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ABSTRACT.  The paper is aimed at a methodological development of change-point detection, applicable in identifying abrupt 
changes in temporal or spatial data sequences. In earlier papers we developed a method for detecting a change in the parameters of a 
discrete distribution, with the simultaneous estimation of the (deterministic but unknown) distribution parameters before and after the 
change. In this paper we not only extend this method to the case of normal distributions, but also provide a new algorithm for the 
iterative refining of the estimation of the change-point, based on a “cleaning” of mixed-up parts of the samples. The appropriate size of 
reduced part of the sample is analytically calculated for the case of normal distributions. This “cleaning” is combined with our original 
change-point detection method. Our new algorithm is not only validated on artificial data, but also applied to a real environmental data 
set collected and analysed by other authors in a seafloor observatory. Our results detecting abrupt changes of bacterial mat coverage of 
a seafloor area are in harmony with the biological fluctuations and changes in the abiotic environment, analysed recently by other 
authors using a different method. We also provide a comparison with other existing change-point detection methods: a one-dimensional 
version of the gradient method widely used for edge detection, and a maximum type statistical method well-known in environmental 
studies. Although normality conditions of our method are rather restrictive, its application potential for environmental data sets is also 
demonstrated. 
 
Keywords: change-point detection, maximum likelihood method, time-series, multi-sensor seafloor observatories, bacterial mat 
coverage 

 
 

 

1. Introduction 

The statistical detection of abrupt changes (change-points) 
in time-series data dates back to the initiative in Shewhart 
(1931), concerning quality control of industrial production 
lines. Following the methodological article (Page 1954), 
where the cumulative sum (CUSUM) control chart was intro- 
duced, and a technically involved branch of mathematical sta- 
tistics, the change-point analysis has been developed. Impor- 
tant theoretical contributions are summarised in Camarero et 
al. (2000) and Csörgő and Horváth (1997). For recent surveys 
on change-point analysis, see Chen and Gupta (2000) and 
Eckley et al. (2011). Since the developed methodology is ap- 
propriate to explore the possible temporal or spatial structure 
of local homogeneity from collected data, change-point ana- 
lysis found applications in various fields of science and hu-  
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man activity, ranging from quality control to environmental 
studies, and from economy to biology and medicine. For ex- 
ample, in earlier papers (López et al., 2010, 2012) we applied 
a change-point method for border or edge detection in the stu- 
dy of patchiness of plant ecology and forest use. We also note 
that in our method, the type of distributions was known and we 

estimate their parameters simultaneously with the change- 
point in an iterative way. 

In López et al. (2010), for a given data system (number 
of individuals of the considered species in each quadrat) col- 
lected along a straight line, two areas were considered where 
the data of each area came from different discrete distribu- 
tions, with unknown parameters. A method was presented that 
simultaneously estimated the change-point separating the di- 
fferent distributions and the unknown parameters of the latter 
distributions. The proposed algorithm was based on the maxi- 
mum likelihood method. In addition, another algorithm was 
implemented to find the so-called change-interval for K, a 
kind of transition zone where both distributions are mixed and 
the estimation of the change-point is included with a given 
probability. In López et al. (2012), this method was applied in 
the field of forest use to analise of the effect of a gap-cut on 
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the spatial distribution of undergrowth plants and tree seed- 
lings. 

In the above mentioned papers we developed and applied 
a method for detecting a change in the parameters of a dis- 
crete distribution occurred in a data sequence linearly or- 
dered in space. In the present paper we extend this method to 
the case of normally distributed data. At the same time, our 
change-point detection method also estimates the parameters 
of the separated normal distributions in an iterative way.  

Moreover, we propose a possible improvement of this ex- 
tended method, based on the following new idea: It is in- 
tuitively clear that, the more samples are need to distinguish 
between the two distributions, the more sample elements 
should be eliminated near the already estimated change-point 
in order to “clean” the “mixed-up” samples. The appropriate 
size of the cut-down part of the sample is analytically cal- 
culated for the case of normal distribution. Then, from the 
cleaned sample we get a finer estimate of the separated dis- 
tributions, and obtain a new estimate for the change-point.   
We repeat this process until the change-point remains un- 
changed. 

