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ABSTRACT.  Environmental noise prediction and modeling are key factors for addressing a proper planning and management of 
urban sound environments. In this paper we propose a maximum a posteriori (MAP) method to compare nonlinear state-space models 
that describe the problem of predicting environmental sound levels. The numerical implementation of this method is based on particle 
filtering and we use a Markov chain Monte Carlo technique to improve the resampling step. In order to demonstrate the validity of the 
proposed approach for this particular problem, we have conducted a set of experiments where two prediction models are quantitatively 
compared using real noise measurement data collected in different urban areas. 
 
Keywords: environmental noise level prediction, MAP model selection, Monte Carlo sampling, nonlinear state-space model, particle 
filtering

 
 

 

1. Introduction  

Environmental noise is one of the most important envi- 
ronmental problems in urban areas, since it has a great impact 
on the health and welfare of the exposed population (Laszlo et 
al., 2012). In urban agglomerations, road traffic is the main 
noise source and its effects on inhabitants are well known 
(Ouis, 2001; Dai et al., 2005). Several research works (e.g., 
Bjorkman, 1991; Lercher, 1996) have shown that noise affects 
daily activities and causes sleep disturbances. Therefore, in 
order to care for human health and provide dwellers with a 
high quality of life, urban spaces should be planned with an 
appropriate sound environment, keeping noise levels under 
control. 

The accurate characterization of the sound environment 
is essential for urban planning. In urban areas there is a large 
variety of sound sources and conditions that, in turn, generate 
a wide variety of relevant acoustic situations. Thus, we can 
find locations with different composition of traffic, different 
urban settings, with presence of noise sources that are difficult 
to characterize (e.g., business or leisure areas, works), the exi- 
stence of green areas, etc., that create sound spaces with diff- 
errent sound pressure levels and with large differences in their 
temporal evolution and spectral composition. 

Accordingly, the complexity of urban agglomerations ma- 
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kes the environmental noise modeling and prediction a com- 
plex and nonlinear problem. Previous research has shown the 
influence of different variables on the characterization of the 
environmental noise level and in the description of the tem- 
poral evolution of the sound pressure level (Torija et al., 
2007a; Torija et al., 2007b; Torija et al., 2007c; Torija et al., 
2010; Sachakamol et al., 2011). In the literature, there are dif- 
ferent methods and techniques that solve the problem of pre- 
dicting environmental noise levels, from physical models to 
statistical models. For example, models based on physical 
principles of sound generation and propagation, as Harmonoi- 
se/Imagine model (Watts, 2005), Calculation of Road Traffic 
Noise (CORTN) (Anon., 1975), Nord2000 (Kragh et al., 20 
02), etc., have an outstanding performance in estimating sou- 
nd pressure levels. These models are mainly used for predict- 
ting long-term sound pressure levels from road traffic but ur- 
ban environments are characterized by the presence of other 
sound sources different than road traffic, such as leisure noise, 
commercial activities, etc., which have a great influence in the 
generation of environmental noise in urban agglomerations. In 
Josse (1972), Burgess (1977) and Bertoni et al. (1987) it is 
proposed to use statistical models. Although these models can 
describe nonlinear correlations, they do not provide an accu- 
rate enough approximation of the trend followed by the sound 
pressure level when this is affected by a large number of phy- 
sical parameters. Later on, in Cammarata et al. (1993), it is 
proposed to apply an artificial neural network (ANN) for 
noise prediction. The method involves the training of a back- 
propagation network (BPN) (McClelland and Rumelhart, 19 
88) using an appropriate set of acoustic measurements and, in 
the subsequent phase, the network predicts the sound pres- 
sure level for various inputs. This method achieves good re- 
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sults because neural networks have a great capacity for appro- 
ximating functions which are essentially nonlinear (Lapedes 
and Farber, 1987; Suykens et al., 1996), as it is the environ- 
mental noise prediction problem. From this point of view, 
other authors have developed complex neural networks with 
the objective of providing a tool for the design, planning and 
evaluation of urban sound environments and the ultimate goal 
of incorporating the needs of the population into the planning 
of urban agglomerations (Cammarata et al., 1995; Genaro et 
al., 2010; Torija et al., 2012). 

Since several models may be available to describe the 
sound environment in a given urban area, the question of how 
to choose the fittest model given a record of data arises natu- 
rally. In this paper, we study dynamic models that can be put 
in a state-space form. In particular, we identify the sources of 
noise as the state variables of the model and allow them to 
evolve randomly over time. The observations, or measureme- 
nts, for the model are indicators of the overall sound pressure 
level and 1/3-octave band sound levels (spectral compo- 
sition). The relationship between the observations (sound pre- 
ssure levels) and the state variables (noise sources) is repre- 
sented by nonlinearities (such as, e.g., different neural net- 
work configurations (McClelland and Rumelhart, 1988)) and 
a random perturbation. 

Given two state-space models, each one with a different 
nonlinear structure describing the relationship between the 
indicators of sound pressure level and the noise sources, our 
goal is to quantify the fitness of each model to predict envi- 
ronmental noise levels using a collection of real data sets and 
select the most suitable candidate. Following the general ap- 
proach in Djuric (1998), we propose to score the competing 
models by way of their posterior probabilities conditional on 
the same data sets, i.e., we carry out maximum a posteriori 
(MAP) model selection. Our approach involves the computa- 
tion of the evidence (as defined in MacKay (2003), Chapter 3) 
in favor of each one of the competing models. However, since 
the models of interest are dynamic and nonlinear, these evi- 
dences cannot be found in closed form. To circumvent this 
difficulty, we introduce a numerical approximation method 
based on the use of particle filters (Gordon et al., 1993; Dou- 
cet et al., 2000; Doucet et al., 2001; Djuric et al., 2003), simi- 
lar to the model monitoring algorithm of Djuric (1999). The 
proposed filtering algorithm includes Markov Chain Monte 
Carlo (MCMC) moves (Gilks and Berzuini, 2001) to mitigate 
the diversity loss that follows the resampling step in conven- 
tional particle filters. It should also be noted that the proposed 
method can be stated in terms of Bayes factors (as defined in 
Bernardo and Smith (2009); see Chapter 6). In particular, wh- 
en only two models are compared, MAP selection as descry- 
bed in this paper corresponds to the Bayesian test in Proposi- 
tion 6.1 of Bernardo and Smith (2009). Unlike Bayes factors, 
though, the MAP scheme can also be applied in a straight- 
forward manner when more than two models are competing. 

