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ABSTRACT.  Emergency evacuation is one of the most important risk management measures for nuclear accidents. Evacuation 

management systems contain various complexities, which have posed many challenges for decision makers. In the study, a fuzzy 

gradient chance-constrained evacuation model (FGCCEM) is proposed to address different uncertainties in evacuation management 

and planning. The FGCCEM is developed by incorporating fuzzy gradient chance-constrained programming into an inexact 

optimization framework. It is capable of balancing decision makers’ optimism and pessimism, and can also reflect uncertainties 

expressed as discrete intervals. The proposed model is applied to a hypothetical case study of emergency evacuation planning for 

nuclear power plants. The results indicate that the FGCCEM can generate optimized evacuation schemes to maximize the total number 

of evacuees within limited time. Meanwhile, evacuation schemes with decision makers’ varied perferences can be obtained through 

post-optimization analysis. The information obtained in this study can provide an insight into the complex relationships in evacuation 

management systems. It can also provide valuable decision support for effective risk management in response to nuclear emergencies. 
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1. Introduction 

Emergency evacuation is an important measure for mana- 

ging risks of nuclear power plants. Since the 1980’s, simula- 

tion and optimization models for emergency evacuation ma- 

nagement and planning have been widely investigated (Xie et 

al., 2010). Sheffi et al. (1982) developed a transportation net- 

work evacuation model for estimating network clearance time 

for areas surrounding nuclear power plant sites. Tweedie et al. 

(1986) proposed a methodology for estimating emergency 

evacuation times based on probabilistic mobilization time 

curves and pertinent evacuation network. Liu et al. (2006) 

introduced a two-level optimization framework for maximi- 

zing evacuation throughput and minimizing total evacuation 

time. After the 2011 Fukushima Daiichi nuclear disaster in Ja- 

pan (Wada et al., 2012; Nomura et al., 2013), more efforts 

have been made to plan and optimize the management for a 

possible evacuation. Optimization models can help optimize 

resource allocation, maximize management efficiency, and di- 

rectly answer the question “what should we do?” (Cai et al., 

2008; Li et al., 2010; Li et al., 2013; Li et al., 2014). They 
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have been recognized as an effective tool for emergency eva- 

cuation management in a stressful disaster environment. How- 

ever, evacuation management systems are inherent with enor- 

mous uncertainties, such as imprecise estimates of radionu- 

clide release duration, changing evacuation demands, and fu- 

zzy information on road conditions and capacities (Caunhye 

et al., 2012). It is a major challenge to effectively reflect such 

uncertainties in the practical applications of emergency eva- 

cuation models (Malesic et al., 2015). 

Quantifying system uncertainties is essential for risk ana- 

lysis and management (Cheng et al., 2002; Lu et al., 2008; 

Fan et al., 2016a; Fan et al., 2016b). Previously, many opti- 

mization methods were developed for addressing various un- 

certainties and complexities in systems management problems 

(He, 2016; Li et al., 2016; Tong et al., 2016). Interval pro- 

gramming (IP) methods were developed to tackle uncertain- 

ties associated with the interval coefficients of optimization 

models (Huang and Cao, 2011). Chance-constrained program- 

ming (CCP) methods were proposed to deal with uncertainties 

in the format of probability distri butions (Li and Huang, 2009; 

Nematian, 2016). Meanwhile, possibility theory, which is con- 

sidered as a mathematical counterpart of probability theory, 

was used for encoding the fuzzy information in decision- 

making processes (Yin et al., 1999; Li et al., 2008; Li et al., 

2015). In fuzzy chance-constrained programming (FCCP) me- 

thods, possibilility was used to evaluate the satisfaction level 

of a fuzzy constraint, and thus quantify subjective information 
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(Guo and Huang, 2009). More recently, the FCCP methods 