This new algorithm is validated and applied to the dete- 
ction of change-points in the time-series data on the bacterial 
mat coverage of a seafloor area, described in Matabos et al. 
(2011a), and deposited in repository Matabos et al. (2011b). 
Although the theory of change-point analysis is mathematic- 
cally rather involved, we emphasize that our method uses only 
sophomore statistics. 

The paper is organised as follows: In Section 2, the con-
ceptual model is established. Section 3 is dedicated to the ma- 
thematical description of the model and to the validation of 
the corresponding new algorithm. In Section 4 the experimen- 
tal data are presented. In Section 5, the results of the appli- 
cation of our method are summarised. Section 6 contains the 
discussion of the proposed algorithms, obtained results and a 
short outlook. Finally, as a theoretical background of the pro- 
posed method, some mathematical details are presented in the 
Appendix.   

2. Conceptual Model  

In this paper, similarly to our papers López et al. (2010, 
2012), the calculation of the change-point is also based in a 
maximum likelihood approach. The main difference is that in 
López et al. (2010 and 2012), discrete distributions were con- 
sidered while here the distributions separated by the obtained 
change-point are assumed to be normal distributions. It is sup- 
posed that there exists a time moment or spatial point where a 
change in the parameters of the distribution occurs. The que- 
stion becomes when or where this change is produced in order 
to understand what took place at this point that could have 
affected our data. Thus, in nature, the detection of a chan- 
ge-point in a data sequence on a given object can help us to 
understand how the environment can affect the object in 
question.   

To estimate the change-point K an algorithm is imple- 

mented with the help of the statistical software “R” (version 
3.1.1.). In López et al. (2010 and 2012), for a fixed data 
position K in time or space, the probability distributions on 
the left and right-hand side of the original sample were esti- 
mated by the statistic sample proportion. Here, since we sup- 
pose that both sides are normally distributed, we estimate for 
a fixed K the unknown parameters: mean and standard de- 
viation of both normal distributions by the sample mean and 
sample standard deviation. Then for this K we calculate the 
product of the likelihood functions of both estimated distri- 
butions. Another difference in relation to the algorithm imple- 
mented in the above papers is that now the likelihood function 
is defined for continuous variables, while previously it was 
defined for discrete variables. Now, as the estimated change- 
point, we choose the value K that maximizes the product of 
the corresponding likelihood functions. Once K is estimated, 
the estimations of the parameters of both required distribu- 
tions are also obtained. 

Additionally, in López et al. (2010 and 2012), another 
algorithm was implemented to find the change-interval for K, 
which is a kind of transition zone containing the estimation of 
the change-point with a given probability where both distribu-
tions are mixed. There, this change-interval was constructed 
by an adaptation of the bootstrap method, generating boot-
strap samples that consist of two linearly arranged “homoge-
neous” parts. The original sample is divided into two parts, so 
that the elements of the original sample are mixed only within 
these parts. Finally, a distribution for the estimates of K is ob- 
tained and the algorithm calculates the required change- 
interval.  