This paper is organized as follows. In Section 2 we de- 
fine the state-space models to be compared. In Section 3 we 
elaborate on the MAP criterion for model selection. The par- 
ticle filtering algorithm applied for the numerical implementa-  

Table 1. State Variables* 

  State Variable  Value Range 

1 Time Period  Day / Evening 
2 Commercial or Leisure Environment No / Yes 
3 Construction Work  No / Yes 
4 Stabilization Time  [2-55] (minutes) 
5 Average Speed  [5.38-52.12] (km/h) 
6 Traffic Slope  [0-9] (%) 
7 Number of Ascendant Lanes  [0-4] (lanes) 
8 Number of Descendant Lanes  [0-4] (lanes) 
9 Pavement Type  Porous asphalt / Smooth 

asphalt /Paved 
10 Pavement Surface Condition  Good / Fair / Bad / Very 

Bad 
11 Street Geometry  Type “U”/ Type “J” / Type 

“L”/ Type “Free Field” 
12 Street Width  [3.8-104.67] (m) 
13 Street Height  [0-32.55] (m) 
14 Roadway Width  [3.8-23.42] (m) 
15 Source-Receptor Distance  [2.6-16.7] (m) 
16 Type of Traffic Flow  Constant fluid flow / Con- 

stant pulsed flow / Flow de-
celerated in pulses / Flow 
acelerated in pulses / Inter-
mittent flow / Banked flow

17 Number of Vehicles with Sirens  [0-1] (vehicles) 
18 Impulsive Sound Event related to 

Traffic  
No / Yes 

19 Impulsive Sound Event unrelated to 
Traffic  

No / Yes 

20 Ascendant Flow of Light Vehicles  [0-20] 
21 Descendant Flow of Light Vehicles  [0-38] 
22 Ascendant Flow of Heavy Vehicles  [0-10] 
23 Descendant Flow of Heavy Vehicles  [0-4] 
24 Ascendant Flow of Motorcycles  [0-20] 
25 Descendant Flow of Motorcycles  [0-14] 

*The stabilization time (variable 4), at a certain location, is the time 
needed to stabilize the sound pressure level within a previously defined 
range (Torija et al., 2011). The street geometry classification (variable 11) 
is taken from (NMPB, 1996) and refers to the type of buildings on the 
street sides, e.g., a “J”-type street contains tall buildings on one side and 
low buildings on the other side. The traffic flow magnitudes (variables 
20-25) have the form 10logz , where z is the number of vehicles over one 
lane (either ascendant or descendant) every two minutes. 

 
tion is described in Section 4. In Section 5 we compare the 
proposed MAP model selection scheme with other Bayesian 
techniques for model selection. In Section 6 we test the propo- 
sed methodology by using a series of measurements of sound 
pressure levels obtained experimentally in the city of Granada 
(Spain). The obtained results are shown and discussed here. 
Finally, the article ends with a summary and some conclu- 
sions in Section 7. 

2. Models 

2.1. Sound Pressure Levels 

Let us consider the problem of predicting the value of 23 
descriptors of sound pressure level in urban areas from the 
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knowledge of a set of noise sources. To be specific, the indi- 
cators of interest are the A-weighted equivalent continuous 
sound pressure level, LAeq (57-85 dBA), the non-weighted eq- 
uivalent continuous sound pressure level, Leq (65-90 dB), and 
the sound level in 1/3 octave bands from 40 Hz to 4 kHz, Lf 
(10-80 dB), where f = 40, 50, 63, 80, 100, 125, 160, 200, 250, 
315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150 
and 4000 Hz. These magnitudes have been obtained from 
field measurements with S integration time (S = 2 minutes). 

 

2.2. State Variables 

A precise characterization of the urban sound environ- 
ment requires the consideration of a wide range of different 
magnitudes related to the sound emission generated by the 
present sources of noise as well as the sound propagation in 
diverse geometrical configurations. In this paper, we collec- 
tively refer to these magnitudes as state variables. Specifically, 
we study 25 variables displayed in Table 1: 20 sound emission 
variables (entries 1-10 and 16-25 in Table 1) and 5 sound propa- 
gation variables (entries 11-15 in Table 1). The pavement type 
(entry 9 in Table 1) is also related to sound propagation be- 
cause sound is propagated differently in paved surfaces (sou- 
nd reflection) and porous surfaces (sound absorption) (Lui 
and Li, 2004). The selection and classification of the state 
variables is taken from Torija et al. (2010). Note that most of 
state variables are static over time (entries 1-15 in Table 1) 
except the type and magnitude of the traffic flows, the number 
of vehicles with sirens and impulsive sound events (Torija et 
al., 2011) (entries 16-25 in Table 1), which can change signi- 
ficantly depending on both time and location. 

 

2.3 Nonlinear Prediction of Sound Pressure Levels 

The prediction of sound pressure levels from noise sour- 
ces can be carried out by different methods, e.g., physical mo- 
dels (Anon, 1975; Kragh et al., 2002; Watts, 2005) or statisti- 
cal models (Josse, 1972; Burgess, 1977; Bertoni et al., 1987). 
However, since the relationship between the sound pressure 
level and the noise sources is highly nonlinear, neural net- 

works have been advocated as efficient tools in urban agglo- 
merations in Cammarata et al. (1995), Genaro et al. (2010) 
and Torija et al. (2012) because of their ability to approximate 
nonlinear functions (studied in, e.g., Lapedes and Farber (19 
87) and Suykens et al. (1996)). 

In this paper, as prediction functions of the candidate mo- 
dels, we use two backpropagation networks (McClelland and 
Rumelhart, 1988) with different configurations (named Con- 
figuration 2 and Configuration 4 in Torija et al. (2012)). Ne- 
vertheless, note that the proposed method could be applied to 
compare dynamical models based on other types of predict- 
tion functions. We have chosen these network configurations 
due to their similarity and the difficulty of making an election 
a priori based on their goodness to fit data in different loca- 
tions.  