were further improved by introducing new measures to eva- 

luate the violation/satisfaction of fuzzy constraints (Li et al., 

2013; Soni and Joshi, 2015). For example, credibility was 

proposed as a measure of confidence level in a fuzzy environ- 

ment and was used to reflect the fuzziness associated with 

parameters in solid waste management systems (Zhang and 

Huang, 2010). An mλ-measure was introduced to generate 

optimal strategies for carbon capture, utilization and storage 

(Dai et al., 2014). These advanced FCCP methods can tackle 

fuzzy information in a more flexible and effective way (Liu et 

al., 2006; Li et al., 20 07; Guo and Huang, 2009). They have a 

great potential for applications in emergency management in 

terms of addressing the high degree of uncertainties that arise 

from the human aspects of emergency preparedness and res- 

ponse. However, there were very few studies on the appli- 

cation of these methods in the analysis and optimization of 

emergency evacua tion management systems. 

Therefore, the objective of this study is to explore the 

possibilities of application of an advanced FCCP method in 

the field of emergency evacuation management. A fuzzy gra- 

dient chance-constrained programming (FGCCP) method will 

be introduced and incorporated into an inexact optimization 

framework. A fuzzy gradient chance-constrained evacuation 

model (FGCCEM) will then be developed to facilitate eva- 

cuation management for nuclear power plant accidents. The 

developed model will be able to address various uncertainties, 

in the formats of intervals and fuzzy sets. A hypothetical case 

study will be provided to demonstrate applicability of the de- 

veloped model. The solutions will be analyzed and interpreted 

to provide optimized evacuation schemes. The information 

obtained in this study can provide an insight into the complex 

relationships in evacuation planning systems, as well as va- 

luable decision support for effective risk management in res- 

ponse to nuclear emergencies. 

2. Development of the Fuzzy Gradient Chance- 
Constrained Evacuation Model 

2.1. Statement of Problem 

Consider a problem in which an evacuation manager is 

responsible for making an evacuation plan in a nuclear emer- 

gency. Typically, there are two pre-designated emergency 

planning zone (EPZs) around each nuclear power plant: plu- 

me exposure pathway EPZ and ingestion exposure pathway 

EPZ (Figure 1). As implied by their names, the goal of pro- 

tective actions during an emergency for the plume exposure 

pathway EPZ is to avoid or reduce dose from potential ex- 

posure of radioactive materials, while that for the ingestion 

exposure pathway EPZ is to avoid or reduce dose from po- 

tential ingestion of radioactive materials. General evacuation 

procedures for nuclear accidents are presented in Figure 2. If a 

nuclear accident occurs, the type and scale of the accident 

must be identified immediately. Subsequently, the maximum 

evacuation time can be estimated based on the release time of 

the radioactive substances. Residents in the plume exposure 

pathway EPZ must be sheltered or evacuated. They will first 

travel to a nearest assembly point (AP). Then, they will be 

transported from the assembly points to temporary shelters 

(TSs), where injured evacuees will be sent to nearby hospitals 

for further treatment and others will be transported to, and ac- 

commodated in, settlement cities/towns (SCTs). Meanwhile, 

residents in the ingestion exposure pathway EPZ will be asked 

to avoid consuming contaminated food and water and wait for 

further instructions. 

Nuclear power plant

Assembly point

Temporary shelter

Settlement city/town

Plume Exposure Pathway EPZ

Ingestion Exposure Pathway EPZ

Legend

 
Figure 1. A typical nuclear EPZ map. 
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Figure 2. General evacuation procesdures. 

 

In the event of a nuclear accident, the overarching 

objective of evacuation management is to evacuate as many 

residents as possible within a limited period of time. The 

problem can be formulated as maximizing the efficiency of 

evacuation, which is subjected to various factors, such as 

evacuation demands, transportation resources, and sheltering 
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capacities at nearby locations. However, this problem is far 

beyond the capability of traditional optimization techniques, 

where coefficients and decision variables are deterministic 

values. In practice, evacuation problems could be significantly 

complicated by various uncertainties. For example, in a dyna- 

mic disaster environment, it could be extremely difficult to 

accurately estimate the evacuation demand (i.e., the total 

number of residents in the plume exposure pathway EPZ) and 

the sheltering capacities (i.e., the capacities of APs, TSs, SCTs, 

and hospitals). Furthermore, transportation capacities are 

affected by weather conditions and cost considerations, and 

thus should not be presented as deterministic values. How to 

effectively address such uncertainties and complexities and 

develop a reliable and robust optimization method for evacua- 

tion management is a major challenge facing the evacuation 

manager. 

