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ABSTRACT.  The efficiency and confidence of decision making much rely on accurate information and objective judgement, 

however, which are usually compromised by uncertainties existing in the system. Although in many studies uncertainties are reflected 

during optimization processes, few models considered the dual uncertainties of possibility and continuous probability. This study 

proposed a Monte Carlo simulation-based fuzzy programming (MCFP) approach to handle such dual uncertainties. The developed 

approach was tested by a municipal solid waste management (MSW) problem to demonstrate its feasibility and efficiency. The results 

indicated that the proposed approach could obtain a reliable solution and adequately support the decision making process in MSW 

management. It is significantly advantageous in handling the coexistence of various fuzzy sets and complex probability distributions 

when compared to the conventional fuzzy stochastic programming approaches. Furthermore, three levels of the optimal results to help 

decision makers effectively manage the composting facility: the entire distributions for general policy makers in long term policy 

making and trade-off, risk and reliability analyses of the system; the range of most frequent occurrences for project/plant managers in a 

medium arrangement; and the expected values for the plant operators for short term operating and adjusting the facility to minimize the 

system cost. Such different levels of decision supports could make the MCFP approach highly feasible, flexible and adaptable in 

real-work applications. 
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1. Introduction 

In environmental management, the efficiency and confi- 

dence of decision making much rely on accurate information 

and objective judgement, however, which are usually compro- 

mised by uncertainties existing in the systems (Cheng et al., 

2009; Li and Chen, 2011; Jing et al., 2013; Tan et al., 2013). 

Such uncertainties may arise from a variety of possible sour- 

ces in a management system including incomplete informa- 

tion, measurement and sampling errors, subjective judge- 

ment, assumptions and approximation, dynamics of environ- 

mental conditions etc. (Huang, 1998; Chen et al., 2008; Ping et 

al., 2010a; Li et al., 2011). Traditional deterministic progra- 

mming methods may lack power to efficiently support decision 

making due to their weakness in reflecting the above 

uncertainties (Li and Chen, 2011; Li et al., 2014). The growing 

interests and needs in how to reflect and quantify uncer tainties 

from different sources in the envir onmenttal management 

system have arisen in recent years (Li et al., 2012). 
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Usually, uncertainties can be classified into two catego- 

ries: possibilistic and probabilistic, which are commonly re- 

presented by the fuzzy set theory and stochastic system, 

respectively (Ramik and Vlach, 2004; Lin et al., 2009; Liu et 

al., 2009). Fuzzy techniques can be used to express the possi- 

bilistic type of uncertainties where vagueness of parameters is 

characterized by membership functions (Qin and Huang, 2008; 

Xu et al., 2009; Yang et al., 2010). Stochastic techniques can 

handle the probabilistic uncertainty in which the probability 

distributions are used to represent random variability of para- 

meters (Blair et al., 2001; Seuntjens, 2002; Baudrit et al., 200 

7). However, membership functions might lead to loss of 

information when some parameters could be represented by 

stochastic variables and/or when inappropriate subjective ju- 

dgement was involved; and the definition of probability dis- 

tributions could suffer from lack of sufficient data (Li et al., 

2007; Qin and Huang, 2008; Yang et al., 2010). Furthermore, 

the two types of uncertainties frequently coexist (named dual 

uncertainties) in environmental systems, such as municipal 

solid waste (MSW) management system. Consequently, the 

integration of both methods has been considered in literature 

(Cheng et al., 2009). However, the previous studies usually 

faced difficulties in linking these two algorithms and appro- 

priately interpreting of the relevant results (e.g., fuzzification 

and defuzzification are complex when the stochastic methods 



B. Chen et al. / Journal of Environmental Informatics 29(2) 89-97 (2017) 

 

89 

are involved). Therefore, many of these studies treated dual 

uncertainties separately instead of integratively (Liu et al., 

2004; Li et al., 2006; Qin and Huang, 2008; Yang et al., 2010).  

