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ABSTRACT. Grass strips are known as one of the most effective management practices in controlling sediment loss to rivers and 
other surface water bodies. Some physically-based models have been previously developed to predict the amount of sediment retention 
in grass strips. Although physically-based models can explain the effects and interactions of various factors, they tend to be 
sophisticated as they require a large amount of input data. A nonparametric supervised learning statistical model was developed to 
predict the efficiency of grass strips in trapping sediments. Grass type and density, inflow sediment particle size distribution, slope 
steepness, length of strip, and the antecedent soil moisture were the five major factors on which the statistical model was built. The 
model was assessed by comparing with an independent dataset. Estimated bias, coefficient of model efficiency, mean absolute 
percentage error, Pearson product-moment correlation coefficient of the model were 1.01, 0.54, 18.1and 76% respectively. Testing the 
model predictions, permuting the input data, showed that inflow sediment particle size distribution, length of the buffer strip, and the 
antecedent soil moisture are the most important factors upon the performance of grass strips in trapping sediments. From the model 
outputs for a range of likely scenarios it was concluded that very long strips are needed in extreme conditions such as steep slopes, wet 
soil and sparse grass strips in order to trap sediments effectively. 
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1. Introduction  

One of the commonly used BMPs (best management pra- 
ctices) to reduce the amount of sediment and other pollutants 
in aquatic systems is grass buffer strips. These are narrow str- 
ips of grass or other dense vegetation on sloping agricul tural 
lands in estuaries, riparian zones or located around the lakes 
and freshwaters to protect these surface water bodies. The 
grass buffer strips bring about changes in hydrology and 
hydraulics of the water flow that makes these strips effective 
in reducing sediment delivery. Resistance to the flow and high 
infiltration are the two main hydrological effects occurring in 
the presence of grass buffer strips. 

High hydraulic roughness of the vegetated strips effec- 
tively decreases the runoff velocity (Borin et al., 2005; Deletic 
and Fletcher, 2006; Le Bissonnais et al., 2004). Increased hy- 
draulic roughness by the vegetative zone is a main process 
which makes grass strips effective in removing sediment and 
associate pollutants, through decreasing the flow velocity and 
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allowing more time to sediments to settle. The hydraulic rou- 
ghness is higher in stiff and erect species than more flexible 
and less dense types. Dense strips also produce higher resis- 
tance to surface flow than sparse ones. 

Previous research shows that vegetative strips can signifi- 
cantly increase the infiltration rate of the soil. Shrestha et al. 
(2005) observed that the vertical hydraulic conductivity of 
soil increases dramatically with vegetation. Schmitt et al. 
(1999) found that doubling the width of a grass buffer strip 
doubles the infiltration rate. The infiltration rate is highly re- 
lated to the vegetation type as the cumulative infiltration un- 
der switch grass is significantly higher than under pasture and 
is more effective in reducing the amount of fine particles in 
the outflow (Bharati et al., 2002; Blanco-Canqui et al., 2004). 

If a grass strip is not submerged, it can efficiently remove 
inflow sediment. Whilst the efficiency of vegetative buffer st- 
rips in removing sediment can be considerable, they are much 
less effective in removing particulate or sediment-associated 
nutrients as they are mostly attached to fine particles (Mc- 
Kergow et al., 2004). Dillaha et al. (1989) found that the ef- 
fectivness of vegetated buffer strips reduces with time, due to 
sediment deposition, while Hussein et al. (2007a) observerd 
that the outflow sediment concentration is reasonably constant 
during runoff events. This difference is likely a result of whe- 
ther the main area of deposition is upstream the grass strips or 
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within them. 

There have been several fields as well as controlled stu- 
dies to assess the effect of vegetation on reducing nutrients 
and sediment transport over the landscape and sediment and 
pollutants delivery to aquatic systems. Controlled condition or 
flume studies have been conducted mostly to provide an un- 
dertanding of the effectiveness of different factors in vege- 
tated buffer strips performance in controlled environments 
(Ghadiri et al., 2001; Hussein et al., 2007a, b; Meyer et al., 
1995). Field experiments have been carried out to assess the 
effectiveness of vegetated buffer strips under natural condi- 
tions but with less control over interfering factors (Daniels 
and Gilliam, 1996; Ghadiri et al., 2011; Magette et al., 1989; 
Parsons et al., 1994; Robinson et al., 1996).  

A few physically-based models have been developed to 
predict the efficiency of vegetated buffer strips in sediment re- 
moval (Deletic, 2001b; Hussein et al., 2007b; Munoz-Carpena 
et al., 1999; Newham et al., 2005). Some currently available 
models are not completely process-based and their sediment 
transport and deposition sub-models are not very well valida- 
ted (Munoz-Carpena et al., 1999; Newham et al., 2007). Some 
of the existing models neglect one of the two major zones of 
“upstream” or “within the grass strips” in their assumptions 
(Deletic, 2001b; Hussein et al., 2007b). The existing models 
are limited to some specific conditions or cannot accurately 
predict the efficiency of grass strips in removing sediments.  

This paper presents a new modelling approach to predict 
the efficiency of grass buffer strips in removing sediment un- 
der different conditions. The statistical modelling approach 
presented in this paper is easy to use, physically sensible and 
accurately predicts the efficiency of grass strips in removing 
sediment.  

This model is based on bagged ensemble statistical appr- 
oach which is a supervised learning technique that has receiv- 
ed considerable attention and has been used successfully for 
modelling purposes in various scientific fields. The results can 
be significantly accurate, physically meaningful, and models 
are improvable over time by adding new experimental data to 
datasets the model is built on.  

This paper will scrutinize the most effective factors in 
grass strips performance by considering physical processes as 
well as experimental observations. The objectives of this pa- 
per include (i) review previous lab and field studies, and com- 
pile a comprehensive dataset on sediment trap efficiency; (ii) 
develop and apply new statistical models to predict the trap- 
ping efficiency of grass buffer strips; (iii) test and validate the 
new model in terms of accuracy and whether the results make 
any physical sense; and (iv) use the model to describe the 
structure and functionality of grass strips in removing sedi- 
ment in different conditions. 