 

2.2. Fuzzy Gradient Chance-Constrained Programming 

A common format of uncertainty in decision-making 

processes is subjective judgment. Subjective uncertainties can 

be quantified using the theory of fuzzy sets. Let b  be a 

fuzzy set of subjective interpretations. An optimization model 

with fuzzy constraints can be formulated as:  

 

Max f CX  (1a) 

 

subject to: 

 

AX b  (1b) 

 

0X   (1c) 

 

where f is the objective function, X is a vector of decision 

variables, and A and C are constant coefficients. 

There are different forms of membership functions for 

fuzzy sets, such as triangular, trapezoidal, piecewise linear, 

and Gaussian (Pedrycz, 1994). In this study, the triangular 

membership function, which is the most common type of 

membership functions, is used for the purpose of demonstra- 

tion. A triangular membership function for a fuzzy set b  on 

the universe of discourse T is defined as: 
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,  
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t b
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 (2) 

 

where b , b , and b  are the minimum, maximum, and 

most-likely values of b , respectively. 

In traditional FCCP methods, possibility is often used to 

describe the likelihood of a fuzzy event occurring (Li et al., 

2013). The possibility of the fuzzy event AX b  is defined 

as follows: 

 

1,  
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0,  
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 (3) 

 

Possibility is an adventurous measure that only reflects 

decision makers’ optimistic interpretation. To better balance 

decision makers’ optimism and pessimism, an advanced mea- 

sure named fuzzy gradient measure (FGM), was proposed (Xu 

et al., submitted in 2016). The FGM is defined as follows: 

 

 FGM( ) λP ( ) 1 λ ( )osAX b AX b Ae bc XN      (4) 

 

where ( )Nec  is the necessity of the fuzzy event AX b  
and λ is a gradient value to balance the weights of possibility 

and necessity. With the minimum, maximum and most-likely 

values of b  , the FGM can be calculated as follows: 
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 (5) 

 

Then, a threshold value   can be introduced to eva- 

luate the satisfaction level of the fuzzy constraint AX b , and 

the fuzzy constraint can be converted to a deterministic piece- 

wise constraint as follows: 

 

FGM( )AX b    (6) 

 

In emergency management, more often than not, decision 

makers tend to be conservative in terms of violating system 

constraints. Thus, a conservative FGM scenario where AX   
b  is recommended, and Equation (6) can be rewritten as: 

 

(1 )b b AX

b b

 


  



 (7) 

 

Therefore, a fuzzy gradient chance-constrained program- 

ming (FGCCP) model can be obtained as follows: 

 

Max f CX  (8a) 

 

subject to: 
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( )

(1 )

b b b b
AX

 



  



 (8b) 

 

0X   (8c) 

 

0 1    (8d) 

 

When uncertainties associated with model parameters A 

and C are given as intervals, the FGCCP model can be refor- 

mulated as follows: 

 

Max f C X    (9a) 

 

subject to: 

 

( )

(1 )

b b b b
A X


      


 

 (9b) 

 

0X    (9c) 

 

0 1    (9d) 

 

2.3. Emergency Evacuation Management under Uncer- 

tainty 

The following hypothetical problem can be used to 

illustrate the FGCCP approach. An evacuation manager is 

asked to make an evacuation plan in a nuclear emergency. 