In this paper, we do not construct the analogous algo-
rithm for normal distributions because our purpose is to refine 
the change-point estimation, and not to find a change-zone 
containing the change-point with a certain probability. There-
fore, apart from the algorithm to estimate the change-point for 
normal distributions, we present another, implemented in the 
software “R” to improve this estimation. This algorithm is 
based on the iteration of the change-point estimation obtained 
from the first algorithm. At first, it is supposed that there 
exists a change-point in the normal distribution parameters, 
which are unknown. Applying the first algorithm, the change- 
point K is obtained by a maximum likelihood approach, then 
the original sample is divided in two parts and the parameters 
of both distributions are estimated. Now we repeat this pro- 
cess but with a reduced sample from the original. We elimi- 
nate n elements from the left and right-hand side of the 
calculated change-point K, with the objective of eliminating 
the elements where we doubt if they come from the first dis- 
tribution or from the second, but centering this elimination in- 
terval in the estimated K. For the new sample, smaller than the 
original and separated in two clearly defined parts, we esti- 
mate again the parameters of the left and right distributions 
from the left- and right-hand sides of the smaller sample, res- 
pectively. Then, we apply again the first algorithm to the 
originnal sample to estimate the change-point but considering 
known the parameters of both distributions from these last 
estimations, and from the new K obtained, we reduce again 
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the original sample. We repeat this process until the change- 
point remains constant. However, the question is what sample 
size n we should eliminate from both sides of the change- 
point? How should we calculate n? This question can be 
answered by taking into account that normal distributions are 
considered. We should know the necessary sample size to 
distinguish between two normal distributions. For example, 
we will establish for a general sample a hypothesis test where 
the null hypothesis is: this sample is extracted from a given 
normal distribution and the alternative hypothesis is: the sam- 
ple is extracted from another normal distribution. Two types 
of errors can be made: type I error is made when we reject the 
null hypothesis when it is true, and type II error is made when 
we accept the null hypothesis when it is not true. (Terms type 
I error and type II error are also used for their probabilities.) 
Consider the sum of both errors (total error), in the following 
question: Given 0 , from what threshold sample size n0 , 
would it be verified that the total error is smaller than  ? We 
explain in the Appendix how we calculate the sample size n 
necessary to distinguish between two normal distributions 
given a total error.     

We note that the above approach is new, different from 
the algorithm for calculating a change-interval from the pa- 
pers of López et al. (2010, 2012). In theirs, a sample with the 
original sample size was always considered. However, in the 
present method we remove the uncertain parts from the ori- 
ginal sample to estimate the distribution parameters and con- 
sider them as known, and after that we can estimate the 
change-point again. Another novelty when compared to our 
previous studies, here we also show how to deal with the case 
of several change points. 

3. Model Description and Algorithms 

3.1. Model Description  

In the following we will use time-series terminology, but 
emphasize that construction is also valid for spatially struc-
tured data sequences. We consider N sampling times and fix 
0<<K<<N. Suppose that the values of the considered charac-
teristic (observed quantity) collected at sampling times 1, 2, 
3, …, K are independent random variables with the same 
continuous probability distribution  N(

1 1
,  ). That is, a 

normal distribution with mean 1  and standard deviation 1 , 
whereas the characteristic at sampling times K+1, K+2, K+ 
3, …, N are independent random variables with the same con- 
tinuous probability distribution  N(

2 2
,  ). 

 
1 2 … K - 1 K K + 1 K + 2 … N 


 


 

…            … 

 

We also refer to   as the left distribution and to  as the 
right distribution. First, from a given sample vector X = (x1, 
x2,…, xN), for each possible K, we estimate distributions of 
  and  , and the likelihood of “realization” of the given 
sample. Then, from the possible values of K we obtain the 

required estimate for K, applying the maximum likelihood ap- 
proach. 

 

3.2. Estimation of Distributions   and   

For given 2 ≤ K ≤ N-2, we estimate the parameters of both 
distributions in the same way.  

Let  
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be the corresponding sample means and standard deviations. 
Then, we estimate the left normal distribution by a N(

1 1
ˆ ˆ,  ), 

and the right normal distribution by a N(
2 2

ˆ ˆ,  ).  

Let  
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be the probability density function of a normal distribution 
N(µ, σ).  

