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ABSTRACT.  Characterizing the spatiotemporal patterns of water bodies is an important environmental issue in the management and 
protection of water resources. The primary objective of this study was to assess the spatiotemporal characteristics of environmental 
monitoring data from Lake Taihu to improve water pollution control practices. A methodologically systematic application of a 
self-organizing map (SOM) was utilized for data mining in the northern part of Lake Taihu, China. The monitoring data set contained 
14 variables from eight monitoring stations during the period 2000-2006. The SOM classified the data set into 10 clusters displaying a 
markedly different pattern. We determined the spatiotemporal distribution of water quality based on the data frequency at each station 
monitored monthly in the study area. Based on the SOM analysis results, we suggest that the government should increase the number 
of monitoring points in the region. Given the relatively poor water quality in the region, unnecessary points should be decreased and 
different control measures should be implemented during different seasons. The results of this study could assist lake managers in 
developing suitable strategies and determining priorities for water pollution control and effective water resource management. 
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1. Introduction  

Human activities in basins have increased the amount of 
pollutants discharged into rivers and eventually imported into 
lakes and reservoirs worldwide, thereby resulting in a substan- 
tial deterioration of water quality and degradation of water 
environments (Jin et al., 2011). Hence, preventing and contro- 
lling water pollution and regularly implementing monitoring 
programs, which provide water managers with the necessary 
information for water resource management in general and wa- 
ter quality management in particular, are essential (Zhou et al., 
2007a; Khalil and Ouarda, 2009). One critical step to effect- 
tively control water pollution is the development of water qu- 
ality monitoring programs that can adapt to environmental co- 
nditions and spatio-temporal patterns (Su et al., 2011). To co- 
ntrol water pollution and protect water resources, the Chinese 
government has spared no effort to establish a number of en- 
vironmental monitoring systems and implement various water 
quality monitoring programs for prevention policy making. 
However, such monitoring systems obtain a large amount of 
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water quality data, including physical properties and nutrient, 
inorganic, and biological parameters, which are difficult to an- 
alyze and interpret because of the latent inter-relationships be- 
tween parameters and monitoring stations (Shin and Fong, 19 
99; Zhou et al., 2007b; Zhang et al., 2009). Therefore, extrac- 
ting meaningful information from these data by using advan- 
ced mathematical methods is a fundamental requirement to in- 
terpret spatiotemporal patterns and mining useful information 
for water quality management. 

Generally, the application of multivariable statistical me- 
thods is a valuable tool to obtain a better understanding and 
interpretation of complicated data sets. Canonical correlation 
analysis, cluster analysis (CA), discriminant analysis (DA), 
principal component analysis (PCA), factor analysis, absolute 
principle component score-multiple linear regression, and fa- 
ctor analysis-multiple regression analysis are the commonly 
accepted traditional multivariate methods used to evaluate 
spatiotemporal variations in environmental research (Lov- 
chinov and Tsakovski, 2006; Zhou et al., 2007a; Omo-Irabor 
et al., 2008; Noori et al., 2012). In recent years, efforts have 
been made to involve more sophisticated approaches, such as 
self-organizing maps (SOM) (Tsakovski et al., 2010a, b; Jin et 
al., 2011; Oyana, 2009), in spatiotemporal classification, po- 
llution pattern recognition, and modeling studies with surface 
water quality data sets or to compare SOM classification with 
more traditional multivariate statistical classification methods 
(Astel et al., 2007). These methods have already been used for  
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Figure 1. Location of monitoring points on the northern part 
of Lake Taihu, China. 

 
surface water quality analyses. A previous work (Astel et al., 
2007) has indicated that SOM can be used to reach a specific 
“resolution” of the proposed classification scheme compared 
with more traditional methods, such as CA. Although SOM is 
the standard method in environmetric studies (Chon, 2011), its 
application has not been fully examined in water quality stu- 
dies in China. 

The main purpose of the study is to evaluate the spatio- 
temporal patterns in water quality in the northern part of Lake 
Taihu, China and to demonstrate how more advanced SOM 

approaches could contribute to a better understanding of the 
data collected during monitoring episodes of a long period of 
observation. This study is the first to investigate the water 
quality in Lake Taihu based on the SOM approach. The re- 
sults could be useful in water quality assessment. 