After identifying the reactor that failed, it is determined that a 

complete evacuation of the plume exposure pathway EPZ 

must be accomplished within six hours. The total number of 

residents in the plume exposure pathway EPZ is an inexact 

number, given as [21,000, 23,000]. There are five pre-desig- 

nated APs (i = 1, 2, …, 5), three TSs (j = 1, 2, 3), and four 

SCTs (k = 1, 2, …, 4) to serve the emergency evacuation 

demands (Figure 1). The APs have no capacity constraints, as 

they are only temporary waiting locations for residents to be 

dispatched to the ultimate SCTs. Residents in the plume expo- 

sure pathway EPZ make their own arrangements to move to 

the APs. Residents in the ingestion exposure pathway EPZ are 

suggested to stay inside and wait for further instructions. 

However, in the stressful disaster environment, it is expected 

that some residents in the ingestion exposure pathway EPZ 

will travel to the APs or TSs and require to be evacuated, 

which is considered beyond the evacuation manager’s control. 

The capacities of the three TSs are [300, 400], [200, 300], and 

[250, 400], respectively. Severely injured residents and resi- 

dents with medical conditions will be evacuated by ambulan- 

ces, and will be transported to hosipitals in the SCTs, where 

medical services will be provided. The evacuation time is di- 

vided into six 1-hour periods (t = 1, 2, …, 6). The proportions 

of residents who require medical evacuation chan- ge with 

time, and are 1, 1, 2, 2, 1, and 0.5 percent for t = 1, 2, …, 6, 

respectively. 

Transportation capacities of the paths between APs, TSs, 

and SCTs are estimated in the prioritization of evacuation 

efforts. The maximum community-level evacuation rates from 

APs to TSs are limited by modes of transportation available 

and/or preferred by evacuees, as well as distances to the host 

TSs. It is not practical to accurately estimate the maximum 

community-level evacuation rates; however, the uncertainties 

can be described as intervals (Table 1). Limitations to modes 

of transportation (e.g. the total number of available buses, 

road conditions, and/or characteristics of the available aero- 

drome) and weather conditions (e.g. precipitation, and wind 

speed and direction) are significant factors in determining the 

maximum evacuation flow rates from TSs to SCTs. Fuzzy 

estimates of the maximum evacuation flows are provided in 

Figure 3. The estimates are based on available transportation 

resources as well as locations of the TSs to SCTs; meanwhile, 

the   value in the FGCCP approach allows the evacuation 

manager to make his/her adjustments under different environ- 

mental conditions.  

 

Table 1. The Maximum Evacuation Flow from APs to TSs 

(Person/Hour)  

 TS 1 TS 2 TS 3 

AP 1 [210, 340] [260, 440] [210, 350] 

AP 2 [210, 340] [260, 440] [530, 790] 

AP 3 [210, 340] [170, 260] [210, 350] 

AP 4 [210, 340] [170, 260] [210, 360] 

AP 5 [210, 340] [260, 440] [530, 790] 

 

Based on Model (9), the fuzzy gradient chance-constrain- 

ed evacuation model (FGCCEM) can be formulated. The ob- 

jective is to maximize the total number of evacuees from the 

TSs to the SCTs within six hours: 

 

5 3 6

1 1 1

Max ijt

i j t

f x 

  

   (10a) 

 

where ijtx  is the evacuee flow from AP i to TS j in the tth 

period. 

The optimization problem is subject to a number of 

constraints:   

(1) Firstly and most importantly, the plume exposure 

pathway EPZ must be evacuated within the limited time: 

 
5 3 6

1 1 1

ijt

i j t

x PEPZ 

  

   (10b) 

 

where ijtx  is the evacuee flow from AP i to TS j in the tth  

period, and PEPZ
 is the total number of residents in the 

plume exposure pathway EPZ. 

(2) Residents who require specialized medical services or 

treatment for radiation injury must be transferred to hospitals 

in the SCTs:    
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4 5

1 1

, ,  jkt t ijt

k i

z x j t 

 

      (10c) 

 

where jktz  is the flow of evacuees transported by ambu- 

lances from TS j to SCT k in the tth period, and t  is the 

percentage of residents who require medical evacuation in the 

tth period. 
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Figure 3. The maximum evacuation flows from TS 1 (a), TS 

2 (b), and TS 3 (c) to the four SCTs. 