In particular, the studied neural networks have a common 
structure, i.e., 2 layers with 25 inputs related to the state vari- 
ables, 23 neurons in the hidden layers and 23 outputs related 
to the sound pressure levels. Moreover, both nets use a hyper- 
bolic tangent sigmoid transfer function (first layer) and a li- 
near transfer function (second layer). However, they were ca- 
librated with different training functions. Both functions up- 
date the weight and bias values according to the Levenberg- 
Marquardt optimization method (Marquardt, 1963; Hagan and 
Menhaj, 1994) avoiding the nets overfit the experimental data, 
but the training of the first backpropagation network (network 
1, in the sequel) uses a Bayesian regularization process (Mac- 
Kay, 1992; Foresee and Hagan, 1997) that is not applied when 
training the second network (network 2, in the sequel). The 
aim of this regularization algorithm is to improve the generali- 
zation capability of the network and, then, obtain good results 
given new input data. In Torija et al. (2012), the network con- 
figuration 1 slightly outperformed the network configuration 
2. 

Both networks were trained using the same database, 
which covers the heterogeneity of the city of Granada (Spain), 
a typical Southern Europe medium-sized city. The experi- 
menttal measurements, 274 records in total, were collected on 
working days, at different time periods, in different urban set- 

Table 2. Characteristics of the Studied Locations (Streets)

  Street  Time Period  Description 

1 Camino de Ronda  21:30-22:30  Broad street with a narrow central reservation. Geometry type “U”. High flow of 
heavy vehicles. 

2 Gran Vía  14:20-15:30  Geometry type “U”. High flow of heavy vehicles, light vehicles, and motorcycles. 
Commercial area. 

3 Avenida de Murcia  10:45-11:35  Geometry type “U”. Great ascendant traffic slope. High flow of heavy vehicles. 
4 Méndez Núñez  21:30-22:40  Geometry type “Free Field”. High traffic flow. University area. 
5 Camino de las Vacas  9:40-10:50  Geometry type “Free Field”. High flow of heavy vehicles. 
6 Nueva del Santísimo  20:40-21:30  Narrow street with geometry type “U”. Low traffic flow. Commercial area. 
7 Reyes Católicos  20:15-20:55  Geometry type “U”. High traffic flow. Commercial area. 
8 Doctor Olóriz  20:30-21:00  Geometry type “J”. Opposite the bullring and near hospitals. Leisure zone. 

Descendant traffic slope. 
9 Real de la Cartuja  12:30-12:55  Geometry type “U”. Great ascendant traffic slope. Pavement type “Paved”. 
10 Gran Capitán  11:40-12:20  Geometry type “U”. Pavement type “Porous asphalt”. 
11 Gonzalo Gallas  16:55-18:05  Geometry type “L”. Leisure zone. 
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tings and different traffic conditions by researchers of the 
laboratory of Physics and Environmental Acoustics (Depart- 
ment of Applied Physics, University of Granada). The main 
features of each location are outlined in Table 2. 

The measurement of environmental noise was carried out 
in slots of 30-90 minutes, with each experimental datum cor- 
responding to a record of 2 minutes. According to that, in each 
collected time series, the first datum of, e.g, the “ascendant 
flow of light vehicles” (row 20 in Table 1) corresponds to the 
number of vehicles observed during the first two minutes, the 
second datum corresponds to the following two minutes, etc. 
For binary data, e.g., the “impulsive sound event” of row 18 
in Table 1, the first datum indicates whether at least one im- 
pulsive event was observed during minutes 1 and 2, the se- 
cond datum corresponds to minutes 3 and 4, and so on. Note 
that the short two-minute period was chosen to ease the obser- 
vation of the short-term variability of the sound pressure level 
for each location. The measurements were obtained following 
international procedures of reference; all microphones were 
mounted away from reflecting facades, at a height of 4 meters 
above local ground level (Directive 2002/49/EC, 2002). 

 

2.4. State-Space Models 

As explained in Section 2.2, several state variables of the 
problem (entries 16-25 in Table 1) are time-varying. Therefore, 
any model aimed to predict the values of the sound pressure 
levels from these variables (e.g., traffic flows) should take 
into account their dynamics in order to produce adequate re- 
sults. A compact manner to jointly represent the state variable 
dynamics and the nonlinear relationship between the variables 
and the indicators of sound pressure level is by way of a state- 
space model. 

To be specific, in each one of our candidate state-space 
model, let: 

( )1, 2, 10,, ,  ...,t t t tx x x x= ,  0,  1,  ..., Tt =  (1) 

 
be the vector of time-varying state variables (i.e., the type and 
magnitude of the traffic flows, the number of vehicles with 
sirens and impulsive sound events), where xi,t, 1, ...,10 i = cor- 
responds to the (15+i)-th entry of Table 1 (i.e., x1,t is the “type 
of traffic flow” and x10,t is the “descendant flow of mo- 
torcycles”) and T is the number of time steps. We collect the 
static variables (related to the period of day, the geometrical 
configuration, the number of lanes, etc.) in a vector: 

 
( )1 2 15, , ...,θ θ θ θ=  (2) 

 
where 1 2 15, , ...,θ θ θ correspond to entries 1-15 in Table 1. 

The indicators of sound pressure level and its spectral 
composition are represented by a 23 dimensional vector: 

 

( )1, 2, 23,, ,  ...,t t t ty y y y=  (3) 

where y1,t represents the value of the LAeq indicator at time t, 

y2,t represents the Leq indicator at time t and 3, 23,, ...,  t ty y stand 
for the remaining indicators in 1/3 octave bands from 40 Hz to 
4 kHz (see Section 2.1). 

The dynamics of xt is independent of the static variables 
in θ, but the sound pressure levels in yt are modeled as a 
function of xt, θ and the prediction method (in this case, a 
neural network), plus a random perturbation. In particular, we 
have two state-space models of the form (Note: We use p to 
denote probability functions, including densities and masses. 
The notation is argument-wise. For example, if x and y are 
continuous random variables, then p(x) and p(y) denote their 
probability density functions, possibly different. If x is a dis- 
crete random variable, then p(x) denotes its probability mass 
function. Conditional densities and masses are indicated in the 
obvious way, e.g., p(x | y). This notation is common in Baye- 
sian analysis and the particle filtering literature.): 

 
( )1~ |t t tx p x x −  (4) 

( )~ | , ,t t ty p y x mθ  (5) 

where {1, 2}m ∈ is the model index, 1( | )t tp x x − describes the 
conditional distribution of the dynamic variables (in particular, 
we assume that every xi,t is first order Markovian) and 

( | , , )t tp y x mθ is the conditional density of the sound pressure 
levels given the state variables and the neural network used 
for prediction (either network 1 or network 2, as indicated by 
m). 

