subject to unpredictable 
intrinsic and external disturbances and approximation errors. 

With this control design procedure, the HJII can be transformed 
into an efficiently solvable LMIs problem. Based on this ro- 
bust fuzzy tracking control design, the heterogeneous spatio- 
temporal distribution of natural resources, caused by factors 
such as stochastic disturbances, slope gradients, nutrient con- 
centrations and species dispersal, can be adjusted to manage 
agricultural production, ecological conservation or ecosystem 
protection in the real world. Indeed, if the appropriate set of 
control devices exists, this method could be applied to almost 
any PDEs system. 

This study demonstrates that ecological patterns in plant 
biomass distribution induced by environmental noise (spatio- 
temporal variation in nutrients, soil moisture and surface wa- 
ter) or spatial dynamics (diffusion, overland flow and root up- 
take) can be regulated to achieve a desired pattern using a limi- 
ted set of control devices over the area being managed. If the 
effects of system spatial dynamics are uniform over each unit 
grid space, then control efforts via the limited set of control 
devices can be distributed over all the grid space to achieve a 
robust H∞ tracking control performance despite the effects of 
intrinsic parameter fluctuations and environmental disturban- 
ces. Our results show that tracking control performance increa- 
ses with number of control devices but is also affected by spa- 
tial arrangement of devices. We can therefore use this method 
(subject to some restrictions) to determine the optimal number 
and arrangement of the control devices to achieve a prescribed 
tracking performance. This will be explored in future studies. 
This robust control strategy depends on the specified system 

Figure 4. The spatiotemporal profiles of the optimal robust H∞ tracking control of the nonlinear stochastic nutrient-biomass 
system in (39) with control device distribution arrangement in Case 2 of Figure 6. 
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spatial dynamics, i.e. the diffusion and advection terms. These 
terms determine to what extent control interventions affect ad- 
jacent grid units, and therefore may limit the freedom of con- 
trol design if diffusivity D and velocity V are weak. In future 
work, these spatial dynamics of an ecosystem may be inclu- 
ded in the control design as follows:  1( , ) ( , )u x t K x t  +

 2 ( , )K x t   2
2 ( , )K x t  . In this way, the control stra- 

tegy enhances not only the effects of the control intervention 
at control device locations but also the diffusion and advection 
of these effects into adjacent grid units. This may improve the 
efficiency of control interventions across the whole system. 
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Appendix 

Before the proof of Theorem 1, the following lemma is 
necessary. 

Lemma A: For all vectors X and Y with appropriate di- 
mensions, the following inequality always holds XTY + YTX ≤ 

(1/ )T TX X Y Y  for any positive scalar value 0  . 

A. Proof of Theorem 1 

(i) Based on the augmented system in (11), let us denote 
a Lyapunov function  ( , ) 0V x t  . From (12) or (13), we 
get: 

   
0

( , ) ( , ) ( ,0)
ft

TE x t Q x t dxdt E V x dx  
 

   

   
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( , )
( , ) ( , ) ( , )
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T

f

dV x t
E V x t dx E x t Q x t dxdt

dt
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  
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f
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t

T V x t
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x t
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      

  

    
 2

2

( , )1
( , ) ( , ) ( , )

2 ( , )

T V x t
F x t Ev x t F x t

x t



 



 
   

 

 ( , )F x t dxdt 

(by the fact that  ( , ) 0fE V x t dx


 , ( ) 0Edw t   and Ito 
formula (Øksendal, 2003)) 

 
 

0

( , )
( ,0) ( , ) ( , )

( , )

f

T
t

T V x t
E V x dx E x t Q x t
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(by Lemma A with 2  )

Figure 5. The spatiotemporal profiles of the optimal robust H∞ tracking control of the nonlinear stochastic nutrient-biomass 
system in (39) with control device distribution arrangement in Case 3 of Figure 6. 
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Suppose: 

 
  2

( , ) 1
( , ) ( , ) ( , )

( , ) 4

T

T V x t
x t Q x t F x t

x t
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holds, then we have the following inequality: 

   
0

( , ) ( , ) ( ,0)
ft

TE x t Q x t dxdt E V x dx  
 

   

 2

0
( , ) ( , )

ft
TE v x t v x t dxdt

 

Therefore, if the inequality in (15) holds, then the robust 
H∞ tracking control performance in (14) could be guaranteed. 
If ( ,0)x , then  ( ,0) 0V x   and the H∞ reference trac- 
king performance in (13) holds. 

(ii) If ( , ) 0,v x t  then 0 ( ( , ) ( , ))ft TE x t Q x t dxdt   ≤ 
( ( ,0))E V x dx . Since the ( ( ,0))E V x dx is a finite value, 

as ft  , ( , ) ( , ) ( , )rx t x t x t    should asymptotically ap- 
proach 0 in probability. 

B. Proof of Theorem 2 

(i) Based on the augmented system in (29), let us denote 
a Lyapunov function  ( ) ( ) ( ) 0TV t t P t     as shown in 
(32). Thus, from (30), we get: 
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(by the fact that  ( ) 0fEV t   and Ito formula (Øksendal, 
2003)) 
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Figure 6. The optimal robust H∞ tracking control performance of three different distribution control strategies in 
2-D domain (6 × 6). 
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Because by Lemma A and Assumption 1, we have: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )T T T TP t P t t PP tt t t t         

( )( )T T tt   ( )( )T PP tt   

   ( ) ( ) ( ) ( ) 2( ( ) ( )T T T T T
i j i jt A t P A t t t A PA t            

( ) ( ))T Tt P t     

where  0 I  , (0, )diag I   . 

Suppose: 

   2
TT T
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0TPEE P
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or the equivalent matrix inequalities 
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hold, we have the following inequality: 
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f fT
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Therefore, if the inequality in (35) holds, then the H∞ 
reference tracking performance in (32) could be guaranteed. 
If (0) 0  , then the H∞ reference tracking performance in 
(31) holds. 

(ii) The proof is the same as that in Theorem 1. 

C. Proof of Theorem 3. 

(i) The fact that the inequality in (36) implies the inequa- 
lity in (34) is proven in the following.  

By Schur complement (Boyd et al., 1994), the inequality 
in (34) is equivalent to:  
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By pro- and post-multiplying X  on the above inequality, we 

can obtain the following result: 
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
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By Schur’s complement (Boyd et al., 1994), we obtain follo- 
wing LMIs: 
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    
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Using the results, i.e. the inequality in (36) implies the in- 
equality in (34), we can get that Theorem 3 implies the Theo- 
rem 2, i.e. if the inequality in (36) holds then the H∞ reference 
tracking control performance in (31) can be guaranteed by the 
fuzzy tracking controller in (28). 

(ii) The proof is the same as the proof in Theorem 1. 
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