 

(3) The evacuation rates from APs to TSs and from TSs 

to SCTs are subject to the local transportation capacities:  

 

,  ,  ,  
ijijtx ATT i j t     (10d) 

,  ,  ,  
jkjkty TTS j k t     (10e) 

 

where ijATT   is the maximum evacuee flow from AP i to TS 

j, jkty  is the evacuee flow from TS j to SCT k in the tth  

period, and 
jk

TTS  is the maximum evacuee flow from TS j 

to SCT k. 

(4) Medical evacuation is subject the total number of 

available ambulances:     

 
4

1

,  ,  jkt j

k

z MTTS j t 



    (10f) 

 

where jMTTS
 is the number of available ambulances at TS j. 

(5) The number of evacuees that can be accommodated at 

each TS is subject to its sheltering capacity: 

 
5 4 4

1 1 1 1 1 1

,  ,  1,2,...,6

n n n

ijt jkt jkt j

t i t k t k

x y z TSC j n   

     

      

  (10g) 

 

where jTSC
 is the maximum number of evacuees that can be 

accommodated at TS j. 

(6) There are a set of non-negativity and integer con- 

straints (Huang et al., 2016): 

 

0,  and ,  ,  ,  ijt ijtx x N i j t      (10h) 

 

0,  and ,  ,  ,  jkt jkty y N j k t      (10i) 

 

0,  and ,  ,  ,  jkt jktz z N j k t      (10j) 

 

Model (10) can be solved through an interactive two-step 

algorithm developed by Huang and Fan (2012). Using the 

FGCCP method, a conservative submodel, which corresponds 

to the lower bound of the objective function f  , can be first 

established as follows: 

 
5 3 6

1 1 1

Max ijt

i j t

f x 
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   (11a) 

 

subject to: 

 
5 3 6

1 1 1

ijt

i j t

x PEPZ 
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   (11b) 

 
4 5

1 1

, ,  jkt t ijt

k i

z x j t 

 

      (11c) 

 

,  ,  ,  
ijijtx ATT i j t     (11d) 

 

,  ,  ,  FGM( )
jkjkty TTS j k t       (11e) 
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4

1

,  ,  jkt j

k

z MTTS j t 



    (11f) 

 
5 4 4

1 1 1 1 1 1

,  ,  1,2,...,6

n n n

ijt jkt jkt j

t i t k t k

x y z TSC j n   

     

      
  (11g) 

 

0,  and ,  ,  ,  ijt ijtx x N i j t      (11h) 

 

0,  and ,  ,  ,  jkt jkty y N j k t      (11i) 

 

0,  and ,  ,  ,  jkt jktz z N j k t      (11j) 

 

Let _ijt optx , _jkt opty , and _jkt optz be the solutions of 

Submodel (11). Then, an optimistic submodel, which corres- 

ponds to the upper bound of the objective function f  , can be 

established as follows: 

 
5 3 6

1 1 1

Max ijt

i j t

f x 
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   (12a) 

 

subject to: 

 
5 3 6

1 1 1

ijt

i j t

x PEPZ 

  

   (12b) 

 
4 5

1 1

, ,  jkt t ijt

k i

z x j t 

 

      (12c) 

 

,  ,  ,  
ijijtx ATT i j t     (12d) 

 

,  ,  ,  FGM( )
jkjkty TTS j k t       (12e) 
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z MTTS j t 



    (12f) 

 
5 4 4

1 1 1 1 1 1

,  ,  1,2,...,6

n n n

ijt jkt jkt j

t i t k t k

x y z TSC j n   
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      
  (12g) 

 

_ ,   and ,  ,  ,  ijt ijt opt ijtx x x N i j t       (12h) 

 

_   and ,  ,  ,  jkt jkt opt jkty y y N j k t       (12i) 

 

_ ,  and ,  ,  ,  jkt jkt opt jktz z z N j k t       (12j) 

By solving the deterministic Submodel (12), solutions 

_ijt optx , _jkt opty , and _jkt optz  can be generated. Thus, the 

solutions of Model (10) can be obtained as follows: 