The conditional density of the sound pressure levels, 
often referred to as the likelihood of the variables, is assumed 
to be Gaussian, namely: 

( ) ( )( )| , , ; , ,t t t m t mp y x m N y g x Dθ θ=  (6) 

where ( ; , )N z mu C denotes the (multivariate) Gaussian pro- 
bability density function (pdf) of z with mean vector µ and 
covariance matrix C, ( , )m tg x θ represents the sound pressure 
levels predicted by the m-th neural network and: 

2
,1

2
,2

2
,23

0 0

0 0

0 0

m

m
m

m

D

σ

σ

σ

 
 
 =  
 
 
 

L

L

M M O M

L

 

is a diagonal covariance matrix with the marginal variances 
2

,m jσ , 1, 2,  ..., 23 j = fitted using the experimental data and 
the predictions from the m-th neural network. The Gaussian 
model is not a limitation of the method because it is straight- 
forward to incorporate other distributions for modeling the li- 
kelihood of state variables (e.g., Gaussian mixture models 
(Don and Rees, 1985) or impulsive models (Garcia and Faus, 
1991)). 

The dynamic states 1, 2, 3,, ,i i ix x x and 4,ix (type of traffic 
flow, number of vehicles with sirens and impulsive sound 
events, respectively) are discrete first-order Markov chains 
with transition probabilities given by the matrices: 
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1

0.23 0.30 0.05 0.11 0.12 0.19

0.05 0.34 0.17 0.16 0.28 0

0 0.46 0.17 0.37 0 0

0.19 0.37 0.08 0.31 0.05 0

0.03 0.10 0 0.07 0.55 0.25

0.19 0 0 0 0.25 0.56

P

 
 
 
 

=  
 
 
 
  

 

2

0.99 0.01

1 0
P

 =  
 

 

3 4

0.42 0.58 0.77 0.23
and

0.53 0.47 0.72 0.28
P P

   = =   
   

 

 
respectively (Note: We assume that a discrete variable ,i tx  
can take the values described in the value-range column of 
Table 1. Let j

ix  be the j-th value in the range of variable , .i tx  
The entry in the k-th row, l-th column of iP , denoted ,k l

iP , is 
the probability mass , , 1( )).l k

i t i i t ip x x x x−= = For the continu- 
ous variables (traffic flows), 5, 10,, ..., ,t tx x we have chosen a 
simple random walk model of the form: 

 

( ) ( )2
, , 1 , , 1| ; , , 5, ... ,10i t i t i t i t ip x x N x x iα− −= =  (7) 

 
where 2

iα is a variance fitted using the collected data. We assu- 

me that the state variables evolve independently over time, i.e., 
10

1 1 , , 1( | ) ( | ).t t i i t i tp x x p x x− = −= ∏  

These two models have been chosen because they show a 
good and similar behavior in predicting sound pressure levels. 
For urban planning, the selection of the model with the best 
performance is important because, even if both models have 
similar accuracy, the difference between predictions is not tri- 
vial in Environmental Acoustics and can imply a substantial 
increase in the annoyance of the inhabitants or in the quantity 
of affected population. 

3. Criterion for Model Selection 

The aim of this paper is to formally show how, following 
a general Bayesian approach presented in Djuric (1998), it is 
possible to score, and then select, different state-space models 
to predict the indicators of sound pressure level. We have ex- 
plicitly defined two models in Section 2.4, but the criterion 
(and procedure) to be introduced can be easily extended to an 
arbitrary number of candidate models and/or different models 
(i.e., with other model variables, different types of nonlinear 
prediction functions, etc.). 

Let the index {1, 2}m ∈ refer to the state-space model. We 
assign a prior probability p(m) to each model m and, given a 
fixed record of experimental data 1: 1 2{ , , ..., }T Ty y y y∈ , we 
use 1:( | , )Tp m y θ to denote the a posteriori probability mass of 
the model m given the data and the static variables in θ. For 
the rest of this paper, we assume θ is known and leave the 
dependences on this fixed vector implicit. Therefore, we wri- 
te 1:( | )Tp m y for the posterior probability of the model m and 

1: 1:( | ) ( | , )T Tp y m p y m θ= for the associated likelihood. 

A natural criterion to choose the model that best fits the 
data is to solve the problem: 

( )1:
{1, 2}

ˆ arg | T
m

m p m ymax
∈

=  (8) 

where m̂ is the maximum a posteriori (MAP) model choice. 
For calculating 1:( | )Tp m y , we apply the Bayes’ theorem: 

( ) ( ) ( )
( )

1:
1:

1:

|
| T

T
T

p y m p m
p m y

p y
=  (9) 

where 1:( | )Tp y m is the joint probability density of the obser- 
vations 1:Ty , conditional on the model m, ( )p m is the prior 
probability of m and 1:( )Tp y is the unconditional probability 
density of 1:Ty (which is constant with respect to m). After 
applying the chain rule to Equation (9), we rewrite (8) as: 

( ) ( )1 1: 1
{1, 2}

ˆ arg | ,T
k k k

m
m p y y m p mmax = −

∈
= ∏  (10) 

where 1: 1( | , )k kp y y m− is the predictive probability density of 
the sound pressure level indicators at time k given the pre- 
vious indicators and the model m, for 1,  2, ...,k = T. In order to 
ease the calculations, let us take the logarithm of the pro- duct 
in (10), to obtain: 

( ) ( )

( ) ( )

1: 1
{1, 2} 1

1: 11{1, 2}

ˆ arg log | ,

arg log | , log

T

k k
m k

T

k kkm

m p y y m p mmax

p y y m p mmax

−
∈ =

−=∈

 =  
 

 = + 

∏


   (11) 

