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ABSTRACT. Uncertainty quantification (UQ) of environmental dynamic models requires an efficient way to extract the information 

about the relationship between input parameter and model output. A uniformly scattered sample set is generally preferred over crude 

Monte Carlo sampling for its ability to explore the parameter space more effectively and efficiently. This paper compares eight 

commonly used uniform sampling methods along with the crude Monte Carlo sampling. The efficiency is measured by six uniformity 

metrics, while the effectiveness is measured by the goodness-of-fit of the surrogate models, and the sensitivity analysis and 

optimization results. We used two test problems: the Sobol’ g-function and the SAC-SMA hydrological model. The results show that 

among the sampling methods evaluated, the Good Lattice Points (GLP) and Symmetric Latin hypercube (SLH) have the highest 

uniformity scores, and the Ranked Gram-Schmidt (RGS) de-correlation algorithm can further improve the uniformity of the lattice 

sample sets. On the other hand, the Quasi-Monte-Carlo (QMC) methods, such as Halton and Sobol’ sequences, are not as uniform as 

their theoretical potential suggests when the number of sample points is low. Further, we found no clear relationship between the 

sampling methods used and their effectiveness, as the latter is affected by many factors other than the sampling methods, such as the 

choice of the surrogate modeling methods, sensitivity analysis and optimization methods, and the intrinsic properties of the dynamic 

models. 
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1. Introduction 

Computer based environmental dynamic models are im- 

portant tools for understanding and predicting the impacts of 

global and environmental changes due to natural or anth- 

ropogenic factors. There is a tendency that those models are 

becoming increasing more complex as they consider more and 

more physical, chemical and biological processes. As a result, 

today’s models usually contain many model parameters and a 

large number of model outputs, and, in many cases, require 

many CPU hours to run. This makes proper parameter speci- 

fication or model calibration a very difficult task. Furthermore, 

multi-physics dynamic models also demand multi-objective 

approach in model calibration (Vrugt et al., 2003; Liu et al., 

2005). 

There are numerous ways to deal with the unique chall- 

enges encountered in uncertainty quantification (UQ) of envi- 

ronmental dynamic models. Particularly, following techniques 
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have been used: (1) sensitivity based parameter screening to 

reduce the number of parameters to be considered in model 

calibration; (2) a cheap surrogate model to mimic the response 

of a dynamic model to different parameter values; and (3) an 

adaptive resample strategy that wisely use the power of the 

surrogate model in parameter optimization. All of these te- 

chniques need initial sampling of the parameters, which is 

done by perturbing the adjustable parameters in a specified 

range and executing the dynamic model to obtain the simu- 

lation outputs. Initial sampling is an important step for extra- 

cting the information about the relationship between adjust- 

able parameters and simulation outputs. In previous research, 

we have evaluated various sampling methods for its impact on 

parameter screening effectiveness (Li et al., 2013; Gan et al., 

2014; Di et al., 2014). We also compared different sampling 

methods on how they impact on adaptive surrogate modeling 

based optimization (Wang et al., 2014; Gong et al., 2014). 

These studies emphasize the robustness of the sensitivity 

analysis and optimization results, while the efficiency aspect 

of the sampling methods, which is an important consideration 

for environmental dynamic models, has not been examined in 

depth.  

A good sampling method should be able to explore 

parameter space more effectively and efficiently. The effi- 

ciency can be measured by the number of sample points nee- 
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ded to explore the parameter space thoroughly. In general, a 

uniform sampling is regarded as more efficient and effective 

than a crude Monte Carlo sampling. Numerous previous stu- 

dies have examined the efficiency and effectiveness of 

different uniform sampling methods (Fang et al., 2002; Ye et 

al., 2000; Morokoff et al., 1995). Fang et al. (2002) derived 

the theoretical value of Centered L2-discrepancy (a uniformity 

metric) of Latin Hypercube (LH) and compared it with crude- 

Monte-Carlo (MC), and also validated the theoretical results 

with numerical experiments. Ye et al. (2000) added symmetric 

property to the classical LH sampling and compared the 

uniformity of the proposed SLH with LH and MC samples. 

Fang et al. (1994) compared many numeric-theoretic methods 

for sampling, pointing out that the GLP method has the lowest 

discrepancy compared to the Halton sequence, Hammersley 

sequence, Haber sequence, Hua-Wang cyclotomic field me- 

thod, among others. But those comparison studies were limit- 

ed to 2-dimensional because computing the value of discre- 

pancy was very difficult (Hickernell, 1998a and 1998b). 

Morokoff et al. (1995) made an inter-comparison of three 

QMC methods: Halton, Sobol’ and Faure sequences, and 

clarified the advantages and weaknesses of these methods and 

made some suggestions for applications to particular problems. 

Halton sequence is best for low dimensional problems (i.e., 

with a dimension of less than 6), while Sobol’ sequence is 

superior for higher dimensions, and Faure sequence falls 

behind them. Furthermore, Morokoff et al. (1995) also sugg- 

ested that the QMC methods are suitable for smooth functions, 

but for less smooth functions the QMCs might be not better 

than crude-Monte-Carlo. 