 

[ ,  ]opt opt optf f f    (13) 

 

_ _ _[ ,  ]ijt opt ijt opt ijt optx x x    (14) 

 

_ _ _[ ,  y ]jkt opt jkt opt jkt opty y    (15) 

 

_ _ _[ ,  z ]jkt opt jkt opt jkt optz z    (16) 

 

3. Results and Discussion 

3.1. Baseline Scenario 

The developed FGCCEM was solved using the aforemen- 

tioned two-step algorithm under a baseline scenario where 

=0.5 . The λ value indicates the evacuation manager’s neu- 

tral preferences regarding evacuation efficiency. The satisfa- 

ction level of fuzzy constraints was defined as [0.6, 0.9]. The 

solutions of most decision variables are intervals, which de- 

monstrates that the related decisions are sensitive to the uncer- 

tain model inputs (Huang et al., 1996). The solutions provide 

an optimized evacuation scheme, where the optimal number 

of evacuees carried by each route (from AP i to TS j, and from 

TS j to SCT k) during each period is given as an interval. A 

total of [23,160, 31,780] residents would be evacuated from 

the APs. A complete evacuation of the plume exposure path- 

way EPZ would be accomplished within six hours. In addition, 

[2,160, 8,780] residents in the the ingestion exposure pathway 

EPZ would also be evacuated.  

The optimized dynamic flows from APs to TSs are 

shown in Figure 4. During the six hours, AP 2 would be the 

busiest AP, handling [6,000, 8,843] evacuees. TS 3 would 

house [10,140, 13,275] evacuees in total, which makes it the 

busiest shelter during the evacuation process. Among the 15 

routes between APs and TSs, AP 2 to TS 3 is the one with the 

most traffic, carrying a total of [3,180, 4,553] evacuees. 

Among the five APs, AP 3 would handle the least evacuees 

(i.e., [3,540, 4,680]), and its evacuee flow to TSs 2 and 3 

would be the lowest ([1,020, 1,560] and [1,260, 1,470], res- 

pectively). TS 1 is expected to house a total of [6,300, 8,210], 

which is the lowest among the three TSs.  

It is worth mentioning that although TS 3 is expected to 

handle the most evacuees, it is not the largest TS among the 

three. The capacities of TSs 1 and 3 are very close: [300, 400] 

and [250, 400], respectively. However, the total number of 

evacuees handled by TS 1 would be the lowest, which is ap- 

proximately 38% lower than that of TS 3. Moreover, although 

the routes from AP 2 to TS 3 and TS 5 both have the highest 

maximum traffic capacity of [530, 790] person/hour, the num- 

ber of evacuees carried by the two routes would be slightly 

different: [3,180, 4,553] and [3,180, 3,700] for AP 2 to TSs 2 
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and 3, respectively. Similar results can be obtained through 

the analysis of the least busy facilities. The AP, TS, or route 

with the lowest capacity would not necessarily carry the least 

evacuees. This implies that evacuation management decisions 

should not be made based on capacity factors only. Evacua- 

tion management systems are complex systems with various 

components. There are complex relationships and dynamic in- 

teractions between different system components. To obtain an 

optimized evacuation scheme, a system approach should be 

adopted. The developed FGCCEM can help tackle the inter- 

connected complexities and inherent uncertainties, and thus 

analyze the evacuation problem in a holistic and effective 

way. 
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Figure 4. Evacuation flow (xij) from AP i to TS j during the 

six periods. 

 

The evacuation flow from the three TSs to the four SCTs 

are presented in Figure 5. SCTs 1 to 4 would host [6,840, 

7,440], [5,712, 6,492], [5,592, 6,072], and [3,488, 7,680] 

evacuees, respectively. The most and least demanding routes 

both lead to SCT 3. The path from TS 3 would the most 

demanding, carrying [3,048, 3,168] evacuees, while the one 

from TS 2 would be the least demanding, handling [1,260, 

1,410] evacuees. The most hectic time would be period 1, 

with [4,134, 4,686] evacuees being transferred to SCTs. This 

is because the TSs are at their full capacity and could accom- 

modate the most evacuees at the beginning of the evacuation 

process. As the TSs receive more evacuees, the number would 

gradually decrease to [3,294, 4,254] towards the end of the 

evacuation.  
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Figure 5. Evacuation flow from TSs to SCTs. 
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Figure 6. Medical evacuation scheme for each TS. 