2. Study Area and Data Set 

Lake Taihu, with a surface area of approximately 2,400 
km2, is the third largest freshwater lake in the People’s 
Republic of China in terms of area. Lake Taihu is located app- 
roximately 150 km west of Shanghai, Eastern China on the 
border of the Jiangsu and Zhejiang provinces, and the lake 
center coordinates are at 31°10′0″ N, 120°9′0″ E. The waters 
of the lake belong to Jiangsu province in its entirety, and part 
of its southern shore forming the boundary is between the two 
provinces with an area of 2,250 km2 and an average depth of 2 
m. The Taihu drainage basin is 36,500 km2. The lake has more 
than 30 input sources, which range from rivers to small strea- 
ms and manufactured drainage canals. Water exits the south- 
eastern corner of Lake Taihu via the Taipu River, which drains 
through Shanghai into the East China Sea (Paerl et al., 2011). 

Meiliang Bay is one of the most eutrophied bays in the 
northern part of Lake Taihu and is the site of recurring and 
intensifying Microcystis spp. blooms (Qin et al., 2007; Chen 
et al., 2003a, b). Eutrophication affects the multiple uses of La- 
ke Taihu, including drinking water abstraction and fisheries. 
Thus, establishing monthly monitoring is important to find re- 

medies against eutrophication by focusing on the effects on 
the northern part of Lake Taihu. The National Ecosystem Re- 
search Network of China (CNERN) Taihu Laboratory for La- 
ke Ecosystem Research (TaiLLER) has established eight sam- 
pling stations covering the Meiliang Bay (inner and outer bays, 
including monitoring stations THL00, THL01, THL03, THL- 
04, THL05, and THL06) and the lake center (main lake, inclu- 
ding monitoring stations THL07 and THL08) (Figure 1). 

Fourteen parameters from eight long-term positioning 
stations in Lake Taihu from CNERN TaiLLER in seven years 
(2000 ~ 2006) were used for analysis. The environmental mo- 
nitoring data included water depth (WD, m), temperature 
(T, °C), Secchi depth (SD, m), suspended solids (SS, mg/L), 
dissolved oxygen (DO, mg/L), ammonium ( 4NH -N+ , mg/L), 
nitrite ( 2NO -N− , mg/L), nitrate ( 3NO -N− , mg/L), total nitro- 
gen (TN, mg/L), phosphate ( 3

4PO − , mg/L), total phosphorus 
(TP, mg/L), sulfate (SO4

2-, mg/L), chlorophyll a (Chl-a, µg/L), 
and pheophytin (Pheo, µg/L). The selected parameters WD, 
SD, and T were measured on-site, and the other parameters 
were measured in the laboratory of CNERN based on the en- 
vironmental quality standard methods for the surface water of 
China (Wei et al., 2002) and the standard methods for obser- 
vation and analysis in China (Huang et al., 1999). Table 1 
shows the summary descriptive statistics of these parameters. 

3. Methodology 

3.1. Self-Organizing Map 

The SOM was proposed by Teuvo Kohonen (Kohonen, 
1982a,b; Kohonen and Makisara, 1989; Kohonen, 1990) and 
is used for the visualization and interpretation of large high- 
dimensional data sets. The SOM is a type of artificial neural 
network that can be trained using the unsupervised learning 
algorithm to produce a low-dimensional (typically two-di- 
mensional), discretized representation of the input space of the 
training samples, called a map. The SOM is an automatic data 
analysis method (Kohonen, 2008) and is different from other 
artificial neural networks in the sense that it uses a neigh- 
borhood function to preserve the topological properties of the 
input space. The SOM also has the properties of vector quan- 
tization and vector projection algorithms (Vesanto, 2000). 
Currently, the SOM has been frequently applied as a powerful 
and effective data mining tool for the detection of data charac- 
teristics by pattern recognition, classification, and visualize- 
tion onto two-dimensional arrays. Statistically, the SOM is 
utilized in exploratory analysis of large multivariate statistical 
data (Kohonen, 2008). 