In this paper, various sampling methods are compared for 

their effectiveness and efficiency. Six uniformity metrics are 

used to measure sampling efficiency, and the effectiveness is 

evaluated by the goodness of fit of the surrogate models as 

well as surrogate-modeling based sensitivity analysis and op- 

timization results. Two test problems: the Sobol’ g-function 

and the SAC-SMA hydrological model are used for the eva- 

luation. Following sampling methods are included in the 

inter-comparison: crude Monte Carlo (MC), Latin Hypercube 

(LH), Symmetric Latin Hypercube (SLH), Good Lattice Point 

(GLP), Halton sequence, and Sobol’ sequence. A simple de- 

correlation method called the Ranked Gram-Schmidt (RGS) 

algorithm (Owen, 1994) is applied to LH, SLH and GLP sam- 

pling. The RGS algorithm is a post-processor that can remove 

internal correlation in the sample set. It is easy to use and fast 

to run, and, can significantly improve the uniformity of LH, 

SLH and GLP sampling. 

This paper is organized as follows: Section 2 gives a brief 

introduction of the uniformity metrics and sampling methods 

involved in this paper; Section 3 introduces the background of 

modeling case studies; Section 4 presents the result and dis- 

cussions; and Section 5 provides conclusions.  

2. Methodology 

2.1. Uniformity Metrics  

There are many kinds of uniformity metrics, such as dis- 

crepancy (Weyl, 1916; Hickernell, 1998), integrated mean 

squared error (IMSE) (Sacks et al., 1989), entropy (Shewry et 

al., 1987) and maxmin or minimax distance (Johnson et al., 

1990). These metrics describe different aspects of the repre- 

sentation ability of a sample set. In this paper, we calculated 6 

different uniformity metrics, including the four discrepancy 

metrics proposed by Hickernell (1998a; 1998b), and the met- 

ric for maximum distance between the sample points and the 

metric for measuring correlation among the sample points. 

The concept of discrepancy comes from the Monte-Carlo 

integration. For the point set Pn = {xk = (xk1, xk2, …, xks); k = 1, 

2, …, n} in a unit hypercube C
S
, the multidimensional integral 

I( f ) = ∫C
s
 f(x)dx can be estimated using the average value of 

the uniformly distributed sample points Pn : Q( f ) = n-1∑xϵPn  

f(x). Obviously, the integral I(f ) can be estimated more accu- 

rately if the point set Pn is uniformly scattered. The error 

bound of the integral estimation can be expressed as a 

Koksma-Hlawka inequality (Kuipers et al., 1974): 

 

       nI f Q f D P V f   (1) 

 

where V( f ) is the total variance of the model output, f(x) and 

D(Pn) is the discrepancy of point set Pn in the domain C
S
. The 

Koksma-Hlawka inequality suggests that the upper bound of 

the integral error is controlled by two factors: the fluctuation 

of f(x) and the model independent point uniformity, D(Pn). 

Less discrepancy means better uniformity and lower integral 

error. The discrepancy is defined as the maximum deviation 

between the volume of a hypercube and the density of sample 

points falling in the cube (Hua and Wang, 1981; Niederreiter, 

1992): 
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where [0, )x  represents the hypercube defined by the two 

diagonal points, [0, )nP  x represents the number of points 

falling in the domain [0, )x ,  [0, )Vol x represents the vol- 

ume of the hypercube [0, )x . The concept of discrepancy was 

first suggested by Weyl (1916). It is also called star dis- 

crepancy. Similarly, we can define Lp-discrepancy as follows: 
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The star discrepancy is a special case when p → ∞. The con- 

cept of star discrepancy has played an important role in the 

theoretical analysis of developing quasi-Monte-Carlo methods. 

The theoretical orders of many quasi-Monte-Carlo methods 

have been derived. However, the star discrepancy has many 

drawbacks that prohibit its application (Fang et al., 2001). 

First, calculating discrepancy is very time consuming, esp- 

ecially when n and s are large. It is an NP hard problem. 
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Second, Lp-discrepancy is not sensitive when some points 

overlap. Third, because of domain [0, x), the origin is special 

in Lp-discrepancy. Last, Lp-discrepancy represents the overall 

uniformity in the s-dimensional space but omits the uni- 

formity of the projection of Pn to low-dimensional space, e.g., 

the uniformity of 1D marginal and 2D joint distribution. 

To solve the problem, Hickernell (1998a; b) developed a 

unified definition of discrepancy based on the concept of 

reproducing kernel of Hilbert space. With the unified frame- 

work we can easily develop new discrepancies, and find ea- 

sier way to compute them. In this paper we consider four 

discrepancy metrics developed under this framework. 