 

The medical evacuation scheme was also optimized and 

generated from the FGCCEM (Figure 6). The total numbers 

of evacuees who require medical transfer would be [104, 305], 

[104, 305], [132, 305], [132, 305], [59, 305], and [21, 32] 

during periods 1 to 6, respectively. It is obvious that the lower 

bound of medical transportation demand varies with time 

significantly, while the upper bound does not. This indicates 

that the availability of medical transportation resources would 

not be a limiting factor when the system approaches their 

upper bounds. It should be noted that the ranges of the solu- 

tion intervals are relatively large, particularly for TSs 2 and 3 

during periods 1 to 5. This implies there are significant uncer- 

tainties associated with the medical evacuation scheme. It is 

suggested more information, such as medical staff, facilities, 

and back-ups in each SCT, be collected and integrated in the 

model. This could help narrow the solution intervals, provide 

more precise decision support, and thus mitigate the risk of 

ineffective medical evacuation.    
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3.2. Analysis of Fuzzy Constraints 

One of FGCCEM’s advantages is its ability to reflect 

decision makers’ optimistic or pessimistic preferences on 

uncertain constraints. In the FGCCEM, fuzzy constraints are 

pre-defined based on experts’ estimation. During the imple- 

mentation process, they can also be further adjusted by deci- 

sion makers using different fuzzy gradient (λ) values. For 

example, the transportation capacity constraints can be pre- 

defined by transportation experts based on the availability and 

accessibility of transportation resources. When a nuclear acci- 

dent occurs, the on-site evacuation manager can further make 

an optimistic, neutral, or pessimistic judgement to adjust these 

constraints according to realistic environmental conditions, 

such as weather conditions and/or the evacuees’ level of co- 

operation/preparedness. 
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Figure 7. Change in the total number of evacuees under 

different scenarios. 

 

In addition to the baseline evacuation scheme (λ = 0.5), 

solutions under eight more scenarios with different λ values 

were also obtained. Scenarios with λ = 0.1, 0.2, …, 0.9 are 

denoted as S1, S2, …, S9, respectively. The λ values of 0.1 to 

0.9 represent the evacuation manager’s “practically pessimi- 

stic”, “almost pessimistic’’, “very pessimistic’’, “quite pessi- 

mistic’’, “neutral”, “quite optimistic”, “very optimistic”, “al- 

most optimistic”, and “practically optimistic” preferences re- 

garding the transportation constraints for routes between TSs 

and SCTs, respectively. The change in total number of eva- 

cuees under different scenarios are presented in Figure 7. If λ 

increases from 0.1 to 0.9, the total number of residents eva- 

cuated from APs to TSs would increase from [23,062, 30,125] 

to [23,160, 36,450], and that from TSs to SCTs would 

increase from [21,416, 25,889] to [21,943, 35,269]. Changes 

in the lower bound solutions are much less significant com- 

pared to those in the upper bound solutions. This implies that 

the flow capacity constraints of routes between TSs and SCTs 

are more important when the actual system conditions are 

close to the upper-bound model status.  

The change in number of evacuees handled by each AP 

under different scenarios were also calculated. As changes in 

the lower-bound solutions are relatively insignificant, only 

upper-bound solutions are presented in Figure 8. In the upper- 

bound model, the numbers of evacuees handled at APs 1 to 5 

would increase by 1,836, 1,180, 590, 951, and 1,768, res- 

pectively. APs 3 and 4 are the only two APs where the number 

of evacuees would increase constantly as the flow constraint 

is being released. For the other three APs, as the λ value in- 

crease, small fluctuations in the number of evacuees are ex- 

pected. This indicates that there would be a re-allocation of 

evacuation flow within the system every time the route capa- 

city constraint changes.   
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Figure 8. Change in the number of evacuees handled by each 

AP under different scenarios (upper-bound solutions). 