2. Literature Review of Performance of Grass 
Buffer Strips 

The performance of vegetated strips is reported in this 
paper by using the concept of efficiency, defined as: 

( )
(%) 100i o

i

MS MS
Eff

MS

−= ×  (1) 

 
where Eff is the vegetated strip efficiency in trapping 
sediment, MSi is the total mass of sediment entering the strip, 
and MSo is the total mass of sediment leaving the grass strip. 
In some studies (Ghadiri et al., 2001; Hussein et al., 2007a, b; 
Loch et al., 1999; Meyer et al., 1995; Munoz-Carpena et al., 
1999), the effectiveness of grass strips in reducing the sedi- 
ment concentration has been introduced as the index of effi- 
ciency of vegetative buffer strips. Most of these studies are 
carried out in controlled conditions on impermeable surfaces. 
As field experiments indicate that infiltration can be as impor- 
tant as vegetation resistance to surface flow and sediment tra- 
pping, comparing the inflow and outflow concentrations is not 
a reliable indicator of the buffer strips’ performance.  

Some mathematical models also consider concentration 
as the index of efficiency rather than mass. Experimental re- 
sults, however, show that even in strips where the outflow 
sediment concentration is higher than that in the inflow, there 
is noticeable reduction in mass delivery of sediment and bu- 
ffer strips can still be effective (Schoonover et al., 2006). 

 

2.1. Area of Deposition 

The place of sediment deposition is mostly related to slo- 
pe, vegetation type and density, and inflow sediment particle 
size distribution. 

In several studies considerable deposition has been occu- 
rred just in the backwater region upstream of the grass strips 
(Blanco-Canqui et al., 2004; Dillaha et al., 1989; Hussein et 
al., 2006; McGregor et al.,1999; Meyer et al.,1995). The ba- 
ckwater region is the area upstream of grass strips where flow 
depth is increased due to high resistance the vegetation culms 
and leaves produce to the flow. This makes the flow velocity 
decrease, so providing more chance for sediment particles to 
deposit if their settling velocity is high enough. In all studies 
for which most deposition occurred in the backwater region, 
the slope was less than 12% and vegetation was very dense 
and stiff, situations which will be referred to as “hedge strips”. 
A high ratio of coarse particles in the inflow resulted in more 
deposition in the backwater region as resistance was the domi- 
nant factor rather than infiltration. The experimental data re- 
viewed showed that resistive force offered by the hedge strips 
reduces the concentration of the sediment while infiltration 
reduces only the mass. 

For high slopes where it is not possible to have an ef- 
fective backwater length and depth in the upstream area, the 
area of deposition is shifted into the buffer (Hall et al., 1983; 
Patty et al., 1997; Robinson et al., 1996). The length and dep- 
th of backwater for the same flow rate and vegetation type and 
density changes substantially with slope. Therefore, it is al- 
most impossible to have sediment trapping upstream of the gr- 
ass buffer strips in slopes more than 12% (Ghadiri et al., 2001; 
Hussein et al., 2007b). 

Data from the literature show that as the stiffness and 
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density of vegetation decreases the amount of sediment depo- 
sition within (rather than upslope) the buffer strips increases 
(Blanco-Canqui et al., 2004). This occurs because of reduced 
turbulence, shorter backwater, lower actual velocity and less 
friction slope and greater effectiveness of infiltration.  

In less dense or stiff vegetation types, the backwater 
length is shorter and the depth lower in comparison to hedge 
strips. Therefore, lower amounts of sediment are trapped in 
the upstream region, and deposition within the grass strip is 
dominant. 

Data from the literature show that the amount of se- 
diment deposition in the backwater area is higher than that 
within the grass strip of the same length (Pan et al., 2010). 
Four major reasons can be enumerated for this: 1. The actual 
velocity is much higher within the strips comparing to the 
backwater as a large area of the flow cross section is barred 
by grass stems and leaves; 2. Most of the coarse particles have 
settled upstream, and the inflow through the strips is less con- 
centrated; 3. Turbulence is high within the grass strips; 4. The 
friction slope is high and does not allow particles to settle. 

Vegetation resistance to the flow can significantly reduce 
the flow velocity and subsequently provide coarser particles 
an opportunity to settle upstream the grass strips. As the sett- 
ling velocity of fine particles is low, the high infiltration wi- 
thin the grass strips becomes the major factor in trapping fine 
and suspended sediments.  

In low slopes, regardless of the different factors involved 
in different studies, the main area of deposition associated 
with hedgestrips is found to be in the backwater region up- 
stream the strip (Blanco-Canqui et al., 2004; Hussein et al., 20 
07a; Meyer et al., 1995). Sediment trapping occurs more or 
less equally upstream and within dense, but less stiff grass 
species (Dillaha et al., 1989; Ghadiri et al., 2011; Loch et al., 
1999). In sparse and limber grass strips, due to low resistance, 
no significant backwater forms upstream and deposition oc- 
curs within the buffer strips (Arora et al., 1996; McKergow et 
al., 2004; Young et al., 1980). 

The shear stress within the grass buffer can be high. 
According to Hairsine and Rose (1992) the rate of entrain- 
ment and re-entrainment are related to the rate of energy 
expenditure of the flow known as stream power. According to 
Knighton (1999), stream power is equal to: 

 
Ω = ρqSfg (2) 
 
where ρ is the density of water, q is the unit discharge, Sf is the 
friction slope, and g is acceleration due to gravity. As the ef- 
fective flow width is reducedin grass strips, the actual unit 
discharge, hence the stream power, would be higher in dense 
grass strips. 

As in many case studies the length of hedge strips is short 
the length of the decay curve, which is the place that water 
surface profile tends to decrease to the level of the exit point 
of the buffer, can be close to the strips length. Therefore the 
friction slope in narrow strips is higher than the bed slope, 

which produces more pronounced stream power in this region 
(Ghadiri et al., 2001; Hussein et al., 2007a; Raffaelle et al., 
1997; Rankins and Shaw, 2001). Erosion has been observed in 
narrow dense grass strips by Ghadiri et al. (2001), this being 
due to a high energy slope within the narrow strip. 