(1) Modified discrepancy. The modified Lp-discrepancy 

considers not only the uniformity in the s-dimensional space 

but also any lower dimensional spaces. The simplified equa- 

tion to compute the modified discrepancy when p = 2 is as 

follows: 
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(2) Centered discrepancy. In modified discrepancy, the 

origin is special compared to other points. The Centered L2- 

discrepancy replaced the origin with the nearest vertex of the 

[0, 1] hypercube. The simplified equation for computing the 

Centered L2-discrepancy is listed below: 
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(3) Symmetric discrepancy. This considers the symmetric 

property of even and odd vertexes: 

 

 
 

1/2

2

1 1

2

2
, 1 1

4 2
1 2 2

3

2
1

s sn

ki ki

k i

n s sn

ki li

k l i

x x
n

SD P

x x
n

 

 

  
    

  
 
      
  





  (6) 

 

(4) Wrap-around discrepancy. This connects the 0 and 1 

margins end to end: 
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In addition to the four discrepancy metrics, another two 

uniformity measures are also considered. One is the minimum 

distance between sample points. The points are less uniformly 

distributed if some points are clustered together, or even 

overlap. A larger minimum distance means better uniformity. 

The other metric is the sum of correlation coefficients bet- 

ween each dimension of sample points. Linear correlated 

sample points have less uniformity, and the correlation coe- 

fficient is very sensitive in this case. 

 

2.2. Sampling Methods Evaluated  

In this paper, we compared nine different sampling 

methods: the crude Monte Carlo (MC), Latin Hypercube (LH), 

Latin Hypercube with de-correlation (LH-dc), Symmetric 

Latin Hypercube (SLH), Symmetric Latin Hypercube with 

de-correlation (SLH-dc), Good Lattice Points (GLP), Good 

Lattice Points with de-correlation (GLP-dc), Halton low 

discrepancy sequence (Halton), and Sobol’ low discrepancy 

sequence (Sobol’). 

The Latin hypercube (LH) design is a type of stratified 

lattice design proposed by McKay et al. (1979). Suppose that 

there are n sample points, the number of factors is s, and the 

number of levels of each factor is q, then the sampling matrix 

can be expressed as a U-array: Un(q
s) = [uij]n×s, in which each 

column is a permutation of {1, …, q} and uij is the level of the 

j-th factor in the i-th combination. Because of its simplicity, 

randomness and uniformity, LH sampling has been wildly 

used in UQ of environmental models. Latin hypercube design 

is one kind of U-type design (Fang et al., 2006), namely 

balanced design (Li et al., 1997), or lattice design (Bates et al., 

1996), that each factor has n  possible value to take: {1, …, 

q} or (2i − 1)/2q {i = 1, …, q}. An U-array can be transferred 

to uniform distribution U(0, 1) with the following equation: 
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where xij is the value of the i-th sample with j-th dimension. 

The set xi = (xi1, xi2, …, xis) is also called induced design 

(Fang et al., 2006). Fang et al. (2002) derived the theoretic 

expectation and variance of Centered L2-discrepancy for 

crude-Monte-Carlo and Latin Hypercube sampling. The aver- 

age square of centered L2-discrepancy of MC sampling Rn,s is: 
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while that of LH sampling Ln,qs is: 
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Consequently, although the orders of discrepancy of both MC 

and LH are O(n-1/2), the LH sampling is generally more uni- 

form since the average squared CL2-discrepancy of LH samp- 

ling is significantly lower than that of MC. 

Based on the framework of Latin Hypercube, Ye et al. 

(2000) proposed the Symmetric Latin Hypercube (SLH) de- 

sign that for every point in the design, the reflection of it 

through the center is also in the design. In other words, for an 

n-point, n-level, s-dimension SLH, if (a1, a2, …, as) is one row 

of the n×s design matrix, (n + 1 − a1, n + 1 − a2, …, n + 1 − as) 

must be another row of the matrix. Although the theoretical 

expression of SLH design’s discrepancy has not been derived, 

according to the symmetric property and application exp- 

eriences, SLH is more uniform than the classical LH design. 

Another class of sampling methods is quasi-Monte-Carlo 

method (QMC), or the so-called number-theoretic method 

(NTM), which is named after the theoretical foundation of 

these methods. In this paper we involved three of them: GLP 

method, Halton sequence and Sobol’ sequence. 

The Good Lattice Point method was originally proposed 

by Korobov (1959a;b) in USSR and discussed by Fang (1980), 

Wang et al. (1981), Hua et al. (1981), Sloan (1985), Shaw 

(1988), Fang et al. (1994) and Fang et al. (2006). The GLP 

design is generated by the following equations: 
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where hi < n and the greatest common divisor of hi and n is 1. 