 

The lower and upper bounds of total evacuees transferred 

to the three TSs during each period under the nine scenarios 

are shown in Figure 9. The average numbers of evacuees of 

the nine scenarios are [4,143, 5,045], [3,819, 4,941], [3,678, 

4,916], [3,448, 4,832], [3,316, 4,751], and [3,274, 4,492] 

during periods 1 to 6, respectively. In the lower-bound solu- 

tions, there is a decreasing trend in the total number of eva- 

cuees from periods 1 to 6. The decreasing trend with time is 

not as significant in the upper-bound solutions. When the de- 

cision maker’s preferences change from “practically pessimi- 

stic” (λ = 0.1) to “quite optimistic” (λ = 0.6), the total number 

of evacuees would increase gradually. However, when his/her 

preferences change from “very optimistic” (λ = 0.7) to “prac- 

tically optimistic” (λ = 0.9), the changes in the total number of 

evacuees would be much more significant. In the lower-bound 

model, the gradual increasing trend is expected during periods 

4 and 5. The numbers of evacuees in periods 1 and 6 would 

slightly decrease and then increase, while the number during 

period 3 would decrease gradually. The number of evacuees 

during period 2 would first increase when λ = 0.8, and then 

return to the λ = 0.7 level when λ = 0.9. Similarly, the changes 

in the upper-bound model when λ increases from 0.7 to 0.9 

are significant, with no noticeable pattern. The results show 

that the decision maker’s preferences would significantly af- 

fect the design of the evacuation scheme. This is particularly 

true when the decision maker becomes more optimistic. The 

FGCCEM can effective evacuation scheme. This is 

particularly true when the decision maker becomes more 
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optimistic. The FGCCEM can effective incorporate the eva- 

cuation manager’s on-site judgement into the decision-making 

process, and thus provide more robust decision support for 

risk management under various uncertainties.  

4. Conclusions 

In this study, a fuzzy gradient chance-constrained 

evacuation model (FGCCEM) was developed for managing 

risks of nuclear power plants under uncertainty. In nuclear 

evacuation management, decision makers’ subjective judge- 

ment can be interpreted as fuzzy information, which can be 

incorporated into the evacuation optimization process as fuzzy 

constraints. A fuzzy gradient chance-constrained program- 

ming (FGCCP) method was introduced to convert fuzzy con- 

straints to a deterministic constraints and generate quantifiable 

results. In the FGCCP method, the fuzzy gradient was used as 

a dual measure based on necessity and possibility for eva- 

luating the satisfaction level of fuzzy constraints and reflec- 

ting decision makers’ optimistic or pessimistic preferences. 

The FGCCP method was further incorporated into an inexact 

optimization framework, in order to tackle multiple uncer- 

tainties in the formats of fuzzy sets and intervals.  

A hypothetical case study was used to demonstrate the 

applicability of the FGCCEM. Stable interval solutions were 

obtained by solving the FGCCEM through an interactive 

two-step algorithm. The solutions were further interpreted for 

generating an optimal evacuation plan for the hypothetical 

nuclear disaster. The results demonstrated that the proposed 

FGCCEM can help obtain a better understanding of the eva- 

cuation management system and reflect the interconnected 

complexities and various uncertainties. Due to the complexity 

of the evacuation systems and the multitude of factors influen- 

cing the decision-making processes, optimization approaches 

are important for the analysis and planning of emergency 

evacuations. The FGCCEM can help mitigate the adverse 

influence of nuclear accidents and enhance the capability of 

risk management. It can also help decision makers make ad- 

justments on system constraints more effectively to cope with 

a dynamic and uncertain disaster environment. This model 

could be advanced by introducing other advanced optimiza- 

tion methods, such as multi-objective programming and mul- 

ti-stage stochastic programming, to tackle more uncertainties 

and complexities in the future. 
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