Notice that the optimization problems (8) and (11) are 
equivalent because log(z) is a monotonically increasing fun- 
ction. Finally, for notational convenience, we define the obje- 
ctive function: 

( ) ( ) ( )1: 11
log | , log

T

m k kk
J T p y y m p m−=

= +  (12) 

and reduce the model selection problem to choosing the index 
 that yields the highest value of ( )mJ T , i.e.: 

( )
{1, 2}

ˆ arg m
m

m J Tmax
∈

=  (13) 

In many cases, it may be of interest to compare the can- 
didate models in terms of their ability to predict a scalar ob- 
servation yi,t, 1, 2, ...i = , instead of the joint vector yt (e.g., in 
order to determine the sensitivity of the model for a given 
sound pressure level). The derivation of the MAP criterion is 
exactly the same as before. Namely, for the -th observation, 
we select: 

( )
{1, 2}

ˆ arg i
m

m
m J Tmax

∈
=  (14) 

where: 

( ) ( ) ( ), ,1: 11
log | , log

Ti
m i k i kk

J T p y y m p m−=
= +     (15) 
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The MAP selection method that we propose in this paper 
is summarized as: 

Initialization. a. Obtain the prior probability mass function ( )p m  
for the indices {1, 2}m ∈ . b. Let (0) log ( )mJ p m= , {1, 2}m ∈ . 

Sequential update. For 1, 2,  ...,t T= , a. Compute the predictive pdf 1: 1( | , )t tp y y m− . b. Update the objective function, ( ) ( 1)m mJ t J t= −  
1: 1log ( | , )t tp y y m−+  

Selection. Choose the model ( )
{1, 2}

ˆ arg m
m

m J Tmax
∈

= . 

4. Numerical Implementation 

The model selection method introduced in Section 3 
demands the evaluation of the sequence of posterior pdf’s 

1: 1( | , )t tp y y m− , 1, 2,  ...,t T= , for each model. Unfortunately, 
due to the nonlinearity ( , )m tg x θ in Equation (6), there is no 
closed-form expression for these densities, which, therefore, 
have to be approximated numerically. 

In this paper, we propose to carry out these approxi- 
mations using particle filtering (Gordon et al., 1993; Doucet et 
al., 2000). Specifically, we apply a variation of the standard 
particle filter (Gordon et al., 1993; Doucet et al., 2001) that 
includes a Markov Chain Monte Carlo (MCMC) move after 
the resampling step. The aim of this move is to enhance the 
diversity of the particle set (Gilks and Berzuini, 2001). The 
specific MCMC technique we have used in this paper is a 
Metropolis-Hastings algorithm, as described in Chib and 
Greenberg (1995). The algorithm is described as follows: 

Initialization. Let M be the number of particles. Draw 
( )
0
ix from 0( )p x , 1, 2,  ...,i M= . 

Recursive steps. For 1, ...,t T= : 

a. Draw (i)
tx from ( )

1( )i
t tp x x − , 1, 2,  ...,i M= . 

b. Update the importance weights, (i) (i)
t t tw =p(y x ,   

),m and normalize them,
M(i) (i) (j)

t t tj=1
w = w w , 

 1, 2,  ...,i M= . 

c. Multinomial resampling: for 1, 2,  ..., ,i M= let 
(i) (k)
t tx =x with probability ( )k

tw , {1, , }.k M∈ ⋅⋅⋅  

d. MCMC move: take one step of the Metropo- 
lis-Hastings method to generate ( )i

tx from ( ) ,i
tx  

1, 2,  ...,i M= . 

Let xδ denote the unit delta measure centered at x and 
consider the two sets of particles (samples in the state space) 

(i) M
t i=1{x } and ( )

1{ }i M
t ix =  generated by the particle filter at each 

time step t. We can construct two random measures: 

( ) ( )1: 1
1

1
| , (i)

t

M

M t t tx
i

dx y m dx and
M

π δ−
=

=    

( ) ( )( )1:
1

1
| , ,i

t

M

M t t tx
i

dx y m dx
M

π δ
=

=   

that enable the approximation of integrals with respect to 

( )1: 1|t tp x y − and ( )1:| ,t tp x y respectively. Indeed, for any inte- 
grable real function f in the state-space: 

 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

1: 1 1: 1

1: 1:

( )

1

| , | ,

| , | ,

1

t t t t t M t t

M
(i)
t

i=1

t t t t t M t t

M
i

t
i

f x p x y m dx f x dx y m

1
f x

M

f x p x y m dx f x dx y m

f x
M

π

π

− −

=

≈

=

≈

=

 



 




 

 
The asymptotic convergence (as M → ∞ ) of such appro- 

ximations can be guaranteed under mild regularity assump- 
tions (Crisan, 2001; Moral, 2004; Bain and Crisan, 2008). In 
particular, we note that the predictive pdf’s ( )1: 1| ,t tp y y m− can 
be written as integrals of the form: 

 

( )
( ) ( )

1: 1

1: 1: 1

| ,

| , | , , 1, 2,  , ,

t t

t t t t t

p y y m

p y x m p x y m dx t T

−

−≈ = ⋅ ⋅⋅
 

 
and hence we compute their approximations as: 

 
( ) ( )1: 1 1: 1| , | , ,M t t t tp y y m p y y m− −≈  

 
where: 

 

( ) ( ) ( )

( )
1: 1 1: 1| , | , | ,M t t t t M t t

M (i)
t ti=1

p y y m p y x m dx y m

1
= p y |x

M

π− −= 
 

 (16) 

 
We use Equation (16) for the computation of the object- 

tive functions ( )mJ t ,1 t T≤ ≤ , i.e., we let: 

 

( ) ( )( ) ( )1: 11
log | ,

T

m M k kk
J t p y y m p m−=

≈ +   (17) 

 
in all the experimental results to be shown in Section 6. 