The vector (n: h1, …, hs) is called the Generating Vector. If the 

point set Pn = {xk = (xk1, …, xks), k = 1, …, n} has the lowest 

discrepancy among all possible generating vectors, the point 

set Pn is called GLP set. If the number of sample points/levels 

n is large, the number of possible combinations of generating 

vectors might be very large and consume a lot of com- 

putational resources. To mitigate this problem, Korobov 

(1959b) suggested to use the Powered Generating Vector: (n : 

h1, …, hs) = (a0, a1, …, as-1) (mod n), where a satisfies: (1) 1 < 

a < n; (2) the greatest common divisor of a and n is 1; (3) 

h1, …, hs are different to each other; (4) at+1 =1(mod n), where 

t ≥ s − 1 The powered generating vector is preferred if n is 

very large. For a given prime number p, the order of 

discrepancy of GLP set generated from the prime generating 

vector is: 

 

     1 log
s

D p c s p p  (12) 

 

while that of GLP set generated from the powered generating 

vector is: 

 

     1 log loglog
s

D p c s p p p  (13) 

 

Consequently, the discrepancy of GLP set generated by the 

prime generating vector is lower than that generated by the 

powered generating vector, but the difference is negligible 

because the term loglog p  is relatively not large. The powe- 

red generating vector dramatically reduce the amount of com- 

putational resources and is suitable for large problems. The 

readers can refer to the section 1.3.1 of (Fang et al., 1994) for 

more information about GLP method. 

Another QMC method is Halton sequence (Halton, 1964). 

The Halton sequence is a generalization of the Van der Corput 

sequence in high dimensional cases (Niederreiter, 1992; Ca- 

flisch, 1998). For the one-dimension case (s = 1), the n-th 

element of the van der Corput sequence is generated as fol- 

lows: 
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where the number n is written in binary (base 2) and the n-th 

point xn is the revision of that around a decimal point. This 

manipulation is called “radical inverse”. Generally, the n-th 

element xn = (xn1, xn2, …, xns) of the s-dimensional Halton 

sequence can be generated like this: for the i-th dimension, n 

is expanded in base pi (the i-th prime number), and xpi equals 

to its radical inverse. Halton proved that the discrepancy of 

the first n points of Halton sequence is: 

 

    1 log
s

D n O n n  (15) 

 

The Sobol’ QMC sequence proposed by Russian mathe- 

matician Sobol' (1967), is also based on radical inverse. In 

short, each dimension of an s-dimensional Sobol’ sequence is 

a permutation of van der Corput sequence with base 2. If 

proper permutations are adopted, the Sobol’ sequence can be 

more uniform than the Halton sequence. A comprehensive 

introduction of Sobol’ sequence in English can be found in 
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(Bratley et al., 1988). In Sobol' (1967), both of Halton and 

Sobol’ sequence was unified as LP-sequence (see definition 

3.8 in Niederreiter, 1978). A more general QMC framework 

called (t, s)-nets was proposed by (Niederreiter, 1992) that the 

properties and theories of these sequence can be summarized 

in a common framework. The discrepancy of a (t, s)-net 

satisfies: 

 

 
 

  11log
log

s

s

s

n
D n C O n n

n

   (16) 

 

where Cs is a constant depending on the kind of sequence. 

We also evaluated the effect of de-correlation sampling 

post-processing methods. Intuitively speaking, each dimen- 

sion of a uniformly scattered s-dimensional sample set should 

be independent and the correlation between every two dimen- 

sions should be zero. Iman et al. (1982) proposed a ‘ranked 

Cholesky’ (RC) method that can generate a Latin hypercube 

sample with user-defined correlation. If an identity matrix is 

assigned, it can generate a de-correlated Latin hypercube sam- 

ple set, in which the correlations between each dimension are 

zero. The Ranked Gram-Schmidt (RGS) algorithm proposed 

by Owen (1994) is a method that can orthogonalize a vector 

set in an inner product space and minimize the correlation 

between each dimension. As shown in (Owen, 1994), a num- 

erical experiment has shown that RGS is more successful than 

RC at reducing correlations. Because Owen’s RGS method 

use ranked correlation, it is only applicable for the lattice desi- 

gns, which are, or can be transferred to an n×s matrix in 

which each column is a permutation of 1, 2, …, n. RGS de- 

correlation is not applicable for Halton and Sobol’ sequence 

because they are not lattice designs and RGS may destroy 

their space structure. 

There are numerous alternative uniform sampling me- 

thods (and experimental designs) not considered in this paper. 

Among them, full factorial design is not considered because it 

is not suitable for high-dimensional and high-level problems. 

Similarly Orthogonal Arrays (OA) (Owen, 1992) and the Or- 

thogonal Array Latin Hypercube design (OALH) (Tang, 1993) 

are not evaluated because it is hard to construct orthogonal 

arrays for high-dimensional and high-level problems. On the 

other hand, LH, SLH and GLP methods can provide uniform 

sample sets that sacrifice the orthogonal property but do not 

have restrictions on parameter dimensions and levels. There 

are some techniques which allows the search for the most 

uniform sample set using optimization methods, such as the 

Threshold-Accepting method (Fang et al., 2000; Fang et al., 

2002), simulated annealing (Morris et al., 1995), and a colu- 

mnwise-pairwise exchange algorithm (Ye et al., 2000). How- 

ever, those optimization-based sampling methods may require 

too many CPU hours to run. Therefore, we do not consider 

them in this study. 