 

2.2. Flow Rate 

The effect of flow rate on erosion and deposition pro- 
cesses is twofold. For any given grass strip, higher flow rates 
produce longerbackwater lengths, which mean that there wou- 
ld be more room available for sediments to deposit in the up- 
stream zone. However, according to the vertical velocity dis- 
tribution of a sheet flow, velocity is a minimum in the bottom 
and maximum in the top of the water profile. This means that 
as flow rate increases the average velocity grows dramatically 
and there will be less chance for sediment particles to settle. 

High flow rates provide less chance for water to infiltrate 
the soil and the rate of runoff reduction is less in higher flow 
rates than low flow rates in same areas. Therefore, there will 
be less sediment trapping due to infiltration within grass strips 
in high flow rates. The other fact is that within low flow rates, 
finer rather than coarser particles would be eroded in signifi- 
cantly higher rate due to preferential detachment.  

 

2.3. Infiltration and Antecedent Soil Moisture 

Infiltration is one of the two major components in trap- 
ping sediment in vegetative buffer strips. The overall experi- 
mental results show that the runoff reduction is higher in older, 
stiffer, and denser grass strips comparing to sparse and limber 
ones (Blanco-Canqui et al., 2004; Le Bissonnais et al., 2004; 
McKergow et al., 2004; Patty et al., 1997; Rankins and Shaw, 
2001; Schmitt et al., 1999; VanDijk et al., 1996; Young et al., 
1980). 

Comparing the results of experimentswhere the only ch- 
anging variable was the antecedent soil moisture shows signi- 
ficant reduction of the efficiency in wet soils comparing to 
dry soils. Results from Young et al. (1980), Dillaha et al. (19 
89), and Magette et al. (1989) show that the efficiency of 
grass strips in removing sediment is 15 to 40% higher in dry 
soils comparing to wet soils in the same areas.  

In the experiments of Arora et al. (1996) the downstream 
edge of the source area plot was higher than the upstream 
edge of the vegetative buffer strips, therefore no backwater 
formed. As all sediment retention occurred within the grass 
strips, therefore infiltration was the key factor in removing 
sediment. Sediment removal was considerably higher while 
the antecedent soil moisture was low, and lower when the soil 
was wet.  

 

2.4. Slope Steepness 

Increasing the slope lowers the backwater length and 
experiments show that no effective backwater occurs when 
slope is more than 12% in most natural conditions. The nega- 
tive influence of high slopeon sediment removal can be am- 
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ended partially by increasing the length of strip. The flow 
velocity is directly correlated with slope, and longer distance 
within steep strips is needed for sediments to deposit com- 
pared to the same conditions in planar areas. Also, as the wa- 
ter flows with higher velocity, the water and soil contact 
within the grass strips is of shorter duration, and therefore less 
water infiltrates soil comparing to steeper areas of same 
conditions. 

The results of VanDijk et al. (1996) confirm the above 
arguments that unless the slope is high and no backwater 
forms upstream, the deposition takes place within the buffer 
strips, and the efficiency is considerably higher in longer stri- 
ps. Parsons et al. (1994) results also confirm that in low slopes 
the effect of buffer length on the efficiency is low, but as the 
slope increases, the efficiency is much higher in longer buf- 
fers.  

The concept of efficiency (Equation 1) cannot perfectly 
describe the performance of grass strips, as in many experi- 
ments such as Daniels and Gilliam (1996), Loch et al. (1999), 
and Ghadiri et al. (2001) the trapping efficiency was higher in 
steeper lands, due to higher erosion happening in the upstream 
area containing more coarse fractions due to preferential deta- 
chment. In the experiments where slope was the only variable 
and sediment delivery into buffers was constant, the efficien- 
cy of vegetated buffers decreased as slope increased (Deletic, 
2005; Hussein et al., 2007a). Overall, sediment delivery is sig- 
nificantly less in lands of lower slope. 

 

2.5. Plant Type and Density 

The density of vegetation affects the performance of gra- 
ss strips in removing sediment. Hedge strips produce longer 
and deeper backwater upstream of the hedges. This is a place 
that most of the deposition occurs in these types of grass strips 
(Blanco-Canqui et al., 2004; Dabney et al., 1995; Ghadiri et 
al., 2001; Hussein et al., 2007a, b; Meyer et al., 1995). Alth- 
ough the long and deep backwater profiles can trap a high 
ratio of incoming sediment, this only occur in low slopes. The 
results from Akram et al. (2014) shows although the back- 
water area upstream narrow hedge strips can trap a large 
fraction of incoming sediment in low slopes, the friction slope 
is high within narrow hedges and sediment deposition is less 
likely to occur within the hedges comparing to the upstream 
section. Filtering or deposition within the strips has been ob- 
served to be greater in still dense but less resistive grass than 
in previously mentioned hedge barrier strips. 

Hedgetype strips are more effective in dispersing rill fl- 
ows and decreasing rill erosion hazards. The combination of a 
narrow, old and dense hedge strip following by long dense 
strips can be very effective in lowering the fine particles loss 
as they need longer distance and less turbulent flow to settle 
(Blanco-Canqui et al., 2004). 

 

2.6. Particle Size Distribution 

Vegetated buffer strips of all types and lengths can trap 
inflows and fractions most effectively (Deletic, 2005; Hook, 

2003; Hussein et al., 2006; Ma et al., 2013). In intense storms, 
the ratio of detachment of coarse particles increases and the 
efficiency of buffer strips soars (Daniels and Gilliam, 1996; 
Parsons et al., 1994; Robinson et al., 1996). On the other hand, 
due to the preferential detachment of fine particles in low 
intensity rainfall events the trapping efficiency is low. There- 
fore the efficiency of grass buffer strips in reducing sediment 
loss can be higher in intense events. 