There were some attempts to deal with possibilistic and 

probabilistic uncertainties simultaneously. For instance, Huang 

et al. (2001) proposed an integrated fuzzy-stochastic linear 

programming model which could effectively deal with diffe- 

rent types of uncertainties in optimization process and could 

obtain reasonable and reliable solutions under different sig- 

nificant levels. Guo and Huang (2009) proposed an approach 

to consider the dual uncertainties in water resource mana- 

gement by describing the parameters as probability distri- 

butions and fuzzy sets. They also proposed a concept of distri- 

bution with fuzzy probability (DFP) to reflect the dual-uncer- 

tainty characteristics of parameters. Li et al. (2009) proposed 

an inexact fuzzy-stochastic constraint-softened programming 

method to deal with possibilistic and probabilistic uncertain- 

ties, and applied to long term planning of a MSW manage- 

ment system. Based on a multistage fuzzy-stochastic integer 

programming model, a fuzzy-stochastic-based violation ana- 

lysis approach was developed by Li and Huang (2009) to help 

water resources management.  

These studies proposed some possible solutions to handle 

dual uncertainties of possibility and probability. However, they 

were significantly restrained on how to simultaneously deal 

with subjective information and continuous stochastic varia- 

bles (presented by fuzzy sets and probability density functions, 

respectively) (Yang et al., 2010). In order to address the limi- 

tation in treating continuous stochastic variables, Monte Carlo 

simulation can be used to generate sufficient inputs to solve 

the insufficient data problems if the probability density func- 

tion (PDF) could be accurately estimated or subjectively sele- 

cted (Freeze et al., 1991; Vose, 1996; Garthwaite et al., 2005; 

Karmperis et al., 2012). In real-world situations, the contin- 

uous stochastic variables usually include subjective and objec- 

tive information, leading to the dual uncertainties of possibi- 

lity and continuous probability. To handle such dual uncertain- 

ties is beyond the ability of Monte Carlo simulation itself (Gu- 

yonnet et al., 2003; Goldstein, 2006; Yang et al., 2010; Li et 

al., 2011; Li et al., 2012). The integration of fuzzy program- 

ming with Monte Carlo simulation could be a promising solu- 

tion (Sadeghi et al., 2010; Li et al., 2013). However, due to the 

difficulties in integrating fuzzy programming with Monte Carlo 

simulation, only a few studies were reported and they were all 

used to assess health risk issues (Guyonnet et al., 2003; Li et 

al., 2004; Chen et al., 2003; Liu et al., 2004; Li et al., 2007; 

Sadeghi et al., 2010; Ping et al., 2010b). In addition, because 

of the complex iterations in optimization algorithm, the inte- 

gration of fuzzy programming and Monte Carlo simulation 

becomes challenging, and none such study is applied in opti- 

mization.  

The objective of this study is to develop a Monte Carlo 

simulation-based fuzzy programming (MCFP) approach and 

the associated solution algorithm, effectively reflecting the 

dual uncertainties of possibility and probability in manage- 

ment systems. 

2. Methodology 

A fuzzy-stochastic-interval linear programming (FSILP) 

method was previously introduced by the authors (Li and Chen, 

2011). It was an advance from the Van Hop’s approach inter- 

vals (Van Hop, 2007a, b, c), which was developed aiming at 

handling the coexistence of the uncertainties in forms of fuzzy 

set, and random values. One significant advantage of the FS- 

ILP method is that it can effectively present uncertainties in 

terms of fuzzy membership functions and probability density 

functions to incorporate both uncertain information and sub- 

jective judgement into a general framework. It has advanta- 

geous capabilities in easily achieving the optimal solutions 

with fewer additional constraints, leading to significant reduc- 

tion of computation time and of complexity in solution. The 

following shows the integration algorithm of the FSILP meth- 

od (Li and Chen, 2011): 

Consider a fuzzy stochastic linear program as follows: 

                                               

Min f CX  (1a) 

 

Subject to: 

 
~ ~

1

( ) ( ) , 1, ,
n

ij w j i w

j

A X B i m


    (1b) 

                                                                                                                 

0,jX w    (1c) 

 

where  
1 n

C R


  is the matrix of coefficients of the objective 

function; X is the matrix of decision variables;  
~

m n

ijA R


  

is the matrix of fuzzy random variable constraint coefficients; 