3. Test Problems and 
Numerical Experimental Setup 

The objective of this research is to evaluate the effect- 

tiveness and efficiency of different sampling methods. Two 

test problems are used for this purpose: the Sobol’ g-function 

and the Sacramento Soil Moisture Accounting (SAC-SMA) 

model. They are described as follows. 

 

3.1. Sobol’ g-function  

As described in (Sobol', 1993), the Sobol’ g-function is a 

benchmark test function for sensitivity analysis. It has the 

following advantages over a real dynamic model: (1) It is fast 

to run. The Sobol’ g-function has a very simple expression 

and runs much faster than a dynamic model. (2) It is flexible. 

The Sobol’ g-function can be extended to any dimensions, and 

the shape of it can be adjusted by tuning the shape parameter 

ai. (3) For sensitivity analysis, the true value of the main (first 

order) effect and total effect of the Sobol’ g-function can be 

analytically computed in a very easy manner. Thus, Sobol’ 

g-function can be used as a standard for evaluating the effect- 

tiveness of sensitivity analysis. The Sobol’ g-function is 

 Table 1. Parameters of the SAC-SMA Model and their Feasible Ranges and Assigned Values (Wang et al., 2014) 

No. Parameter Lower bound Upper bound Assigned value 

1 UZTWM 10.00 300.00 242.868 

2 UZFWM 5.00 150.00 49.5779 

3 UZK 0.10 0.75 0.4373 

4 PCTIM 0.00 0.10 0.011 

5 ADIMP 0.00 0.20 0.063 

6 ZPERC 5.00 350.00 97.7848 

7 REXP 1.00 5.00 1.8564 

8 LZTWM 10.00 500.00 325.192 

9 LZFSM 5.00 400.00 353.817 

10 LZFPM 10.00 1000.00 61.679 

11 LZSK 0.01 0.35 0.1092 

12 LZPK 0.001 0.05 0.0131 

13 PFREE 0.00 0.80 0.262 
   * The three fixed parameter values are: RSERV = 0.3; RIVA = 0.0; SIDE = 0.0. 
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defined as follows: 
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where Xi are the input factors and the shape parameters ai ≥ 0. 

The conditional variance of factor Xi can be computed using 

the following equation (Saltelli et al., 2008): 
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The main effect is defined as the normalized conditional 

variance Si = Vi/V(Y), where V(Y) is the total variance of Y. 

The higher-order partial variances can be computed by 

multiplying the lower ones, i.e., V12 = V1V2, so the total 

variance can be computed as follows: 
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The total effect is defined as S~i = V~i/V(Y). In this paper, 

we only show the results of the main effect. The value of 

shape parameter ai are as follows: for the 13-parameter case 

(mimic SAC-SMA), ai ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 99, 99, 99}; 

for the 23-parameter case (mimic WRF), ai ={0, 1, 2, 3, 4, 5, 

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 99, 99, 99}; 

and for the 40-parameter case (mimic CoLM), ai ={0, 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23, 24, 25, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 

99}. 

 

3.2. SAC-SMA Hydrological Model  

In previous research by Wang et al. (2014), we have test- 

ed the influence of the number of initial sampling points, and 

compared 2 kinds of quasi-Monte-Carlo sampling method: 

Halton and Sobol’ sequences. In this paper, we use the same 

experiment setup to test other sampling methods. The observ- 

ed streamflow was recreated by running the SAC-SMA model 

with the true observed forcing (precipitation and potential 

evapotranspiration), and streamflow simulation using the assi- 

gned parameters as observations. So that if the optimization 

algorithm can effectively find the true optimal parameters, the 

RMSE of streamflow will be close to zero. The data used are 

from the Leaf River basin near Collins, Mississippi, USA. We 

use 10 years (Oct, 1948 to Sep, 1958) daily data (mean area 

precipitation (mm/day), potential evapotranspiration (mm/ 

day), streamflow (m3/s)) provided by the U.S. National 

Weather Service for analysis, with the first 365 days used as 

the warm-up period. The information about parameters (i.e., 

names, feasible ranges and assigned values) is presented in 

Table 1. 

A number of numerical experiments are conducted to 

evaluate efficiency and effectiveness. Specifically, four sets of 

evaluations are carried out and these are described below: 

(1) The calculation of the uniformity metrics. We first 

generate parameter samples using the nine sampling methods. 

For each sampling method, 6 uniformity metrics are computed: 

MD2, CD2, SD2, WD2, MinDist, and Corr. For dimension s = 

13, 23, 40, we use the number r to set the sample size so n = 

s×r. For example, for s = 13, the number r = 5, 10, 20, 30 and 

the sample size n = 65, 130, 260, 390, respectively. To com- 

pare the uniformity of each sampling method against the cru- 

de Monte Carlo, we define the normalized uniformity metrics 

as shown in Table 2, where Pn is the evaluated sample set and 

MC is a crude Monte Carlo sample set with the same dimen- 

sion and sample size. A larger NM means the sample set is 

more uniform, whereas NM < 0 means the sample set is not as 

uniform as MC. 