It is very unlikely to observe vegetated strips of any types 
and lengths reducing the concentration of particles less than 5 
μm in the outflow (Deletic, 2005; Jin and Romkens, 2001). 
However, grass strips can be effective in significantly redu- 
cing the discharging mass of the fine particles if the infil- 
tration within the strips is substantial. As particulate nutrients 
are associated with fine textured particles, the efficiency of 
buffer strips in reducing particulate nutrients loss is less than 
sediment as a whole. Increasingthe length can improve the 
performance of grass strips in reducing the sediment bound 
nutrients loss by increasing the runoff loss. 

3. Data and Methods 

Thirty four field as well as controlled experiments were 
compiled for this paper. The observations, results and experi- 
mental conditions of these studies were used to identify the 
effects and interactions of different factors in vegetative buf- 
fer strips performance in trapping sediments. Two non-para- 
metric supervised learning models were developed using lite- 
rature data of various conditions in order to predict the per- 
formance of vegetative buffer strips of different kinds in sedi- 
ment trapping.  

The factors affecting the performance of grass strips in 
removing sediment are numerous. Based on literature review, 
physical processes and sensitivity analysis of the previously 
developed models (Deletic, 2001a; Munoz-Carpena et al., 19 
99) show that the factors discussed in the previous section are 
the most important ones. In addition, several other factors can 
be important, such as time, flow type, planting slope, rill for- 
mation, cattle trampling, soil compaction (McDowell et al., 20 
03; Meyer et al., 1995; Tadesse and Morgan, 1996). It is not 
possible to consider all these factors in a model developed to 
simulate the physical processes involved. The statistical mo- 
del developed for this paper should be able to simulate and 
predict most probable scenarios using limited data from major 
factors.  

By collecting data from 34 different studies in various 
conditions, and considering grass type, sediment type, strip’s 
length, slope steepness, and antecedent soil moisture as most 
effective factors in grass strips performance in removing 
sediment, two statistical models were developed. Nonpara- 
metric supervised learning (machine learning) methods were 
utilised to build these models. 

Grass type, inflow sediment type, and the antecedent soil 
moisture were categorised as the first two were not continuous 
variables, and accurate measurements had not been carried out 
for the third factor in most studies. The categorisation of these 
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3 major factors is shown in Table 1. Responses were the effi- 
ciency of systems in removing sediment mass. These categori- 
zations considered the major effective factors as spectrums 
and the observed data categories were entered as numerical 
vectors. The dataset collected from research papers is pre- 
sented in the Appendix Table. The x1, x2, ..., x5 were factor 
identifiers which were used further in the regression tree 
model development. As examples, x1 = 2 means that the grass 
strip is dense, and x3 = 5 indicates that the slope steepness is 
5%. Slope steepness and the length of the grass buffer strip 
were continuous factors, whilst the other factors were cate- 
gorised. The observed efficiencies ranged from 7 to 100%.  

Grass types and density is the first categorised factor 
which is split to three categories. Category 1 is for very dense 
and stiff strip types mostly consisted of dense hedges of veti- 
ver and switch grass or similar species. Category 2 consisted 
of dense but less stiff species like fescue, sedge, bermuda 
grass, and similar species. It also includes stiff but less dense 
strips. Category 3 consisted of sparse and limber types like 
sparse meadow strips. Inflow sediment particle size distri- 
bution is categorised based on USDA soil texture triangular. 
The antecedent soil moisture was based on whether the soil 
was saturated, dry or the surface was impermeable at the time 
of the events.  

Two statistical models were developed based on the data 
presented in the Appendix Table. The first one is a non-para 
metric supervised learning “regression tree”, and the second 
one is a nonparametric supervised learning “bagging ensem- 
ble” (Dietterich, 2000). The regression tree was built to clarify 
the effects and importance of every factor in different condi- 
tions. The ensemble model accurately predicts the efficiency 
of grass strips in removing sediment. All data processing and 
model developing were performed using the Statistics toolbox 
in MATLAB software package. 

 

3.1. Regression Tree 

Regression trees are nonlinear predictive models which 
predict the response from various input variables by growing 
a binary tree (Razi and Athappilly, 2005). We choose left or 
right branches of a tree in each node based on the known con- 
ditions, and proceed to reach the outcome. The predicted res- 
ponse can be found by following the decisions from the root 
(starting) node down to a leaf node, which illustrates the out- 
puts of the model. The prediction is indeed the aggregation of 
all the training data points that lead to that leaf. 

A regression tree was developed in order to predict the 

efficiency of grass strips in removing sediment resulted from 
the input data. The regression tree is created by using all input 
data and testing all conceivable binary splits on each factor. 
The procedure used for creating the regression tree is as fo- 
llowing: 

• Testing and trying all possible binary splits on every vari- 
able using all input data. 

• Choosing a split with the best optimisation criterion. The 
mean-square error (MSE) was the criterion and the splits 
with the minimum MSE of predictions compared to the 
training data were chosen. Data used to build models is 
called “training data” and data utilised to test the models is 
called “test data” afterwards. 

• Exert the split. 

• Recursively iterating for the two child nodes. 

Splitting is stopped when there are less than “Minleaf” 
observations in a node, where Minleaf is defined by the user, 
and refers to the minimum number of observations per tree 
leaf. Cross validation accuracy test was calculated for regre- 
ssion trees having different Minleaf numbers to find the opti- 
mum Minleaf value. Figure 1 shows the cross validation MSE 
for different Minleaf values. 

To find the cross validation error, the training data were 
split into ten random parts. Ten new trees were trained, each 
by nine parts of the data. Then the accuracy of the new trees 
was examined by the data that are not part of that training tree. 
As this method tests new trees on new data it assesses the 
precisionof the tree accurately. As Figure 1 shows the Minleaf 

Table 1. Categorising the Major Factors in Grass Buffer Strips Performance 

Category Grass (x1) Sediment (x2)  Slope (x3) Buffer length (x4) Moisture (x5) 

1 Dense hedges Sandy loam Continuous Continuous Dry 

2 Dense grass strips Silt loam (from 1to 16%) (from 0.14 to 27.43 m) Saturated 

3 Sparse strips Clay loam   Impermeable 

4  Silty clay loam    

5  Clay    

 
 

Figure 1. The cross-validated error over minimum leaf 
size of the regression tree. 
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value of 2 yields the least error and this value was set as the 
Minleaf to build the tree. The cross validated MSE of the 
regression tree with Minleaf equal to two was 207.6.  