An SOM consists of neurons organized on a regular low- 
dimensional grid, and the number of neurons may range from 
a few dozen up to several thousands. The neurons are connec- 
ted to adjacent neurons by a neighborhood relation, which de- 
termines the topology or structure of the map (Vesanto et al., 
2000), and similar objects (in this case, sampling locations) 
should be mapped close together on the grid (Astel et al., 
2008). The typical structure of an SOM consists of two layers, 
namely, an input layer, which classifies data based on their 
similarity, and a Kohonen map or output layer of neurons 



W. Li et al. / Journal of Environmental Informatics 26(1) 71-79 (2015) 

 

73 

arranged as a two-dimensional map. The input layer contains 
a neuron for each variable (e.g., T, DO) in the data set. The 
output layer neurons are connected to every neuron in the in- 
put layer through adjustable weights or network parameters. 
The weight vectors in the Kohonen layer provide a repre- 
sentation of the distribution of the input vectors in an ordered 
manner. The successive procedures required to apply the SO- 
M can be divided into three categories, namely (Kalteh et al., 
2008), (i) data gathering and normalization, (ii) training, and 
(iii) extracting information from the trained SOM. Post-pro- 
cessing of data sets is well-documented in several references 
(Kohonen and Somervuo, 2002; Vesanto, 2000; Kohonen, 20 
01, 2003a,b), and the advantages of the SOM in relation to 
conventional ordination methods, such as PCA and CA, are 
discussed elsewhere (Astel et al., 2007). 

Map quality is estimated by the correspondence between 
input data and trained map measured using quantization errors 
and topographic errors (TE). A low TE (close to 0) indicates 
that the SOM is good at preserving the topology. 

For the total number of map units, a heuristic formula of 
m = 5 N  (where N is the number of data samples) is ge- 
nerally utilized (Vesanto et al., 2000). When the map size that 
was determined is large, the amount of detailed patterns that 
can be identified increases. However, the topographical proxi- 
mity of clusters decreases. The heuristic rule can generate an 
optimized map size simultaneously considering the accuracy 
of pattern classification and topographical adjacency among 
clusters (Jin et al., 2011). 

In the present study, we selected the nonhierarchical k- 
means (Wu et al., 2008) classification algorithm for clustering. 
Different values of k (predefined number of clusters) were 
used, and the sum of squares for each run was calculated. In 
addition, the SOM classification provides one more infor- 
mative output, namely, the unified distance matrix (U-matrix) 
plane. The U-matrix plane is used to visualize the distance 
between the nodes in the grid and determine the aforemen- 
tioned cluster structure of the map. The high values in the 
U-matrix plane imply a cluster border, and areas of low values 

indicate clusters themselves (Tsakovski et al., 2010b; Tobis- 
zewski et al., 2010). Finally, we determined the best classify- 
cation method based on the lowest Davies-Bouldin Index 
(DBI) (Davies and Bouldin, 1979; Jin et al., 2011). A detailed 
calculation of the DBI can found in the R document (Des- 
graupes, 2013). 

In the present study, all calculations were conducted us- 
ing MATLAB 6.5 running on Windows XP platform. To im- 
plement SOM-based classification, a free SOM toolbox 2.0 
was utilized, which can be download together with document- 
tation (Vesanto et al., 2000) from the website http://www.cis. 
hut.fi/projects/somtoolbox/. 

 
3.2. Data Set Preprocessing 

To ensure that all variable parameters are given the same 
or similar importance, the monthly mean values must be tran- 
sformed properly before the application of SOM. In particular, 
the results of the SOM application are highly sensitive to the 
data preprocessing method utilized because the SOM is train- 
ed so it can be organized based on the Euclidean distances 
between input data (Alvarez-Guerra et al., 2008). Generally, 
the five methods for standardization of data preprocessing are 
variance scaling (its mean to 0), range scaling into [0, 1], lo- 
garithmic transformation, logistic or soft-max normalization, 
discrete histogram equalization, and continuous equalization 
(Vesanto et al., 2000). In the present study, the skewness of 
the frequency distribution of each parameter was preliminarily 
analyzed by plotting histograms, as shown in Figure 2(a), with 
Pheo as an example. Logarithmic transformation was applied 
to decrease the positive skewness (see Figure 2(b)) of all pa- 
rameters, except for DO, WD, and T, which did not have any 
clear skewness. Logarithmic transformation is used to smooth 
the data and decrease the influence of extreme values. Other- 
wise, the biased distribution may remain, causing 
inappropriate classification by SOM. Variance scaling was 
then conducted for all parameters so that the transformed data 
were distributed symmetrically with the same mean value and 
standard deviation, as shown in Figure 2(c). 