 (2) The evaluation of the effect of sampling methods on 

surrogate modeling. To evaluate the effectiveness of the 

sampling methods for surrogate modeling, we considered two 

different surrogate models (i.e., MARS and GPR). MARS 

(Multivariate Adaptive Regression Spline) proposed by 

Friedman (1991) is a regression model for nonlinear, high- 

dimensional data. It can also be used as a surrogate model 

(Crino et al., 2007) as well as a sensitivity analysis method 

(Shahsavani et al., 2010). GPR (Gaussian Processes Reg- 

ression) is also a flexible nonlinear regression method. An 

intuitive introduction to GPR was presented by Rasmussen et 

al. (2006). Gong et al. (2014) and Wang et al. (2014) have 

shown that GPR has the best goodness-of-fit compared to 

other surrogate models including MARS. 

Table 2. Normalization of Uniformity Metrics 

Original uniformity metrics  Normalized uniformity metrics 

MD2 
2

2

MD ( )
NM( ) 1

MD (MC)

n

n

P
P   

CD2 
2

2

CD ( )
NM( ) 1

CD (MC)

n

n

P
P  

SD2 
2

2

SD ( )
NM( ) 1

SD (MC)

n

n

P
P  

WD2 
2

2

WD ( )
NM( ) 1

WD (MC)

n

n

P
P  

MinDist 1
MinDist( )

NM( )
MinDist(MC)

n

n

P
P  

Corr 
Corr( )

NM( ) 1
Corr(MC)

n

n

P
P  
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The effectiveness of a surrogate model built using 

different sampling methods is evaluated against the one based 

on an independent Monte Carlo sample set. The Root Mean 

Squared Error (RMSE) of 2000 Monte Carlo sample points is 

computed as follows: 
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where Yi is the output of the surrogate model and Ŷi is the 

corresponding output of the original model, and n = 2000 is 

the size of test set. Smaller RMSE means better goodness- 

of-fit, and the surrogate model is effective if the RMSE of an 

independent test set is small enough. To get a stable result, for 

random initial sampling method, such as MC, LH, LH-dc, 

SLH and SLH-dc, the surrogate modeling experiment was 

replicated for 10 times, and only the mean RMSEs of 10 

replications are shown in the results section. 

 

 
 

Figure 1. Uniform metrics of 8 compared sampling methods against crude Monte-Carlo. ‘s’ is the number of dimensions and 

‘n’ is the sample size. De-correlated samples are labeled with ‘-dc’. 
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(3) The effect of sampling methods on sensitivity ana- 

lysis. In this set of numerical experiments, we examine the 

effect of different sampling methods on the sensitivity ana- 

lysis results. The SA method used for this purpose is the 

RSMSobol’ method, a surrogate modeling based quantitative 

sensitivity analysis method that calculates both the main and 

total effect of each parameter (Sobol', 1993; Sobol', 2001; 

Storlie et al., 2009). The RSMSobol’ method is revised from 

the original Sobol’ variance decomposition method by 

running the Sobol’ calculation on the response surface of a 

surrogate model. It is as effective as the original Sobol’ me- 

thod, but is more efficient computationally. In the case study 

with the Sobol’ g-function, we computed the main effect of 

the g-function using the RSMSobol method and compared it 

with the theoretical values using Equation (18). In the case of 

SAC-SMA model, only the main effect given by RSMSobol 

was presented. The sensitivity analysis of random sampling 

methods (MC, LH, LH-dc, SLH, SLH-dc) was repeated for 10 

times and only the mean values of RSMSobol results are 

shown. 

 

 

  

 

 

 

 
 

  

 
Figure 2. RMSEs of the MARS and GPR surrogate models built with different sampling methods (Sobol’ g-function). 
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(4) The effect of sampling methods on parameter opti- 

mization. The objective of this test is to compare the influence 

of initial sampling on surrogate modeling based optimization. 

In this test case, we use the SAC-SMA model with recreated 

streamflow using assigned parameters listed in Table 1. Be- 

cause optimization result is significantly influenced by the 

adaptive sampling strategy, we only compared the optimal 

point (i.e. the point having minimum RMSE) based on the 

initial sample sets generated by different sampling methods. 

To obtain statistically meaningful results for different sam- 

pling methods, the optimization was replicated for 10 times 

using different random realizations. The influence of the 

sample size was also investigated. 

4. Results 

4.1. Uniformity Metrics  

First we evaluated the efficiency of 9 sampling methods 

with 6 uniformity metrics. Figure 1 shows the uniformity 

metrics of each case. The numbers in each grid are the 

normalized uniformity metrics defined in Table 2. As shown 

in the legend, different ranks have different colors. Color ‘red’ 

implies more uniform, and color ‘blue’ means less uniform. 

To obtain statistically robust results, the MC, LH, LH-dc, 

SLH and SLH-dc samplings are repeated 100 times, and only 

the mean value of uniform metrics are shown in this figure. 