 
~

1m

iB R


 is the matrix of fuzzy random resources in constr- 

aints; w denotes the probabilistic uncertainty defined on a pro- 

bability space (Ω, F, P);
 
n is the number of decision variables; 

and m is the number of constraints. Assuming all fuzzy num- 

bers are in the form of 
~

( , , )t t    , where t is the most 

likely value, and  
 and  

 are the lower and upper spreads 

of the membership function, according to Van Hop (2007c), 

Equation (1) can be converted to: 
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where  
11 u

i R


  and  
12 v

k R


 are matrices of control de- 

cision variables corresponding to the degree (membership 

grade) to which X solution fulfils the fuzzy constraints; and E 

denotes the mathematical expectation;  
~
1 u n

ijA A


 and
~

2

kjA   

 
v n

A


are matrices of positive and negative coefficients in the 

constraint, respectively;  
~

11 u

iB R


 and  
~

12 v

kB R


 are matrices 

of positive and negative right-hand-sides (RHSs); u is the 

number of constraints with positive coefficients and RHSs; and 

v is the number of constraints with negative coefficients and 

RHSs. 

The Equation (2) is then derandomized by using stochas- 

tic programming techniques. The corresponding deterministic 

model for this problem is: 
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where  
11 m

ip R


 and  
12 o

kp R


 are matrices of probabilities 

for random variables.  

The Van Hop’s method only considered the situation when 

the demands (left-hand-sides, LHSs) and sources (RHSs) were 

close, with LHSs ≤ RHSs in minimization problems or LHSs 

≥ RHSs in maximization problems. In the situation that sour- 

ces/RHSs are too abundant to be met by the demands/LHSs, 

the conversions from less-than signs to equal signs would lead 

to problematic and possible errors by Van Hop’s method. In 

order to fix this problem, the slack variable is added in the 

loosing constrains as follows (Li and Chen, 2011): 
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where  
1m

iS R


 is the matrix of the slack variables. The con- 

straints of 1 2

1
, 1 / 2( )

n

i k jj
X   


  are added because  repre- 

sents the attainment of the memberships of LHS and RHS whi- 

ch is also equivalent to the overlap of these two memberships 

on one side spread. 

Although the FSILP method is capable of handling the 

coexistence of dual uncertainties, its efficiency will decrease 

when the number of discrete probabilities increases. Further- 

more, when the uncertainty is described as continuous proba- 

bility, integration is required when numerically processing the 

optimization, leading to difficulties. Furthermore, some of the 

distributions may be non-integrable, making the optimization 

unachievable. 

Monte Carlo methods are a class of computation intensive 

algorithms based on randomization. These methods can pro- 

vide equivalent results to deterministic algorithms, which ma- 

kes it a complement to the theoretical derivations (Anderson, 

1986). Monte Carlo methods are especially suitable for the 

problems with multiple probability distributions, and the han- 

dling of such distributions becomes complicated by using nu- 

merical methods. These methods are frequently used to treat 

uncertainties in inputs, especially for evaluating risks (Baeurle, 

2009). 
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P
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Figure 1. Dual uncertainties of possibility and contiuous 

probability. 

 

The results of an objective function can be regarded as a 

stochastic one due to randomness of the input parameters. The 

occurrence of this can be predicted through Monte Carlo simu- 

lation-based on the help of the probability concept. However, 

not all the input parameters can be characterized by using pro- 

bability distributions due to incomplete or insufficient informa- 

tion from literature and historical data as well as the subjective 

judgement when choosing values for the parameters. In many 

cases, the obtained probability distribution may be still uncer- 

tain where each data point contains a degree of belief, leading  
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Figure 2. Framework of the Monte Carlo simulation-based 

fuzzy programming (MCFP). 

 

to dual uncertainties of possibility and continuous probability.  