Table 1. Basic Statistics (N = 672) (Monthly Averages) of Water Quality Variables in the Northern Part of Lake Taihu from 
January 2000 to December 2006  

Variable Name Abbreviation Unit Mean Median Minimum Maximum Standard Deviation 

Water depth WD m 2.3 2.5 1 3.4 0.46 
Temperature T °C 18 19 2.1 32 8.4 
Secchi depth SD m 0.42 0.4 0 2.5 0.23 
Suspended solids SS mg/L 51 43 3.4 230 36 
Dissolved oxygen DO mg/L 8.2 8.6 0.47 15 2.8 
Ammonium NH4

+-N mg/L 1.5 0.31 0.002 20 2.2 
Nitrite NO2

--N mg/L 0.073 0.038 0.001 0.74 0.086 
Nitrate NO3

--N mg/L 0.93 0.79 0.001 4.3 0.69 
Total nitrogen TN mg/L 4.3 3.5 0.39 14 2.8 
Phosphate PO4

3- mg/L 0.014 0.005 0 0.17 0.022 
Total phosphorus TP mg/L 0.15 0.11 0.023 2.1 0.12 
Sulfate SO4

2- mg/L 79 74.9 31 210 28 
Chlorophyll a Chla μg/L 20 11 0 520 33 
Phaeophytin Pheo μg/L 4.8 3.55 0 42 4.9 
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Figure 2. Histograms for (a) raw data, (b) logarithmic-trans- 
formed data, and (c) standardized data of phaeophytin. 

 

 
Figure 3. SOM visualization of the distribution of water qua- 
lity parameters for all sampling stations (Note: The U-matrix is a 
representation of the SOM and is used to visualize the distances bet- 
ween neurons and to assist in determining and identifying the cluster 
structure of the map. High values of the U-matrix indicate a cluster 
border; uniform areas of low values indicate clusters themselves. Ea- 
ch component plane displays the values of one variable in each map 
unit. The color tone pattern and color bar labeled as “d” provide infor 
mation regarding species abundance calculated through the SOM lea- 
rning process, where “d” denotes denormalized data values on the co- 
lor bar). 

4. Results and Discussion 

The data set utilized for exploratory analysis consists of 
672 samples for all selected stations in Lake Taihu as each 
one is described by 14 variables derived on a monthly basis. 
Based on the methodology of SOM described previously, an 
SOM size of 135 ( 5 672≈ ) nodes (a hexagonal array with 
15 nodes for a vertical direction and 9 nodes for a horizontal 
direction) was used for pattern classification of the standar- 
dized data set. The U-matrix and all variable planes for the 

input data set are shown in Figure 3. On the SOM map, the 
distribution of each variable and the distances between nodes 
in the U-matrix plane were determined using a color scale. 
For example, the objects with high 4NH -N+ , TN, and TP con- 
centrations are located at the lower left part of the SOM plane, 
whereas the objects with high 3

4PO − , 2NO -N− , and TP concen- 
trations are located mainly at the lower right part of the SOM 
plane. 

Detecting the relationships between the variables obser- 
ved for all stations and periods of monitoring is important. 
These relationships are shown in Figure 4. The location and 
distance of variables in the SOM as well as the analysis of 
color tone patterns provide semiquantitative information re- 
garding the correlation coefficient. The order of variable pla- 
nes showed six well-defined groups of correlated variables and 

several variables with specific location. The first group inclu- 
ded the water quality parameters 2

4SO − and 3NO -N− . This fact 
is an indication of the similar information value of the two 
parameters. The second group revealed the connection be- 
tween the SS and SD, which could be explained by the fact 
that SD is commonly influenced by SS. The third group in- 
cluded TN, 4NH -N+ , and WD, and a positive correlation exists 
between TN and 4NH -N+ and a negative correlation exists be- 
tween 4NH -N+ and WD. The fourth well-defined group was 
formed by DO, 3

4PO − , TP, and 2NO -N− , and a positive corre- 
lation exists between 3

4PO − , TP, and 2NO -N−  and a negative 
correlation exists between DO and 2NO -N−  mainly because 

2NO -N−  is easily oxidized under the condition that DO is su- 
fficient. The next group included the biological indicators Ch- 
l-a and Pheo, and a positive correlation was observed between 
them. The last variable, T, does not belong to any group and 
evidently possesses a more specific function in determining 
water quality. Table 2 quantitatively confirms the strength of 
the relationship between parameters by utilizing the standar- 
dized reference vectors. TN and 4NH -N+ showed the highest 
correlation coefficient of 0.84. The correlation coefficients be- 
tween the remaining parameters were also easily determined. 