Figure 1 reveals some interesting information: (1) For most 

cases, GLP (and also GLP-dc) produces the most uniform 

sample set, and SLH (and also SLH-dc) ranks the second. (2) 

The de-correlation post-processing method can significantly 

improve the uniformity of a sample set. In most cases, the 

de-correlated sample set is more uniform than the original 

sample set. (3) The quasi-random sampling methods, Halton 

and Sobol’, are not as uniform, even compared to the crude 

Monte Carlo method if the sample size is small (r = 5 or 10). 

The uniformity of Halton and Sobol’ sampling methods 

improves when the sample size is sufficiently large (r = 20 or 

30). (4) The ranks given by different uniform metrics vary 

slightly, but they are similar to each other. 

 

4.2. Surrogate Modeling  

The previous section has clearly established what sam- 

pling methods are the most efficient according to the six 

uniformity metrics. Here we investigate if the efficient samp- 

ling methods lead to better surrogate models. In test case with 

the Sobol’ g-function, the RMSEs of the MARS and GPR 

surrogate models built with different sampling methods are 

presented in Figure 2. From Figure 2 we have the following 

interesting findings: (1) Compared to the crude Monte-Carlo, 

the RMSEs of LH, LH-dc, SLH, SLH-dc, GLP, and GLP-dc 

are very similar, and always lower than the other two QMC 

methods: Halton and Sobol’. (2) The RMSE values of Halton 

and Sobol’ sampling methods are also large when r = 5 and 10. 

But they can be reduced when r = 20 and 30. This finding 

confirms the finding from Figure 1 that the uniformity of the 

Halton and Sobol’ method improves with increasing sample 

size. (3) In comparison of the MARS and GPR surrogate 

models, the RMSEs given by MARS are generally smaller 

than that given by GPR, which seems to deviate from the 

conclusion of Wang et al. (2014) and Gong et al., (2014). As 

shown in Figure 1 of Sobol' (1993), the shape of Sobol’ 

g-function seems like a symmetric hinge. So the MARS 

surrogate is more suitable because it can fit the hinge with its 

inherent hinge function (Hastie et al., 2009), while the GPR 

acts like an interpolation approach that may give over- 

smoothed prediction at the valley bottom of Sobol’ g-function. 

This observation implies that different problems may prefer 

different type of surrogate models, and it is essential to 

prudently evaluate the fitness of candidate surrogate models 

and select the best one for sensitivity analysis and for 

optimization, respectively. 

The RMSEs of surrogate models of SAC-SMA test case 

are presented in Figure 3. The RMSEs of MC, LH, LH-dc, 

SLH, SLH-dc, GLP, and GLP-dc are very similar, while that 

of Sobol’ sequence becomes quite lower. The RMSEs of 

Halton sequence is still high. Unlike Figure 2, the RMSEs 

provided by GPR are low than that of MARS, confirming the 

finding of Wang et al. (2014) and Gong et al. (2014) that GPR 

is suitable for constructing the surrogate model for SAC-SMA 

hydrological model. 

 

 

 

 

 
 

 
Figure 3. RMSEs of the MARS and GPR surrogate models built with different sampling methods (SAC-SMA hydrological 

model). 
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Figure 4. RSMSobol sensitivity analysis results comparing with the true value of main effect (Sobol’ g-function with MARS 

surrogate). 

 

 

   

 

Figure 5. RSMSobol sensitivity analysis results comparing with the true value of main effect (Sobol’ g-function with GPR 

surrogate). 
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4.3. Sensitivity Analysis  

The results from the previous section suggest that the 

more efficient sampling methods may not lead to better sur- 

rogate models. Here we examine if efficient sampling me- 

thods will lead to more accurate sensitivity analysis results. 

For Sobol’ g-function, the main effects given by the RSM- 

Sobol sensitivity analysis are shown in Figure 4 (MARS 

surrogate) and Figure 5 (GPR surrogate). The total errors, 

which are the sum of the absolute errors of each factor 

compared to the analytical true value given in Equation (18), 

are plotted in Figure 6. In this step, we only present the results 

of r = 10, as the results of other sample sizes are similar to r = 

10. Figures 4, 5, and 6 indicated that for sensitivity analysis, 

the influence of the surrogate modeling methods is much 

more important than the sampling methods. For RSMSobol 

with MARS surrogate, MC, LH, LH-dc, SLH, SLH-dc GLP 

and GLP-dc samplings provide similarly small errors, and the 

errors of the Halton and Sobol’ samplings are relatively large. 

For RSMSobol with GPR surrogate, the errors are much 

larger than that of MARS surrogate, no matter what kind of 

sampling approach is used. The RSMSobol with MARS sur- 

rogate can correctly identify the sensitive parameters, while 

with GPR surrogate the sensitivity analysis result is quite mis- 

leading and ineffective. 