Resubstitution error has also been calculated for the re- 
gression tree, where this error is the MSE between the obser- 
ved efficiencies of the training data and the tree predictions 
based on the input training data. The predictions of the tree 
are not accurate if the resubstitution error is high, but low re- 
substitution error does not necessarily confirm the significant 
validity of the predictions. The measured resubstitution MSE 
for the regression tree with Minleaf equalto two was 136.5. 
These rates were acceptable values as the range of variation of 
the observed efficiencies was between 7 to 100%, and the sq- 
uared root of the errors were 14.4 and 11.7% for cross- 
validated and resubstitution respectively. 

Although Minleaf equal to two built the most accurate 
tree, the resulted regression tree was very leafy. A leafy tree is 
hard to interpret. Therefore, it was pruned to an appropriate 
level in order to be fitted in this paper. Leafy trees are usually 
accurate just for the training data, not for independent new 
conditions. They tend to overtrain, meaning they estimate the 
outcomes optimistically. The depth of the tree was controlled 
to give simple and accurate result, easy to interpret. 

 

3.2. Ensemble Method 

In supervised learning (Machine learning), “weak learner” 
refers to a model (learner) with high probability of error in 
predictions. Decision trees are classified as weak learners. 
Ensemble methods on the other hand are strong learners com- 
bining results from multitude weak learners (Dietterich, 20 
00). 

An ensemble method was utilised to predict the perform- 
mance of grass buffer strips of different types and in different 
conditions in removing sediments. The results of this model 
as well as the regression tree statistical model were also used 
to interpret the physical processes taking place in different 
conditions. 

An ensemble learning model is the combination of mul- 
tiple weak learners such as regression trees to predict or solve 
complex problems. As the ensembles aggregate the decisions 
made by multiple regression trees, they improve the robust- 
ness of single regression tree models. 

A matrix of input data has to be given to the model based 
on observations. This matrix is the same as the one used to 
build the regression tree and the predictor variable values for 
every event are also given to the model in the same way as for 
the regression tree (Appendix Table). 

An applicable ensemble algorithm had to be chosen for 
creating the ensemble. The ‘bootstrap aggregation’ algorithm 
also called ‘bagging’ was chosen to build the ensemble as it is 
applicable for regression decision trees with more than two 
variables (Breiman, 1996). This algorithm was found to be 
significantly more accurate compared to the other tested al- 
gorithm ‘boosting’. In bagging, boots trapped replicas of the 
training data are providing the diversity of classifiers. This 

means that in each replica, unique training data subsets from 
the entire training dataset are randomly drawn. Each of these 
subsets is used to produce a different classifier which in this 
case is a regression tree. The final decision is made by combi- 
ning the predictions made by single learners by taking a 
simple average from them. 

Bootstrap aggregation trains learners on re-sampled co- 
pies of the data. Re-sampling is done by bootstrapping obser- 
vations, which is choosing n observations from the whole da- 
taset with replacement for every new learner. For increasing 
the accuracy of the bagged trees, every tree within the en- 
semble can randomly choose variables for classification splits. 
The minimal leaf size of the bagged trees was set to five to 
have the high accuracy in the least running time. 

The number of trees used to develop an ensemble has to 
be defined for building the ensemble. The appropriate size for 
an ensemble is one which balances speed and accuracy. It 
takes longer for large ensembles to train and produce pre- 
dictions. The other problem that a large number of trees in an 
ensemble may cause is to make it overtrained and inaccurate. 
The MSE for different number of trees used for preparing the 
ensemble has to be calculated to find the optimum number of 
trees which the ensemble is built with.  

Figure 2 shows the mean square error for different num- 
ber of trees used in developing the bagging ensemble predi- 
ctor. Two different tests have been applied to find the accu- 
racy and quality of the ensemble over the number of trees that 
it is built on. The ensemble is evaluated on ‘out of bag data’ as 
well as ‘cross validation’ tests to find the optimum number of 
trees to develop the ensemble with. 

For the cross validation test a five-fold cross-validated 
bagged ensemble was generated. It means that 80% of the da- 
ta used for training and 20% for testing. The cross-validation 
loss as a function of the number of trees in the ensemble was 
tested and is depicted in Figure 2.  

For finding the quality of the ensemble on out of bag data, 
the loss curve for out of bag estimates was generated and is 
illustrated in Figure 2. An average of 37% of the observations 

 
 

Figure 2. MSE of the ensemble method over different 
number of trees used for ensemble development. 
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is omitted for each regression tree. These are called ‘out of 
bag’ observations. The out of bag prediction is estimated by 
averaging predictions from all trees in the ensemble for every 
observation in the ensemble for which this observation is out 
of bag. The mean square error for a single observation is 
calculated by comparing the predictions and the actual obser- 
ved efficiencies for this observation. The out of bag error is 
determined by comparing the out of bag predictions against 
the actual observations for all observations used for training. 

As Figure 2 shows the errors were roughly constant in 
ensembles developing with more than 50 trees. Three hundred 
trees were used to prepare the ensembleas it has the lowest 
error and the model can be run quickly. 

The ensemble predictions were calculated for a series of 
data sets and results were compared to actual experimental 
observations using different evaluation techniques. Therefore, 
the model was run 30 times, and in each run 80% of the data 
were used for training and the remaining 20% were utilised to 
test the model. The splitting was carried out randomly and the 
split was different for each of the 30 runs. The error estima- 
tions are the average of the values for every model evaluation 
techniques over the 30 runs. 