In Figure 5, the clusters formed by the objects of obser- 
vation (eight sampling stations for 672 episodes of monthly 
monitoring for seven years) are presented as an SOM. Based 
on the k-means clustering algorithm, the number of significant 
clusters (10 in this study) was determined by the lowest value 
of the DBI, as shown in Figure 5(a). Figure 5(b) shows the 
pattern classification map of the 10 clusters. The numbers of 
data classified into each node are also shown in Figures 5(c) 
and 5(d). Comprehensive consideration of the component pla- 
nes (Figure 3) and the pattern classification results (Figure 5 
(d)) determined the kind of data the respective clusters include. 
The exact content of the clusters for the sampling period is 
presented in Table 3. We conclude that the clusters are homo- 
geneous based on the application of the Kolmogorov-Smir- 
nov test of the difference between levels of quality indicators 
of water parameters for Clusters 1 to 10 determined using the 
SOM algorithm. 

Cluster 1 (central part on the SOM of Figure 5(b)) con- 
tained primarily most sampling stations, except for THL00.  

Chunjiang
Rectangle
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Figure 4. Water quality variable parameters similarity pattern 
was determined using the SOM approach (the distance betw- 
een variables on the map, with analysis of color tone patterns, 
provides semiquantitative information regarding the nature of 
correlations between them). 

 
Most water quality parameters were close to the averages of 
all data (e.g. physical indicators) with low values for 4NH -N+

 
and 3

4PO − . This pattern was observed in the same part of the 
respective component planes for each parameter, as shown in 
Figure 3. The worst water quality condition with extremely 
high chemical parameters (e.g., 2NO -N− , 3NO -N− , TN, 3

4PO − , 
TP, and 2

4SO − ) and significantly low DO located at the bottom 
part of each component plane, as shown in Figure 3, is asso- 
ciated with Clusters 4, 5, and 8, as shown in Figure 5(b). By 
contrast, the better water quality condition with low chemi- 
cal parameters and biological parameters (e.g., Chl-a) situated 
at the upper right of each component plane, as shown in Fi- 
gure 2, was associated with Cluster 6, as shown in Figure 5 
(b). 

In addition, more quantitative information can be extrac- 
ted and interpreted from the obtained reference vectors than 
the visualized pattern classification. The 25th percentile, me- 
dian, and 75th percentile for the respective clusters were cal- 
culated using the standardized reference vectors to numeri- 
cally characterize the classified data. For example, the quar- 
tiles for Cluster 1 were calculated using the standardized refe- 
rence vectors of the 14 nodes classified into the cluster. 

Figure 6 shows the radar graph of the 14 parameters for 
the 10 clusters with the 25th percentile, median, and 75th per-  
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Figure 5. (a) SOM classification of all selected variables and 
clustering pattern according to Davies-Bouldin index mini- 
mum value. (b) both color scale hexagons in each SOM unit 
and digits represent the clusters; (c) both color scale hexagons 
in each SOM unit and digits represent node number belonging 
to particular clusters; and (d) both color scale hexagons in 
each SOM unit and digits represent the number of samples 
belonging to particular clusters. 
 
centile plotted. In the case, where WD and T were not consi- 
dered, the most ideal water quality condition can be defined as 
a value of 0 for SS, 4NH -N+ , 2NO -N− , 3NO -N− , TN, 3

4PO − , TP, 
2
4SO − , Chl-a, and Pheo and a value of 1 for DO, as shown in 

Figure 6. 