For the SAC-SMA model, the main effects given by 

RSMSobol approach with MARS and GPR surrogate model 

are presented in Figure 7. Because for the SAC-SMA model 

the theoretical values of main effects are unknown, we only 

show the sensitivity index Si = Vi/V(Y) provided by different 

sampling and surrogate models, and evaluate their differences. 

Similarly with the results of Sobol’ g-function, the influence 

of the surrogate modeling methods is also more significant 

than the sampling methods. In Figure 7(a), lztwm, lzfsm, 

lzfpm, lzsk are identified as sensitive parameters, however in 

 
Figure 6. Total error of main effect given by RSMSobol built with different sampling methods (Sobol’ g-function). 
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Figure 7(b), they are still sensitive but less significant. On the 

influence of sampling methods, with MARS surrogate, GLP 

and Halton sampling failed to screen out pfree as a sensitive 

parameter, while Sobol’ sequence failed to screen out lzfpm 

and lzsk. With GPR surrogate, Halton sequence failed to sc- 

reen out lzpk and pfree. 

4.4. Optimization  

Now we found that the efficiency of sampling methods is 

less important in surrogate modeling and sensitivity analysis 

results compared to other factors such as surrogate modeling 

methods or the type of test problems. This section investigates 

how the efficiency of the sampling methods is related to the 

 
Figure 7. RSMSobol sensitivity analysis results of SAC-SMA hydrological model with MARS and GPR surrogates. 

 

 
Figure 8. Optimal objective values given by different sampling methods (SAC-SMA hydrological model). 
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robustness of optimization results. Based on Wang et al. 

(2104), the sampling methods and sample sizes of initial 

sampling have significant influence on surrogate-based opti- 

mization when Halton and Sobol’ sampling methods are used. 

Here we examined the optimization results of other sampling 

methods along with Halton and Sobol’ methods. The optimal 

objective values given by different sampling methods and 

sample sizes are shown in Figure 8. As shown in this figure, 

the Sobol’ sequence provides best optimal value, which con- 

firms the conclusion of Wang et al. (2014). The optimal va- 

lues given by Halton sequence is not as good as other samp- 

ling methods, and the MC, LH, LH-dc, SLH, SLH-dc, GLP 

and GLP-dc have similar performance. 

Interestingly, although the Sobol’ sequence did not have 

outstanding performance in surrogate modeling and sensiti- 

vity analysis experiments, it did produce the best optimal 

parameter set compared to other sampling methods. The pos- 

sible explanation might be the effectiveness of the sampling 

methods in terms of optimization results depend on many fac- 

tors in addition to sampling methods, including the choice of 

surrogate modeling methods and optimization search methods. 

To confirm the generality of this observation, more test prob- 

lems should be conducted. 

5. Discussion and Conclusions 

In this paper, the effectiveness and efficiency of nine 

sampling methods for uncertainty quantification are evaluated. 

First we used six kinds of uniformity metrics to evaluate the 

uniformity of sample sets, then we compared the results of 

surrogate modeling, sensitivity analysis and parameter opti- 

mization with test problems. The main findings are sum- 

marized as below. 

According to the uniform metrics, Symmetric Latin 

Hypercube (SLH) and Good Lattice Points (GLP) are the 

most efficient sampling methods in this comparison. If the 

sampling procedure needs replication, SLH is preferred be- 

cause it is a random sampling method. GLP is preferred if the 

computational resources are rather limited that only a small 

number of samples is affordable. On the other hand, the 

Halton and Sobol’ quasi-random sampling methods are even 

not as uniform as crude Monte Carlo when the number of 

samples is not large enough. Compared to previous studies 

like (Morokoff et al., 1995) and (Fang et al., 1994), we have 

extended the inter-comparison to higher dimension (s = 13, 23 

and 40) and various sample sizes, and acquired similar results. 

It might be interesting to extend the comparison to even 

higher dimensions, and check the extendibility of such 

conclusion to various kinds of problems. Considering the 

theoretical order of discrepancy, we have confirmed the 

conclusion of Morokoff et al. (1995) that some QMC methods’ 

actual discrepancies fall behind their theoretical values. For an 

instance, theoretically the order of discrepancies of GLP, 

Halton and Sobol’ QMC methods are quite similar, but 

actually the computed discrepancy of GLP is better than the 

other two, especially when the number of sample points is 

very small. The RGS de-correlation can significantly improve 

the uniformity metrics (efficiency) of lattice designs. 

Interestingly, although the efficiency of a sampling 
method can be objectively measured using problem inde- 
pendent uniformity metrics, the effectiveness largely depends 
on many other factors. As indicated by the test problems, the 
type of surrogate model, sensitivity analysis method, and the 
intrinsic properties of the environmental dynamic model have 
more significant affects to the final results than sampling 
methods. For each practical problem, it is necessary to 
prudently choose appropriate UQ methods. 

We hope our work is useful for scientists who are inte- 
rested in sensitivity analysis, surrogate modeling and para- 
meter optimization for environmental dynamic models. Any 
discussion and collaborations on the sampling and relative 
topics are warmly welcome, and the source code used in this 
paper is available from the first author. 
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