The ‘Bias’ of themodel was calculated from the model 
predicted efficiencies and the actual observed grass strips 
efficiencies in trapping sediment as: 
 

i

i

M
Bias

O
=


 (3) 

 

where Mi and Oi are modelled and observed efficiencies 
respectively. The Bias criterion shows whether the model 
systematically overestimates or underestimates the trap effi- 
ciency depending on whether the bias is greater or less than 
unity. 

The observed efficiencies of grass strips of different 
conditions were also compared to the model predictions. 
Coefficient of model efficiency Ec (Nash and Sutcliffe, 1970) 
was calculated from the observed and modelled data as: 

2
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


 (4) 

 
where O  is the mean of the observed values. The model 
efficiency measures the level of accordance between the 
modelled and observed values. Ec values of 1 indicate a 
perfect fit, while negative Ec values indicate the model pre- 
dictions are worse than those predicted simply by the average 
observed values. 

In addition, the mean absolute percentage error (MAPE) 
was calculated as: 

( )i i

i

O M
abs

O
MAPE

n

−

=


 (5) 

where n is the number of observations. MAPE qualifies the 
magnitude of error in the modelled values and this measure of 
accuracy is expressed as percentage. MAPE equals to zero 
shows the perfect fit and low MAPE indicates better fit than 
high values.  

The Pearson product-moment correlation coefficient 
(PWM) was the other criterion used for assessing the accuracy 
of model predictions as: 
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PWM is a criterion, expressing the linear correlation be- 

tween observed measurements and modelled outcomes. PWM 
equal to 1 indicates the perfect correlation between observed 
and modelled efficiencies.  

4. Results 

4.1. Nonparametric Supervised Learning Regression Tree 

Figure 3 shows the regression tree built using data shown 
in the Appendix Table. The regression tree presented in Figure 
3 is developed to clarify the effect of different factors on 
sediment removal with grass buffer strips. As regression trees 
are categorised as weak learners, therefore we did not use 
them for predictions. 

The tree predictions can be derived by following the 
decisions from the rootnode down to the leaf nodes. The far 
left side of the tree shows that very high efficiencies in re- 
moving sediment is expected from low slope dry hedge strips 
with lengths more than 5.5 meters. The decision tree shows 
that the sediment trapping efficiency decreases as the inflow 
sediment contains higher portions of fine particles. 

By comparing the leaf nodes which have close strips 
length and slope values, it is concluded that trapping effici- 
ency is significantly less in wet soils comparing to dry soils. 

Significant difference can be observed between the sedi- 
ment trapping efficiency in different grass strip types (x1). 
Hedges can highly trap sediment even in high slopes and 
medium lengths, while sparse strips can trap sediment 
moderately. Grass strips of any kind cannot reduce the amount 
of sediment in the outflow significantly if the moisture con- 
tent of the soil is high and the inflow sediment mostly consis- 
ted of very fine particles. 
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4.2. Nonparametric Supervised Learning Bootstrap 
Aggregation Ensemble Method 

The average values of the Bias, Ec, MAPE, and PWM of 
the model for 30 runs were 1.01, 0.54, 18.1, and 0.76 respecti- 
vely. As 20% of the data which was equal to 40 observations 
was reserved for testing the model and was not used for 
training purposes, it was expected that the model would signi- 
ficantly fit better by adding the remaining 40 split observa- 
tions to the training data. 

To obtain a better understanding of the physical processes, 
the importance of each variable was estimated in the final 
result. The values for every variable were transposed manual- 
ly across the dataset to determine changes in the MSE values. 
The process was repeated for every variable. MATLAB func- 
tions have the capability of conducting this process and store 
the growth in MSE averaged over all tress in the ensemble 
and divided by the standard deviation taken over the trees, for 
every variable. Larger values represent more important varia- 
bles. Figure 4 shows the importance of every variable in the 
ensemble. 

Figure 4 shows that all five considered variables are 
important in grass strips performance in removing sediments. 
Sediment type, length of strips, and the antecedent soil mois- 
ture were the most effective variables. This result is similar to 
findings by Munoz-Carpena et al. (1999) in sensitivity ana- 
lysis of VFSMOD model. Slope was the least effective factor 
and this is likely a result of the limited variation in slope 
among the compiled dataset, from 1 ~ 16% only. 

Figure 5 shows the observed and modelled efficiencies 
for the whole 30 runs which were calculated by splitting 
non-repetitive 20% testing data. 

Figure 5 illustrates the model over-predicts small 
sediment deliveries and under-predicts large sediment deli- 
veries. The subject will be considered further in the discussion 
section. 

New input data not included in model development was 
entered to the ensemble model to evaluate the effectiveness of 
grass buffer strips in various conditions in trapping sediments 
and the results are shown in Table 2. The model predictions 
are also mentioned in this table. 

The results of the critically comprehensive literature re- 
view which considered the physics of the involving processes 
that affect hydraulics and hydrology of the flow, plus the re- 
sults of the regression tree (Figure 3) and the scenarios which 
were run by the bagged ensemble model (Table 2) were used 
to better explain the physics of the occurring processes upstr- 
eam and within grass strips. 

Results of the ensemble model, which are in agreement 
with what have been observed in many studies, show that the 
backwater region is a very important zone for sediment depo- 
sition. The results show that considerable deposition occurs in 
very narrow dense hedges (type 1), where slope is low and 
sediment inflow contains considerable portion of coarse par- 

 
Figure 3. The regression tree of the effectiveness of grass strips in trapping sediment. 

 
Figure 4. The importance of every variable in the ensemble. 
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ticles. This zone has to be considered separately, as the flow 
velocity decreases and particles may have enough opportunity 
to settle. As the infiltration rate is less in the backwater zone 
compared to the grass strip and the length of this zone is short, 
infiltration effects can be neglected in this zone.  

Results of the statistical model show great difference in 
grass strips efficiency in trapping sediment between initially 
dry and wet soils. This shows the importance of infiltration in 
sediment deposition within the grass strips. The literaturere 
view confirms that even very fine particles of soil can be trap- 
ped in grass strips. A number of studies have shown that the 
mass of nutrients associated with sediment decreased in the 
outflow without significant change in the concentration. It can 
be concluded that particles are trapped due to infiltration re- 

gardless of their size. Nevertheless, sediment deposition due 
to immersed weight is considerably less within the strips due 
to high turbulence, high friction slope, and high actual flow 
velocity.  