The visible patterns of Cluster 6 (Figure 6(f)), Cluster 1 
(Figure 6(a)), Cluster 2 (Figure 6(b)), and Cluster 7 (Figure 
6(g)) were similar, as shown in the figures. The pattern with 
superior physical parameter values but low chemical parame- 
ters associated with Cluster 6, which represents the best water 
quality condition of all clusters. Cluster 1 represents a similar 
water quality condition with Cluster 6 but with slightly high- 
er 2

4SO − , TN, 3NO -N− , and DO concentrations; with Cluster 2 
but with slightly higher 2

4SO − concentration; and with Cluster 7 
but with slightly higher 2

4SO − and 3NO -N− concentrations. The 
visible patterns of Clusters 4, 5, and 8 (Figures 6(d), 6(e), and 
6(h)) show the highest 2

4SO − and TN concentrations, which re- 
present worse water quality conditions. The visible patterns of 
Cluster 3, 9, and 10 (Figures 6(d), 6(e), and 6(h)), as shown in 
Figure 5(b), represent medium water quality conditions. 

The 10 classified clusters could be divided into three 
main environmental patterns. Relatively better water quality 
conditions were associated with Clusters 1, 2, 6, and 7, as 
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shown on the right-hand side of Figure 5(b). The second gr- 
oup included Clusters 4, 5 and 8, which represent relatively 
worse water quality conditions, as shown on the lower left- 
hand side of Figure 5(b). The third group contains Clusters 3, 9 
and 10, which represent medium water quality conditions. 

Tabel 2 shows the mean values calculated from the raw 
data of each parameter for the entire data set and the data 
classified into the respective clusters. The high chemical para- 
meters of Clusters 1, 2, 6 and 7 indicate lower mean values 
than the entire data set. Cluster 6 showed lower mean values 
for pollutants, such as 4NH -N+ , 2NO -N− , 3NO -N− , TN, 3

4PO − , 
TP, 2

4SO − , Chl-a, and Pheo, than those for the entire data set. 
This finding confirms that the cluster represented high water 
quality, as mentioned previously. Clusters 1, 2, and 7 showed 
slightly higher mean values for DO, 4NH -N,+

2NO -N,−
3NO−  

-N, TN, 3
4PO ,− TP, 2

4SO ,− Chl-a, and Pheo than those of Cluster 
6. However, the mean values of Clusters 3, 9, and 10 ranged 
between slightly lower and higher for all parameters compa- 
red with the mean value of the entire data set. In particular, 
Clusters 4, 5, and 8 represented considerably higher mean 
values for the pollutants than those for the entire data set, 
thereby showing significant deterioration of water quality. 

Furthermore, the frequency of data classified into each clu- 
ster was investigated in the respective stations on a monthly 
basis to better understand the spatiotemporal variability. Figu- 
re 7 shows the spatiotemporal grids for the clusters listed pre- 
viously, and the number of data occurrences was counted. The 
horizontal axis in the mesh represents each month, whereas 
the vertical axis represents the eight stations. The maximum 
data frequency of a particular month and station was seven 
because the data measurement period is seven years. The 
sums of the data frequencies for each station are shown in the 
column to the right of the grids, whereas the sums of the data 
frequencies for each month are shown in the row to the bo- 
ttom of the grids. 

With regards to temporal variations, based on Table 3, the 
environmental monitoring data associated with Cluster 6, whi- 
ch represent the best water quality condition, were mainly 
measured during the summer and autumn seasons, as shown 
in Figure 7(f). Clusters 2 and 7 (Figures 7(b) and 7(g)) mainly 
contain data also measured during the summer and autumn 
seasons, but the data for Cluster 1 (Figure 7(a)) were measu- 
red during the spring season. 

The data classified into Clusters 4, 5 and 8, which re-  

Table 2. Pearson Correlation Coefficient (N = 672) 

 WD T SD SS DO NH4
+-N NO2

--N NO3
--N TN PO4

3- TP SO4
2- Chla Pheo 

WD 1.00 0.10 -0.12 0.21 0.39 -0.60 -0.52 -0.18 -0.66 -0.37 -0.37 -0.43 -0.11 -0.26 
T  1.00 -0.12 -0.10 -0.40 -0.24 0.21 -0.16 -0.26 0.12 0.13 -0.26 0.34 0.37 
SD   1.00 -0.47 0.00 0.12 0.04 0.13 0.07 0.10 -0.12 0.03 -0.13 -0.08 
SS    1.00 0.16 -0.18 -0.17 0.00 -0.07 -0.18 0.11 0.00 0.06 -0.07 
DO     1.00 -0.49 -0.46 0.08 -0.41 -0.57 -0.36 -0.19 0.03 -0.12 
NH+