As shown in Figure 1, a parameter X is uncertain with co- 

rresponding probability: 

                                                                                                        
1( )X X f P    (5) 

 

However, sometimes the confidence of such a distribution 

can be impaired by insufficient information. Such a consequ- 

ence is of a fuzzy nature which can be quantified by degrees 

of belief (e.g., membership functions) (Li et al., 2007). Each 

data point (yi) may contain a membership function as follows: 
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Therefore, in order to effectively tackle such coexistence 

of dual uncertainties, Monte Carlo simulation and fuzzy pro- 

gramming need to be integrated. The FSILP method can easily 

convert a fuzzy problem into a deterministic one without tra- 

ditional fuzzification and defuzzification processes which 

significantly obstructs the integration with Monte Carlo simu- 

lation. The framework of the Monte Carlo simulation-based 

fuzzy programming (MCFP) is shown in Figure 2, where N is 

the preset number of trials, and l is the index of the current 

trial. 

Consider a problem which is the same as the one in Equa- 

tion (1). The random values of the parameters are firstly assi-  

gned in each Monte Carlo simulation trial according to their 

probability distributions, leading only to a fuzzy problem in 

each trial. According to the FSILP approach, in each trial the 

problem can be converted as follows (Li and Chen, 2011): 
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After N trials are finished, the sets of the results can be 

obtained as follows: 

, , ,{ ( ); 0}, 1, , ; 1, ,l opt jl opt jl optf f X X l M j Z      (9) 

where M is the number of the feasible solutions after N trials 

of the Monte Carlo simulation, and Z is the number of decision 

variables.  

Assuming that there is no uncertainty existing in the coe- 

fficients of the objective function (C), the definition for the fi- 

nal solution can be stated as follows: 

Definition 1:  
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Since Cj are deterministic and independent, we have the 

relation between the expected results of the optimal function 

and the decision variables: 
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Table 1. Inputs for the Case of Decision Support to MSW 

Management 

Para. Unit Deterministic 

/expect value 

Normal 

Distribution 

Membership 

c1 $103/tonne 3 / / 

c2 $103/tonne 2 / / 

a11 ton of 

waste/tonne 

3 / (t, 0.2, 0.2) 

a12 ton of 

waste/tonne 

4 N~(4, 0.8) (t, 0.2, 0.2) 

a21 hectare/tonne 3 N~(3, 0.5) (t, 0.2, 0.2) 

a22 hectare/tonne 2 / (t, 0.2, 0.2) 

b1 tonne/week 140 N~(140, 10) (t, 10, 10) 

b2 hectare/week 160 N~(160, 10) (t, 10, 10) 

3. Solution Algorithm 

The key steps of the solution algorithm are as follows: 

Step 1. Formulate the fuzzy model (Equation 1). 

Step 2. Initialize the model parameters, including proba- 

bility distributions and membership functions. 

Step 3. Generate a set of random variables according to 

the probability distributions. 

Step 4. Transform the Equation (1) to Equation (8) accor- 

ding to the generated random variables in Step 3. 

Step 5. Solve Equation (8) and obtain the corresponding 

,jl optX , and ,l optf of the current trial. 

Step 6. Go to Step 7 if the trial reaches the preset number 

of trials (l = N); otherwise (l < N) go to Step 3. 

Step 7. Obtain a set of feasible solutions by Equation (9) 

or declare the feasible solutions are unachievable. 

Step 8. Obtain the optimal solutions by Equation (12): 

,j optX  =  ,jl optE X , and  ,opt l optf E f . 

Step 9. End 

4. A Case Study 

Consider a composting facility which generates two types 

of soil conditioners (F1 and F2) based on two different types of 

composting technologies. When each tonne of F1 and F2 is ge- 

nerated, the required amount of MSW is a11 and a12 (tonne), 

respectively. It is assumed that the treated amount of waste per 

week should not be lower than the waste generation amount 

(b1, tonnes/week) of the city. It is estimated that one tonne of 

F1 can feed a21 hectares of farms, and one tonne of F2 can feed 

a22 hectares of farms. Due to the contract with the local 

farmers, the composting facility should supply sufficient soil 

conditioners to farmers to feed at least b2 hectares of farms 

every week. The question is to determine the production rate 

(x1 and x2, tonne/week) of two types of soil conditioners with 

the minimum system cost (f, $103/week). Accordingly, an 

optimization model is formulated as follows:  

1 1 2 2Min f c x c x    (13a) 

Subject to: 

11 1 12 2 1a x a x b    (13b) 

 

21 1 22 2 2a x a x b    (13c) 

 

1 2, 0x x    (13d) 
 

where c1 and c2 are the unit cost ($103/tonne) for producing F1 

and F2, respectively. 