Illustrations of the conclusions were prepared based on 
physics of the processes involved and the ensemble predic- 
tions for various possible scenarios (Table 2) to show the pro- 
cesses upstream and within grass strips in different condi- 
tions.   

The illustrations (Figure 6) were prepared to show the ef- 
fect and interactions of each of the five major factors, on 
which the model was built. They are based on some of the 
scenarios in Table 2 to compare the efficiencies in different 
conditions. For these figures it was assumed that the water 
flowing toward the grass strip consisted of 4 sand, 4 coarse 
silt, 4 fine silt, and 4 clay particles. It is similar to conditions 
defined in first 18 scenarios in Table 2. Deposited particles 
due to resistive force of the grass to the water flow are shown 
as hollow figures while particles settled due to infiltration are 
filled. The remaining particles in the outflow are shown over 
the water surface in the downstream zone. 

As the infiltration rate is higher within the vegetated area 
compared to the upstream zone in the backwater region, it is 
assumed that the sediment deposition occurs in the backwater 
zone only due to the flow deceleration, and within the strips 
by deceleration as well as high infiltration. Particles settling 
due to flow deceleration are assumed to be less within the 
grass strips compared to the same water depths in the back- 
water zone for reasons given previously. It is also assumed 
that very fine particles only settle due to water infiltration into 

 
Figure 5. The observed and modelled efficiencies for 30 
runs using non-repetitive 20% testing data. 

Table 2. Different Scenarios for Grass Buffer Strips Conditions and the Ensemble Method Predictions 

Scenario 
Category Predicted 

performance (%) Grass type Sediment type Slope (%) Buffer length (m) Antecedent soil moisture 

1 1 3 2 5 1 87.2 
2 1 3 2 5 2 79.3 
3 1 3 2 1 1 80.1 
4 1 3 2 10 1 92.8 
5 1 3 14 5 2 77.9 
6 2 3 2 5 1 85.2 
7 2 3 2 5 2 75.8 
8 2 3 2 1 1 77.3 
9 2 3 2 10 1 91.2 
10 2 3 14 5 2 72.5 
11 3 3 2 5 1 71.4 
12 3 3 2 5 2 62.6 
13 3 3 2 1 1 68.4 
14 3 3 2 10 1 76.3 
15 3 3 14 5 2 59.6 
16 1 1 2 5 2 79.3 
17 2 1 2 5 2 75.9 
18 3 1 2 5 2 64.0 
19 1 5 2 5 1 68.9 
20 1 5 2 5 2 61.0 
21 3 5 14 1 2 41.9 
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the soil. It is presumed that settling due to infiltration is not 
preferential and particles of different sizes have equal chance 
to be trapped as water infiltrates to soil. 

Dry hedge strips of medium length and low slope (Figure 
6a) can effectively trap almost all inflow sediment. The long 
and deep backwater region decelerates the water flow signi- 
ficantly and coarse and medium size particles trap in this 
region. As the root system is widespread in category 1 species 
and the soil is dry, the medium length strip can effectively trap 
almost all the remaining sediment in the flow within the grass 
strips. As the backwater region in low slope hedge strips traps 
the majority of the inflow sediment, the concentration of the 
sediment entering the grass strips is low. Therefore, the effec- 
tiveness of strips of these conditions in trapping sediment is 
high, even under wet soil conditions. In high slopes the length 
and depth of backwater decreases considerably. Thereupon, 
sediment removal in the backwater zone is considerably lower 
comparing to low slopes. Wet soils under these conditions 

cannot trap sediments effectively (Figure 6b). As the actual 
flow velocity is very high in hedge strips, particles have lower 
chance to settle due to gravity and infiltration compa- ring to 
sparser strips. The high performance of hedge strips is highly 
dependent to low slope steepness. 

As the resistance caused by the medium-density grass 
species is low comparing to hedge strips, the length of the 
backwater region is short and the water depth upstream the 
buffer strip is low. As shown in Figure 6c, the effectiveness of 
the antecedent soil moisture is more pronounced under these 
conditions, as more concentrated water flows through the strip. 
Dry, medium length grass strips of medium density in low 
slope fields, can efficiently trap sediment (Figure 6c). As the 
soil moisture increases, the effectiveness of these areas decr- 
eases considerably. As fine particles are assumed to be trap- 
ped only by infiltration within the grass strips, there will be 
considerable amount of fine sediments trapped under wet 
conditions. The significance of this issue is that particulate 

(a) a medium length hedge strip of low slope and dry soil   (b) a medium length hedge strip of high slope and wet soil

                  
(c) a medium length dense grass strip of low slope and dry soil (d) a medium length dense grass strip of high slope and 

                 wet soil 

                    
(e) a medium length sparse grass strip of low slope and wet soil (f) a medium length sparse grass strip of high slope and 
                 wet soil 

                    
(g) a short length dense grass strip of low slope and wet soil (h) a long length dense grass strip of high slope and wet soil

                    

 ClayFine silt
Sand

Bed level
Water surface profile  Coarse silt

 
Figure 6. Particles transport and deposition in: (a) a medium length hedge strip of low slope and dry soil; (b) a medium length 
hedge strip of high slope and wet soil; (c) a medium length dense grass strip of low slope and dry soil; (d) a medium length 
dense grass strip of high slope and wet soil; (e) a medium length sparse grass strip of low slope and wet soil; (f) a medium 
length sparse grass strip of high slope and wet soil; (g) a short length dense grass strip of low slope and wet soil; and (h) a long 
length dense grass strip of high slope and wet soil. 
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pollutants are attached to fine particles and the delivery of 
pollution is expected to be very high under wet conditions. 
The efficiency will be much less in steep fields (Figure 6d). 