4-N      1.00 0.46 0.13 0.84 0.46 0.40 0.55 -0.04 0.09 
NO-

2-N       1.00 0.18 0.52 0.39 0.35 0.25 0.23 0.37 
NO-

3-N        1.00 0.40 -0.04 -0.06 0.35 -0.02 0.06 
TN         1.00 0.39 0.53 0.68 0.15 0.19 
PO4

3-          1.00 0.44 0.11 0.05 0.18 
TP           1.00 0.21 0.65 0.40 
SO4

2-            1.00 -0.05 -0.04 
Chla             1.00 0.63 
Pheo              1.00 

 
Table 3. Mean Values Calculated from the Raw Data of Each Parameter for the Entire Data Set and the Data Classified into the 
Respective Clusters 

Cluster 
WD T SD SS DO NH4

+-N NO2
--N NO3

--N TN PO4
3- TP SO4

2-  Chl a Pheo TN/TP 

m °C m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L μg/L μg/L - 
1 2.46 22.03 0.34 59.28 8.35 0.32 0.06 1.83 3.97 0.00 0.09 91.83 16.77 4.34 44 
2 2.06 25.80 0.39 43.63 9.25 1.10 0.19 1.08 4.84 0.01 0.24 72.73 77.45 13.25 20 
3 2.66 12.73 0.26 79.57 9.95 0.13 0.02 0.57 2.15 0.00 0.09 59.94 6.84 2.48 24 
4 1.88 10.78 0.61 24.04 9.23 3.79 0.08 1.28 6.77 0.02 0.15 102.73 14.23 3.85 45 
5 1.95 25.42 0.45 35.62 3.67 3.27 0.19 0.67 5.81 0.06 0.24 70.17 28.78 8.24 24 
6 2.73 25.14 0.48 30.52 7.94 0.06 0.02 0.32 1.44 0.01 0.08 52.15 15.03 3.73 18 
7 2.59 25.50 0.29 67.29 7.99 0.13 0.04 0.45 2.59 0.01 0.17 76.56 27.91 4.92 15 
8 1.64 13.07 0.42 44.43 3.59 5.97 0.15 1.12 9.76 0.03 0.29 120.19 13.53 5.45 34 
9 2.43 8.18 0.29 82.00 10.78 1.95 0.04 1.42 5.66 0.01 0.12 98.19 8.61 2.32 47 
10 2.48 9.40 0.75 25.83 10.43 0.45 0.02 1.07 2.99 0.01 0.06 72.86 5.87 2.24 50 
All data 2.34 17.89 0.42 50.78 8.24 1.49 0.07 0.93 4.26 0.01 0.15 78.90 20.26 4.85 28 
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Figure 6. Radar graphs for the respective clusters with the 
25th percentile, median, and 75th percentile of the standa- 
rdized data. 
 
present the worst water quality condition, were mostly meas- 
ured during the spring and winter seasons (Figures 7(d), 7(e), 
and 7(h)). The data in Clusters 3, 9, and 10 (Figures 7(c), 7(i), 
and 7(j)) were observed mostly during the spring season. The 
temporal distribution of the data showed that the clusters in- 
cluding the data measured during the spring and winter seasons 

generally showed worse water quality conditions (e.g. Cluster 
8) with low DO values. 

When the spatiotemporal variation of each cluster was 
characterized in detail, Cluster 6 included water quality most- 
ly measured from the THL01, THL03, THL04, THL05, THL- 
07, and THL08 stations during the summer and autumn sea-  

 
Figure 7. Balloon plot of the spatiotemporal patterns of Clus- 
ters 1 to 10. 
 
sons. Clusters 1 and 7 were related to the data measured from 
the same six stations during the summer and autumn seasons. 
Cluster 2 data were mostly measured from the THL00, THL- 
01, THL03, and THL06 stations during the summer season. 

Clusters 4, 5 and 8 data were mostly measured from the 
THL00, THL01 and THL06 stations. The water quality of Cl- 
usters 4 and 8 was measured primarily during the winter and 
spring seasons, whereas that of Cluster 5 was measured du- 
ring the autumn season. The data measured during the winter 
and spring seasons were associated with Clusters 3, 9, and 10. 
The data of these groups were measured from most stations, 
expect THL00, which is located near the estuary. 