5. Comparison with Other Bayesian Methods for 
Model Selection 

5.1. Bayes Factors 

Given two competing models, {1, 2}m ∈ , and a sequen- 
ce of observations 1:Ty , the Bayes factor in favor of the 
model m = 1 (and against m = 2) is the ratio of model 
likelihoods (Bernardo and Smith, 2009; Definition 6.1): 

( ) ( )
( )

1:
12 1:

1:

| 1

| 2
T

T
T

p y m
B y

p y m

=
=

=
 

with 1
21 1: 12 1:( ) ( )T TB y B y−= . Bayes factors are naturally compa- 

red to the ratio of prior model probabilities weighted by the 
loss or penalty associated to decision errors (see Proposition 
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6.1 in Bernardo and Smith (2009)). In particular, let lij be 
the penalty due to selecting model m = i when the “true” 
model is m = j. Then, model m = 2 should be preferred over 
m  = 2 if, and only if: 

( ) ( )
( )

12
12 1:

21

2

1T

p ml
B y

l p m

=
< ×

=
(18) 

However, if 12 21l l= , then it is apparent that the criterion 
(18) reduces to the MAP criterion in Equation (14), since 

12 1:( ) ( 2) / ( 1)TB y p m p m< = = if and only if 1:( 1 | )Tp m y=
1:( 2 | )Tp m y> =  When the penalties are not symmetric it is 

straightforward to redefine the priors for the competing mo- 
dels as 12p(m=2)=l p(m=2)  and then the prosed MAP 
criterion (with priors p(m) , {1, 2}m ∈ ) is, again, equivalent to 
the criterion given by Equation (18). 

While the Bayes factors may be a convenient tool for 
comparing two models, the MAP criterion can be applied in a 
direct manner to problems involving many competing models. 

5.2. Deviance Information Criterion 

The deviance information criterion (DIC) (Spiegelhalter 
et al., 2002) has become a popular tool for Bayesian model 
selection in the last decade. It relies on the computation of a 
deviance or discrepancy between the model and the available 
data. For the class of state-space model in Section 3, the devi- 
ance takes the form: 

( ) ( )0: 1: 0,:, 2log | , 1T T TD x m p y x m= − =

and the DIC criterion consists in choosing the value of m for 
which the statistic: 

( ) ( ) ( )0: 0: 1:, | ,T T T pDIC m D x m dx y m dπ= + (19) 

is minimum, where pd  is a penalty term (that penalizes hi- 
gher dimensional models) of the form: 

( ) ( )
( )( )

0: 0: 1:

0: 0: 1:

, |

| ,

p T T T

T T T

d D x m dx y

D x dx y m

π

π

=

−




(20) 

Obviously, the integrals in Equations (19) and (20) can- 
not be computed exactly, but we can resort to the random 
measure: 

( ) ( )( )
0:

0: 1: 0:
1

1
| , i

T

M

M T T Tx
i

dx y m dx
M

π δ
=

=   

produced by the particle filter in order to approximate them. 

Therefore, a test based on the DIC criterion is, in princi- 
ple, implementable. However, it is straightforward to realize 
that the numerical implementation of the MAP model selec- 
tion technique is more efficient. Indeed, the implementation 
of the proposed MAP scheme only requires the approximation 
of the sequence of measures 1: 1( | , )t tdx y mπ − for model m (na- 
mely, to be used in Equation (16)), where  is a 10 × 1 
vector for every 0,1, ...,t T= . To implement the DIC scheme, 

on the contrary, we need to build an approximation of 

0:( |Tdxπ 1: , )Ty m for each m, where the dimension of 0:Tx  is 
10(T+1) × 1. It is well known that PF’s are efficient in the 
approximation of 1:( | , )t tdx y mπ  but not for the approxima- 
tion of the higher dimensional 0: 1:( | , )T Tdx y mπ ; see, e.g. 
Doucet et al. (2000), Cappé et al. (2007) or Künsch (2013) for 
a dicussion. This can potentially impair the computation of 
the deviances for the competing models, specially (and 
paradoxically) as more data is accumulated. 

6. Experimental Results

The proposed comparison method is validated using the 
two ANN-based state-space models defined in Section 2.4 and 
experimental data collected in the streets 2, 3 and 6 of Table 2. 
We have chosen these three streets because they present dif- 
ferent traffic conditions and urban settings. The street number 
2 is a large commercial area with high flow of heavy vehicles, 
light vehicles, and motorcycles, the street number 3 has a 
great ascendant traffic slope and high flow of heavy vehicles, 
and the street number 2 is a narrow street with low traffic 
flow. 

A priori, model 1 should be expected to obtain the best 
results because its prediction function (network 1) has been 
calibrated using an additional Bayesian regularization process 
which has been shown to improve the generalization capabi- 
lities in neural networks (MacKay, 1992; Foresee and Hagan, 
1997). Moreover, in Torija et al. (2012), the configuration of 
network 1 slightly outperformed the configuration of network 
2, in terms of mean squared error (MSE) and linear regre- 
ssion. 

In this paper, we assess the candidate models with the 
presented method in two ways. First, we compare their ability 
to predict the 23 indicators of sound pressure level jointly and, 
second, we evaluate their ability to predict 6 relevant scalar 
indicators individually. In each case, we apply the proposed 
MAP selection method to the two competing models using M 
= 500 samples in the particle filtering algorithm and data se- 
quences of length T = 25 time steps (2 minutes each). We con- 
sider the same prior probability, p(m) = 0.5, for both models. 

Moreover, we show the improvement of the best model 
(the model with the maximum value of ( )J T ) in all the expe- 
riments, i.e., we calculate the normalized difference between 
the goodness indicators ( )J T of the candidate models in per- 
centtage:  

( ) ( )
( ) ( )( )

1 2

1 2

Improvement (%) 100
,

J T J T

min J T J T

−
= ×

6.1. Model Comparison for the Complete Indicator Set 

In this first set of experiments, the observation vectors 

1, , Ty yL  are 23 dimensional, as shown in Equation (3), i.e., 
they contain all the indicators of sound pressure level descry- 
bed in Section 2.1. Using the particle approximation of Equa- 
tion (17), we have evaluated the objective function ( )mJ T
for the two competing models (m = 1 and m = 2) using 
separately the time series of data from streets 2, 3 and 6. 
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Table 3. Model Comparison for the Complete Indicator Set in 
Three Selected Streets* 

Model (m) 
Jm(T) 

Street 2  Street 3  Street 6 
1 -728.12  -764.99  -851.18 
2 -939.20  -970.01  -1092.56 

*The highest value of Jm(T) which is obtained for each street is displayed 
in bold face. 