Due to subject judgement and incomplete information, 

possibilistic and continuously probabilistic uncertainties coexi- 

st in some of the model parameters. According to the historical 

information and literature the estimations of model parameters 

were obtained and shown in Table 1. 

The unit costs (c1 and c2) are deterministic values; possi- 

bility exists in all the left hand-side coefficients with a form of 

(t, 0.2, 0.2), indicating a value t with the highest degree of like- 

lihood, and the value of 0.2 for both the left and right spreads; 

possibility exists in all the RHS coefficients with a form of (t, 

10, 10), indicating a value t with the highest degree of likeli- 

hood, and the value of 10 for both the left and right spreads; 

probability exists in a12, a21, b1, and b2 in the form of normal 

distributions, and they also contain possibilistic uncertainties, 

leading to dual uncertainties of possibility and continuous pro- 

bability. 

According to Equation (8) and the membership provided 

in Table 1, the original model (Equation 13) is converted to 

the following one: 

 

1 2 1 23 2Min f x x        (14a) 

 

Subject to: 

 

 1 1 12 2 1 2 1

1
0.2 0.2 10

2
b x a x x x         (14b) 

 

 2 21 1 2 1 2 2

1
2 0.2 0.2 10

2
b a x x x x          (14c) 

 

 1 2 1 2

1
0 , 0.2 0.2 10

2
x x       (14d) 

 

1 2, 0x x    (14e) 

 

The preset number of trials is 1,000. In each trial the ran- 

dom values for a12, a21, b1, and b2 are assigned by the randomi- 

zation process and the optimal solution for each trial is 

obtained based on the steps of the solution algorithm descri- 

bed previously. 

5. Results and Discussion 

Feasible solutions were obtained in 997 out of 1,000 trails, 

indicating a high efficiency of the proposed model in solving 

the problem with the dual uncertainties of possibility and con-  
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Figure 3. Distribution of the optimal system cost, fl, opt. 
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Figure 4. Distribution of the optimal production of the two 

soil conditioners (x1l, opt and x2l, opt). 
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tinuous probability. The distributions of the results of the opti- 

mal system cost (fl, opt) and the optimal production of soil con- 

ditioners (xl, opt) are shown in Figures 3 and 4. The figures in- 

dicate that all the distributions of the optimal solutions tend to 

be the lognormal distribution. This is significantly different 

from the original distributions of the inputs which are all 

normal distributions. The 95% confidence intervals indicate 

that the optimal production of F1 (x1l, opt) is mostly distributed 

between 15 and 60 tonne/week; the production of F2 (x2l, opt) is 

mostly distributed between 13 and 45 tonne/week; and the 

most frequently occurring optimal system cost (fl, opt) is in the 

range of 120 and 220 ($103/week). Figure 5 indicates that 

most of the data points (optimal solutions) are within the same 

range and also shows the relationship between the optimal 

system cost and production of soil conditioners. 

According to the Definition 1, the expected optimal mini- 

mum system cost would be 160.4 ($103/week) under the dual 

uncertainties of possibility and continuous probability, and 

such a cost could be achieved based on the production rate of 

35.8 tonnes F1 and 25.8 tonnes of F2 per week. 

In order to test the sensitivity and robustness of the deve- 

loped method with consideration of dual uncertainties, further 

analyses were conducted to calculate the expected values and 

standard deviations of the optimal system costs when the spr- 

eads of memberships and probability distributions were chan- 

ged from -1.0 to 1.0 (or -100 to 100% with 10% interval), 

respectively (Figures 6 and 7). Furthermore, distri- butions of 

the optimal system costs were generated based on the changes 

of memberships and probability distributions from -1 to 1 

with 0.4 interval (-100 to 100% with 40% interval) (Figure 8). 