Spatiotemporal grid analysis was performed on the resul- 
ts from pattern classification by SOM application, and the use 
of SOM was confirmed to classify the parameters into 10 clu- 
sters, which was reasonable and feasible for the lake. Spatio- 
temporal grid analysis also summarized the spatiotemporal 
distribution of the respective 10 clusters with readily under- 
standable visualization. The spatiotemporal grids analysis pro- 
posed in the present study was thus useful for characterizing 
and understanding the spatial and temporal variability and in- 
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terdependence of water quality parameters measured in mul- 
tiple stations. 

For lake managers, eutrophication is a significant issue. 
However, the eutrophication of lakes is mainly caused by 
nitrogen and phosphorus pollutants. The mass ratio of nitro- 
gen and phosphorus (TN/TP) varies with lake trophic status 
and reflects the source of nutrients. TN/TP in oligotrophic la- 
kes ranged from 21 to 240, in mesotrophic lakes from 17 to 96, 
in eutrophic lakes from 4 to 71, and in hypereutrophic lakes 
from 0.5 to 9 (Downing and McCauley, 1992). Based on these 
results, the average TN/TP mass ratios ranged from 15 to 50, 
as shown in Table 3. 

Accordingly, one can speculate that the status of the 
northern part of Lake Taihu is mesotrophic or eutrophic. The- 
refore, controlling the emissions of nitrogen and phosphorus 
is recommended. Moreover, to control nitrogen emission, am- 
monia should be used as one of the main control factors based 
on the previous correlation analysis. As shown in Figures 6 
and 7, the water quality conditions in the THL00, THL01, 
THL03, and THL06 stations are worse based on seasonal ch- 
anges. Measures should be implemented to decrease pollutant 
emissions from the rivers into the lake. 

Nowadays, many similar studies (Jin et al., 2011) presen- 
ted the application of SOM in Korea and classified the envi- 
ronmental data into nine clusters in terms of DBI value. The 
study of Jin et al. (2011) focused on the water quality of the 
river, and the hierarchical cluster tree was used for the classi- 
fication. By contrast, in our study, our main consideration is 
the water quality of the lake, and we selected and used the 
nonhierarchical k-means algorithm for the classification. Other 
studies (Tobiszewski et al., 2010; Tsakovski et al., 2010b; 
Yang et al., 2012) identified spatiotemporal patterns by using 
not only the SOM but also other methods for analysis, inclu- 
ding the Hasse diagram technique, hierarchical CA, and DA. 

A previous study confirmed the classification and visuali- 
zation ability of the SOM algorithm for substantial environ- 
mental data, and the specific “resolving power” classification 
of the SOM was compared with more traditional methods, 
such as CA or PCA (Astel et al., 2007). Despite having a good 
pattern recognition ability, the SOM cannot detect the year- 
to-year trend. In this study, we were able to determine the 
seasonal water quality conditions of each site in the past seven 
years. In summary, the SOM is a feasible method for water 
quality assessment. The combination of SOM and other 
conventional and nonconventional analytical methods should 
be further investigated in the future. 

5. Conclusions 

We conclude that the application of SOM for analysis is 
suitable for handling environmental data sets describing varia- 
tions in 14 chemical and biological quality parameters sam- 
pled monthly for seven years at eight sampling stations in the 
northern part of Lake Taihu, China. Visualization of the moni- 
toring results of SOM enables the classification of different 
water quality patterns for all stations under consideration and 

for the entire monitoring period. The 25th, 50th, and 75th 
percentiles of the reference vectors were plotted on the radar 
graph to display the fundamental characteristics of each clu- 
ster. Moreover, the number of data on occurrences in the re- 
spective stations on a monthly basis for each cluster was dis- 
played in the spatiotemporal grids to characterize the spatio- 
temporal variability of the environmental monitoring data. The 

spatiotemporal distribution of the environmental monitoring 
data was examined based on the characteristics of the res- 
pective clusters. The spatial distribution revealed generally 
better water quality conditions at the center of the lake than 
the estuary. The temporal distribution showed a distinct sea- 
sonal effect. 

In addition, based on the applicability and feasibility of 
the SOM presented in this study, further research on the 
application of SOMs for the integrated assessment of a lake 
basin with simultaneous consideration of ecological, environ- 
mental, and geographical factors should be conducted. 
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