 
Table 4. Model Comparison for Scalar Observations in Three 
Selected Streets* 

Street 
Observ- 
ation (i) 

Ji
m(T) 

Improvement (%) 
Model 1 (m = 1) Model 2 (m = 2) 

2 1  -44.34  -56.59  21.6 

2  -35.56  -40.90  13.1 
3  -37.53  -41.66  9.9 
4  -37.53  -44.95  16.5 
5  -43.78  -50.58  13.4 

6  -36.01  -40.70  11.5 
3 1  -50.70  -57.16  11.3 

2  -50.01  -50.13  0.2 
3  -50.26  -52.42  4.1 
4  -48.08  -51.21  6.1 
5  -45.85  -50.12  8.5 
6  -38.68  -42.10  8.1 

6 1  -68.81 -63.04 8.4 

2  -41.50 -41.37 0.3 

3  -54.56 -53.10 2.7 

4  -52.18 -51.40 1.5 

5  -52.41 -54.19 3.3 

6  -72.89 -64.61 11.4 

*The highest value of Ji
m(T) for each observation is shown in bold face. 

 
The results are displayed in Table 3. We observe that 

( ) ( )1 2J T J T>  for the three data sets. Specifically, model m 
= 1 attains an improvement of 22.5% for street number 2, 
22.1% for street number 3 and 22.1% for street number 6. 
Therefore, model m = 1 is the MAP choice ( ˆ 1m = ) for these 
three streets when the complete set of indicators (sound 
pressure level and its spectral composition) are considered. 

Figure 1 shows the evolution of the objective functions 
( )1J t and ( )2J t  over time, for 1 25t T≤ ≤ = steps, for the 

three data sets corresponding to streets 2, 3 and 6, respectively. 
We observe that ( ) ( )1 2J t J t>  for all, even small, t. More- 
over, the gap ( ) ( )1 2J t J t− grows consistently over time, indi- 
cating that model m = 1 is a better fit than model m = 2 for 
these data sets. 

This result confirm that the model which uses the neural 
network trained with an additional Bayesian regularization al- 
gorithm (network 1; studied in Torija et al. (2012)) obtains 
better predictions. 

 
6.2. Model Comparison for Scalar Indicators 

In this section, we show the results of using the proposed 
methodology to compare two competing models for a subset 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model comparison in streets 2(a), 3(b) and 6(c) 
using all indicators (23 sound pressure levels). J1(T) and J2(T) 
are depicted in solid and dash-dotted lines, respectively, for 1 
≤ t ≤ T = 25. The dots at t = 25 yield the values of J1(T) and 
J2(T). 

 
of six (scalar) indicators: (1) LAeq, (2) L125Hz, (3) L250Hz, (4) 
L500Hz, (5) L1KHz, (6) L3.15KHz. The studied descriptors character- 
rize the overall sound pressure level and 1/3-octave band sou- 
nd levels at low, medium and high frequencies. The aim is to 
show that the proposed technique can be successfully app- 
lied to compare the competing models in terms of their ability 
to estimate individual sound pressure level indicators and then 
achieve a deeper analysis of both candidates. Therefore, the 
observations  considered in this section are scalars and we 
successively compare the models for yt = yi,t, i = 1, …, 6, 
where yi,t represents the i-th indicator at time t. The com- 
parisons are carried out using the objective functions: 

( )
( )( ) ( ), ,1: 11

log | , , 1, ..., 6

i
m

t

M i k i kk

J t

p y y m p m i−=
≈ + =

 (21) 

where the factors 
M

(j)

M i,k i,1:k-1 i,k ki=1
p (y |y ,m)=( 1 M ) p(y |x )   are particle 

approximations of the true densities. 

 

(b) 

(a) 

(c) 

i=1 
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Figure 2. Street 2: Evolution of the functions J1

m (t), …, J6
m(t), 

m = 1, 2, over time for 1 25t T≤ ≤ = . (The curves for model 
m = 1 are depicted as solid lines, while the curves for model m 
= 2 are dash-dotted. Each plot corresponds to a different 
indicator of sound pressure level: (a) LAeq, (b) L125Hz, (c) L250Hz, 
(d) L500Hz, (e) L1KHz, and (f) L3.15KHz. Same formats for other 
Figures) 
 
6.2.1. Large Commercial Area with High Traffic Flow (Street 
2) 

Table 4 displays the values of ( )i
mJ T for m = 1, 2, and i = 

1, …, 6, obtained for the data set of street number 2. The same 
as in Section 6.1, model m = 1 is clearly superior to model m 
= 2. Depending on the indicator of sound pressure level being 
observed, the improvement of model m = 1 over model m = 2 
ranges from 9.9% up to 21.6%. 

Figure 2 depicts the evolution of the objective functions 
( )i

mJ t , m = 1, 2, and i = 1, …, 6, over 1 25t T≤ ≤ = . They 
show how model m = 1 improves over model m = 2 for all 
studied indicators when t > 8. 

As in Section 6.1, the results are coherent with the fact 
that model 1 uses a neural network for noise prediction that 
works better than the network used in model 2 (see Torija et 
al., 2012). 

 
6.2.2. Street with a Great Ascendant Traffic Slope and High 
Flow of Heavy Vehicles (Street 3) 

We have conducted a similar study for street number 3. 
The final values of the objective functions, ( )i

mJ T  for m = 2, 
i = 1, …, 6 and T = 25 time steps, are shown in Table 4. As in 
Section 6.2.1, model m = 1 is consistently better than model m 
= 2, although for the indicator of sound pressure level y2,t= 
L125Hz

 
the improvement is marginal and the two models can be 

considered equally good. 

 
Figure 3. Street 3: Evolution of the functions J1

m (t), …, J6
m(t), 

m = 1, 2, over time for 1 25t T≤ ≤ = . 
 

Figure 3 shows the evolution over time of the functions 
( )i

mJ t , m = 1, 2, i = 1, …, 6 and 1 25t T≤ ≤ = . We observe 
that the two models perform equivalently for y2,t= L125Hz but 
the difference ( ) ( )1 2 0J t J t− > grows consistently over time 
for the other five indicators of sound pressure level. 

As expected, model 1 (based on network 1) is also cho- 
sen as the best predictor of the studied scalar indicators by the 
proposed model selection method in this street. 