Sparse grass strips can only be effective in low slopes 
and dry soils with lengths more than at least one metre. As no 
significant backwater forms even in low slopes, almost all 
sediment removal occurs within the strips. Sediment loss from 
wet soils or high slope fields with sparse grass strips is 
significantly high (Figures 6e and 6f). 

Considering the physical processes, the prepared regre- 
ssion tree, and the ensemble model results presented in Table 
2, it is concluded that increasing the length of grass strips can 
amend the adverse effects of a high ratio of fine particles in 
the inflow, sparse strips, high slopes, and high moisture con- 
tent of the soil on sediment trapping efficiency to some extent. 
As conditions tend to extreme, like intense storms in steep 
fields, longer buffers can be remarkably more effective than 
short ones in removing sediment. Otherwise, short strips of 
hedges or dense species can trap coarse and medium size par- 
ticles with very high efficiency if the slope is low and the soil 
is dry. Figures 6g and 6h show the effectiveness of grass strips 
length factor in performance of buffer strips under various 
conditions same as Table 2. 

5. Discussion 

Statistical modelling is a powerful tool for developing 
predictive models and decision support systems. Ensemble 
methods are precise predictors and user-friendly as there is no 
need for high proficiency tousethem.There have been several 
successful implementations of supervised learning for deve- 
loping decision support systems in various science and tech- 
nology fields (Bhattacharya et al., 2007; Hong, 2008; Shipp et 
al., 2002).   

The advantage of statistical models in general, and the 
statistical model described in this paper in particular over 
physically-based models, is their high accuracy and simplicity 
in “application”. The number of input variables needed for 
running physically-based models is usually high and some are 
hard for users to estimate. The statistical model described in 
this paper just needs five numbers/categories as input data 
which are all easy to measure or determine. For this reason, it 
can be expected that amongst two physically-based and statis- 
tical models with similar accuracy testing values,the statistical 
model have the advantages that the number of input data is 
less and easier to measure or estimate. 

Figure 7 shows the bias of the developed ensemble model. 
It illustrates the difference between the observed and mo- 
delled efficiencies over the observed efficiencies. The sca- 
ttered points should be randomly distributed above and below 
the zero value gridline for the y axis in high and low observed 
efficiencies in an unbiased model. Figure 7 shows that most of 
the y axis values are positive for observed efficiencies more 
than 75%, and negative for observed efficiencies less than 
75%. The average observed efficiency for the whole dataset 
was also 75%. Therefore, the figure shows that the model 

over-predicts small sediment deliveries and under-predicts 
large soil deliveries. According to the findings of Nearing 
(1998), this is a common problem for all soil erosion models, 
regardless of being physically-based or empirical. This study 
confirms the same trend for statistical modelling. 

Nearing (1998) indicates that applying models to data 
which contain ‘natural variations’ that are not possible to 
catch by models, causes a bias in the model outcomes. The 
grass buffer strip models can basically be more biased as 
grassed areas are expected to have more variations in surface 
configurations than fallow fields around it. Notable variance 
can be observed in the performance of grass strips in same 
conditions in removing sediment (Daniels and Gilliam, 1996; 
Magette et al., 1989). The other important factor that causes 
the bias is that it is not possible to consider all effective fa- 
ctors involved. Every model regardless of its type neglects so- 
me factors. Also there are some factors that are not known to 
be effective or their effectiveness is not clear. However, in 
statistical modelling, important factors can be considered wi- 
thout knowing how exactly they influence the outcome. 

The model developed in this research can be modified 
and improved over time. As studies to evaluate the effective- 
ness of grass strips in removing sediment and particulate 
nutrients are still ongoing in many research institutions, their 
results can be added to the currently gathered database to 
make the model more accurate as larger datasets can produce 
more accurate statistical models. In this study, it was observed 
that the RMSE of the model was significantly lower while 90% 
of the data was used for training and 10% for testing, than 
allocating 80% of the data for training and 20% for testing. 
The reason was that the first case had 20 more observations to 
build the ensemble with than the second case. 

6. Conclusions 

Using data in the literature to develop statistical models 
as well as considering the physical processes affecting the hy- 

 
Figure 7. Bias of the model predictions. 
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draulics and hydrology of flow upstream and through grass 
buffer strips showed that it is necessary to accurately consider 
grass resistance, slope steepness, antecedent soil moisture, se- 
diment type, and strips length as important factors affecting 
the effectiveness of buffer strips in sediment removal. 

Machine learning ensemble methods with the bootstrap 
aggregation algorithm can predict the performance of grass 
buffers of different types in removing sediment under certain 
conditions. 

The regression tree built using the collected data from 
very different natural and controlled conditions, showed that 
unless the slope is low and the inflow sediment does not 
contain high portion of clay particles, moderate lengths of 
grass strips can trap large amounts of inflow sediment. The 
tree shows that in any grass strip type sediment removal 
would be low if the moisture content of the soil is high and 
the inflow sediment mostly consisted of very fine particles. 

Evaluating the ensemble model with different model test- 
ing methods showed that the statistical non-parametric super- 
vised learning ensemble developed in this research has pre- 
pared a strong learner for predicting the trapping efficiency of 
grass strips. Testing the ensemble learner predictions, per- 
muting the inputdata, showed that sediment particle size dis- 
tribution, length of strip, and the antecedent soil moisture 
were the most effective variables. 

Comparing the results of the ensemble predictions for 
different prevalent scenarios showed that the backwater re- 
gion upstream of dense grass strips (hedge strips) is the main 
region for sediment deposition on low slopes. The efficiency 
of grass strips in reducing the concentration of sediment is 
much higher for coarse than finer particles. Grass strips can 
substantially decrease the mass of fine particles if a significant 
reduction in runoff (ie. infiltration) occurs within the strip. As 
no backwater forms on high slopes and the flow velocity is 
high in steep lands, particles will not have enough time to 
deposit ahead of the strip. Having long grass strips can amend 
the low trapping efficiency associated with extreme con- 
ditions such as high slope, wet soil and sparse grass strips by 
providing more opportunity for particles to settle and more 
runoff reduction. 
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