The results indicated that the expected values of the optimal 

system cost were relatively sensitive to the possibilitic un- 

certainty but robust to the probabilistic uncertainty (Figure 6). 

Meanwhile, the disperstiveness represented by the standard 

deviations in this case of the optimal system cost were sig- 

nificantly sensitive to the probabilistic uncertainty but robust 

to the possibilistic uncertainty (Figure 8). In the other words, 

when the spread of the probability distribution increased, the 

expected value almost did not change and the disperstiveness 

significantly increased. In contrast, when the spread of mem- 

bership increased, the expected value signifycantly decreased 

and the disperstiveness almost did not change. The similar 

conclusion could be supported by the distribution of optimal 

solutions according to changes of spreads of the probability 

distribution and membership function (Figure 8). The increase 

of the spread of the probability distribution could flat the shape 

of the optimal system cost distribution with unchanged 

expected value (Figure 8a). Comparatively, the increase of the 

membership spread could decrease the expected value without 

affecting the shape of distribution (Figure 8b). 

By using the proposed MCFP method, when data are insu- 

fficient to accurately determine the probability distribution, the 

expected value of optimal system cost would not be intensively 

affected by subjectively selected probability distribution, and 

it just could affect the confidence interval of the expected va- 

lue. Consequently, although the insufficient data could not ac- 

curately be determined to certain probability distribution, the 

proposed methods could still provide unbiased expected opti- 

mal system cost. On the other hand, different experts/managers 

could provide different suggestions on possibility/membership 

functions, and it would affect the expected value of the optimal  
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Figure 6. The expected values of the optimal system cost with 

spreads of probability distribution and memberships changing 

from -100% to 100% based on 1,000 trials of Monte Carlo 

simulation. 
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Figure 7. The standard deviations of the optimal system cost 

with spreads of probability distribution and memberships 

changing from -100% to 100% based on 1,000 trials of Monte 

Carlo simulation. 

system cost but would not dramatically influence probability 

and confidence interval of expected values. In the other words, 

subjective information collected from experts/managers is li- 

kely to cause variations in optimal system cost without affec- 

ting its confidence intervals. Therefore, even though the sub- 

jective information from experts/managers are very crucial to 

expected optimal system cost, the proposed optimization me- 

thods could still robustly provide fairly constant confidence 

interval (range of optimal system cost) for the expected cost. 

It is worth note that the solutions can provide three types 

of decision supports to help different levels of decision makers 

regulate, manage and/or design, and operate the MSW mana- 

gement system. Firstly, entire distribution of the optimal sys-  
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from -100% to 100% based on 1,000 trials of Monte Carlo 

simulation. 

 

tem (Figure 3) cost and corresponding soil conditioners pro- 

duction (Figure 4) can provide a complete image to local au- 

thorities for legislating/adjusting relative policies and regula- 

tions and developing strategies for MSW management; Secon- 

dly, the range of most frequent occurrences (15 and 60 tonne/- 

week of F1 and 13 and 45 tonne/week of F2 could lead to the 

optimal system cost of [120, 220] * $103/week) can assist the 

facility managers to flexibly and effectively develop the pro- 

duction plan. Thirdly, the expected values of the optimal sys- 

tem cost and the corresponding production (production rate of 

35.8 tonnes F1 and 25.8 tonnes of F2 lead to optimal system 

cost of 160.4 *$103 for per week) can directly and clearly pro- 

vide sound decisions to the facility. 

Furthermore, as two important measures in engineering 

optimization, accuracy and efficiency usually conflict and re- 

quire some compromises with each other. Currently there is 

no clear rule for the setting of the number of trials for Monte 

Carlo simulation. Nevertheless, according to Driels and Shin 

(2004), when the number of trials is higher than 300, Monte 

Carlo simulation can provide reasonable results. In addition, 

Winston (2000) also claimed that a minimum number of 450 

trials would be required for the Monte Carlo simulation to ach- 

ieve 95% of accuracy of the estimation, and the results could 
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be reliable when the number of trials is up to 1,000. However, 

with the increasing number of trials, the requirement of com- 

putational resource and time consumption significantly increa- 

ses. In order to achieve a reliably accurate result with minimum 

trials, the case study was further conducted based on different 

trials of Monte Carlo simulation (100 to 1,000 with an interval 

of 100 trials; 1,000 to 10,000 with an interval of 1000 trials). 