 

6.2.3. Narrow Street with Low Traffic Flow (Street 6) 

The same kind of experiment yields rather different re- 
sults for the street number 6. Table 4 displays the values of the 
objective function ( )i

mJ T for m = 1, 2 and i = 1, …, 6. We ob- 
serve that ( ) ( )2 1

i iJ t J t>  (i.e., model m = 2 has a larger 
posterior probability) for all studied indicators except y5,t = 
L1KHz. The improvement attained by model m = 2, however, is 
only relevant for the indicators LAeq and L3.15KHz (i = 1 and 6), 
respectively. 

Figure 4, that shows the evolution over 1 25t T≤ ≤ = of 
the functions ( )i

mJ t , m = 1, 2, i = 1, …, 6, allows us to 
observe that models m = 1 and m = 2 perform approximately 
equivalently for the indicators of sound pressure level i = 2, 3, 
4 and 5. For i = 1, 6, we find that ( ) ( )2 1

i iJ t J t> for 10t ≥ . 

The reasons why model m = 2 is a better predictor for the 
indicators of sound pressure level in this street number 6 
while model m = 1 is superior in streets 2 and 3 can be as- 
sessed by considering the correlation between the dynamic 
state variables and the distinct indicators in each street. 

Table 5 displays the Pearson correlation coefficients 
(Rodgers and Nicewander, 1988) between each one of the ten  
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Figure 4. Street 6: Evolution of the functions J1

m (t), …, J6
m(t), 

m = 1, 2, over time for 1 25t T≤ ≤ = . 
 
Table 5. Pearson’s Correlation Coefficients between Dynami- 
cal State Variables and LAeq  
  State Variables (xt)  Street 2  Street 3 Street 6 

1 Type of Traffic Flow  0.246  0.127  -0.717**
2 Ascendant Flow of Light Vehicles  0.058  0.312  - 
3 Descendant Flow of Light Vehicles  -0.113  -  0.679**
4 Ascendant Flow of Heavy Vehicles  0.672**  0.716** - 
5 Descendant Flow of Heavy Vehicles  0.147  -  - 
6 Ascendant Flow of Motorcycles  0.249  0.264  - 
7 Descendant Flow of Motorcycles  -0.048  -  0.465* 
8 Number of Vehicles with Sirens  -  -  - 
9 Impulsive Sound Event related to 

Traffic  
0.705**  0.756** 0.622**

10 Impulsive Sound Event unrelated to 
Traffic  

0.525**  -0.180  0.398* 

Note: Bilateral Significance: * P ≤ 0.05, ** P ≤ 0.01. 
 
dynamic state variables, x1,t …x10,t, and the indicator of sound 
pressure LAeq (corresponding to i = 1). It is observed that the 
output LAeq is highly correlated with the dynamic variables: (a) 
x4,t (ascendant flow of heavy vehicles), x9,t (impulsive sound 
event related to traffic) and x10,t (impulsive sound event un- 
related to traffic) in the street number 2, (b) x4,t and x10,t in the 
street number 3 and (c) x1,t (type of traffic flow), x3,t (de- 
scendant flow of light vehicles), x7,t (descendant flow of 
motorcycles) and x9,t (impulsive sound event related to tra- 
ffic) for the street number 6. 

It is apparent that the key state variables that determine 
the value of the indicator LAeq are different for the streets 2 
and 3, on one hand, and the street number 6, on the other hand. 
Thus, according to the results of the comparison method, we 
deduce that the model m = 1 is a better predictor of sound 

pressure levels in areas with a high traffic flow of heavy 
vehicles (streets 2 and 3), and the model m = 2 is a better pre- 
dictor of the indicators in narrow streets with a low non-heavy 
traffic flow (street number 6). 

Note that the proposed MAP model selection method is 
more general than the study of MSE values and regression 
coefficients (because it takes into account the complete pdf 

( )1: |Tp y m  for each competing model) and yields a single 
quantity, ( )i

mJ T , to be compared between models, rather th- 
an calculating several performance indicators. 

7. Conclusions 

In this paper we have introduced a method for comparing 
dynamic models that predict indicators of the sound pressure 
level and its spectral composition. The proposed technique is 
based on the calculation of the posterior probability of each 
candidate model from a time series of measurements. The pre- 
diction models are formally described as dynamic systems in 
state-space form. Since the observations are nonlinear trans- 
formations of the state variables, the posterior probabilities 
cannot be calculated analytically and it is necessary to appro- 
ximate them numerically. For this task, we use a particle fil- 
tering algorithm with Markov chain Monte Carlo moves in the 
resampling step to increase the diversity of the particles. 

The selection of the model with the best performance is 
important because, even if both models have similar accuracy, 
the difference can imply wrong decisions in urban planning; 
hence a substantial increase in the annoyance of the inhabi- 
tants or in the quantity of affected population. The proposed 
comparison method enables us to select the best model (speci- 
fically, the one with the largest posterior probability given the 
available data) between similar competing models. For testing 
the procedure, we have chosen two ANN-based models as 
candidates. The reason for choosing these models is that they 
show a good behavior in predicting environmental noise le- 
vels from real data. For the comparison, we have used a series 
of experimental observations of sound pressure levels which 
were measured in the city of Granada (Spain). According to 
the results, on one hand, model number 1 is a better predictor 
than model number 2 for the complete indicator vector in th- 
ree studied streets, i.e, the model number 1 makes the most 
reliable predictions of 23 sound pressure level indicators ac- 
cording to the MAP criterion that we propose in this paper. On 
the other hand, the model number 1 is a better predictor for all 
sound indicators which we studied individually in streets with 
a high traffic flow of heavy vehicles (streets 1 and 2), and the 
model number 2 has a higher ability to predict most of the 
studied scalar descriptors in narrow streets with a low 
non-heavy traffic flow (street 3). 

These results confirm the experimental experience of our 
research group, since we had empirically found model number 
1 to be the fittest for predicting the complete set of sound pre- 
ssure level descriptors (the A-weighted sound pressure level 
LAeq, the no-weighted sound pressure level Leq, and the sound 
level in 1/3 octave bands from 40 Hz to 4 kHz) in the given 
examples. 
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