The results indicated significant differences in system cost from 

100 to 1,000 trials and insignificant differences when the trial 

numbers were higher than 1,000. The difference of system cos- 

ts from 1,000 and 10,000 trials optimization was less than 

0.1%, however, the time consumption was more than 20 times 

from 1,000 trials (20 min) to 10,000 trials (450 min). Therefore, 

1,000 trials of Monte Carlo simulation will be the optimal op- 

tion for the case study. 

6. Conclusions 

Decision making in environmental management can be 

complex (Huang and Loucks, 2000; Huang et al., 2006; Qin et 

al., 2007; Li et al., 2008a,b; Li et al., 2010; Lv et al., 2010). 

This study developed a Monte Carlo simulation-based fu- zzy 

programming (MCFP) to reflect and quantify the dual 

uncertainties of possibility and continuous probability in en- 

vironmental management. The fuzzy programming approach 

was advanced from the fuzzy-stochastic-interval linear pro- 

grammming (FSILP) approach which was previously deve- 

loped by the authors. The approach is highly capable of con- 

verting fuzzy problems to deterministic ones and achieving 

optimal solutions with fewer additional constraints, leading to 

significant reduction of computation time. Another important 

novelty of this approach is the integration of fuzzy program- 

ming and Monte Carlo simulation, which can effectively ta- 

ckle the coexistence of uncertainties in forms of fuzzy sets 

and continuous probability distributions. The developed ap- 

proach was further tested by a case study of MSW manage- 

ment. The results demonstrated that the MCFP approach could 

effectively integrate fuzzy programming and Monte Carlo 

simulation to deal with subjective judgement from experts and 

incomplete information represented by fuzzy membership and 

continuous probability distributions. Therefore, the MCFP ap- 

proach is capable of providing decision support to manage- 

ment problems that involve coexistence of dual uncertainties. 

In addition, the developed approach can provide three le- 

vels of the optimal results to help the decision maker effecti- 

vely manage the system. The first level is the entire distribu- 

tions of objective functions and decision variables, which can 

provide decision supports to general policy makers (e.g., regu- 

lating and consulting organizations) for long term policy ma- 

king and trade-off, risk and reliability analyses of the system; 

the second level is the range of most frequent occurrences, 

which can help project or plant managers in designing and pla- 

nning the production in a medium arrangement; the third level 

is the expected value of the optimal results, which can directly 

provide decision alternatives to the plant operators for short 

term operating and adjusting the facility to minimize system 

cost. 

Future research may focus on how to handle additional 

uncertainties existing in the coefficients of the objective func- 

tion and how to integrate other forms of uncertainties (e.g., 

intervals) into decision making processes to deal with more 

uncertain conditions. The approach will be further tested 

through real-world cases. 

Nomenclature 

δ-  
 lower spread of membership function  

δ+  upper spread of membership function  

λ  matrix of control decision variables  

~  indicator for possibilistic uncertainty  

A  matrix of constraint coefficients  

a  amount of MSW for composting, tonne/tonne  

A1
   matrix of positive constraint coefficients  

A2  matrix of negative constraint coefficients  

B  resources of constraints  

b  waste generation amount, tonne/week  

B1  matrix of positive RHSs  

B2  matrix of negative RHSs  

C  coefficients of the objective function  

c  cost of soil conditioner production, $103/tonne  

E  function of mathematical expectation  

f  objection function (system cost in the case study, 

$103/week)  

F soil conditioner 

l  index of the current trial 

LHS left-hand-side 

M  number of the feasible solutions 

m  number of constraints 

MSW municipal solid waste 

N  preset number of trials 

n  number of decision variables 

p  matrix of probability 

RHS right-hand-side 

S  matrix of slick variables 

t  most likely value of membership function 

w  indicator for probabilistic uncertainty 

X  matrix of decision variables 

x  soil conditioner production rate, tonne/week 

Z  number of decision variables 
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