Then, given a sample X = (x1, x2, …, xn) obtained from a 
population with normal distribution N(µ, σ), the likelihood 
function is as follows: 

 





n

i

ixfXl
1

),;()|,(                          (4) 

 

Since our sample X consists of two parts: the left part, XlK 
= (x1, …, xK), and the right part XrK = (xK+1, …, xN),  
extracted respectively from the left and right distributions, and 
both distributions have different parameters, let us consider 
the likelihood of “realization” of the sample X, calculated as 
the product of the corresponding left and right likelihood fun- 
ctions: 

 

1 1 2 2: ( , | ) ( , | )K lK rKl l X l X     .  (5) 

 
This function Kl  will be considered as the “validity” of 

K. Based on the given sample X, our purpose is to find a K 
which maximizes Kl , providing the “best” (i.e. the “most 
likely”) value of K. We will deal with this in the next sub- 
section. 
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3.3. Algorithms 

Algorithm 1 (Estimation of the change-point K): 

1. Introduce sample X. N = Size (X).  

2. FOR K = 2 until N - 2:  

a) Calculate: 2211 ˆ,ˆ,ˆ,ˆ  , according to (1) and (2). 

b) Calculate: 
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    (6) 

 
 It is supposed that the left part of the sample is obtained 

from a normal distribution N( 11 ˆ,ˆ  ) and the right part of the 
sample is extracted from a normal distribution N( 22 ˆ,ˆ  ).   

3. LogLikelihood = ( Log l2, …, Log lN-2).  

4. EstimateK = [Position with maximum value among the 
coordinates of LogLikelihood] + 1  

5. Return EstimateK. 

If we are also interested in the estimation of the left and 
right distributions, we can calculate the corresponding esti- 
mated parameters 2211 ˆ,ˆ,ˆ,ˆ  , according to (1) and (2), for 
K = EstimateK. 

 

Algorithm 2 (Refining the estimation of the change-point K): 

1. Introduce sample X. N = Size (X).  

2. We apply Algorithm 1 to the sample X, to obtain an 
estimate K0 for the change-point. 

3. We estimate the parameters of the left and right distri- 
butions, 1ˆ , 1ˆ , 2ˆ , and 2̂ , according to (1) and (2) from 
the obtained K = K0. 

4. Introduce the error  , see Appendix. (This error is 
bound for the sum of the probabilities of both type I and II 
errors). 

5. a) Calculate n from 1ˆ , 1ˆ , 2ˆ , 2̂ , and  , see Ap-
pendix for this calculation.  

 b) It is intuitively clear that, the more samples are need 
to distinguish between the two distributions, the more sample 
elements should be eliminated near K0 in order to “clean” the 
mixed up samples. Therefore, it is at hand to eliminate n sam- 
ple elements from both the left and the right hand sides of 
change-point K0, and from the remaining part of the sample, 
Xn = (x1, …, x

0 1K n  , …, xN), we estimate again the left and 
right distributions: 
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c) Apply again Algorithm 1 to the complete sample X, but 
now change the calculation of Step 2a), that is, we keep the 
previously calculated values of 1ˆ , 1ˆ , 2ˆ , and 2̂  accord- 
ing to (7) and (8), for this application of Algorithm 1. We then 
obtain the change-point K supposing that the left and right 
distributions are N(

1 1
ˆ ˆ,  ), N(

2 2
ˆ ˆ,  ), respectively. We will 

calculate the change-point for the complete sample but sup- 
posing the known parameters for both distributions, what we 
have previously estimated from the original sample without 
the elements (x

0K n , …, x
0K n ), according to (7) and (8).  

 d) IF 0KK    

  KK :0  

  REPEAT Step 5 

   ELSE 

  RETURN K. 

That is, if we find a new change-point candidate, we will 
replace K0 by the new one and we continue to search for it 
repeating the process until no change is produced in the 
candidate. 

 
Search for more than one change-point 

If we want to find more than one change-point, once we 
have obtained the change-point K from the previous algo- 
rithms, we would apply them again to the left and right sam- 
ples independently, obtaining two new change-points Kl and 
Kr. Then we would have three change-points in total, and four 
new parts of the complete sample. In principle, we can repeat 
this process for each sample piece independently until the fol- 
lowing stop criterion: the last obtained change-point of a sam- 
ple piece is not considered when one of the two new obtained 
parts of the corresponding sample piece is too small, or the 
field researcher decides to stop the procedure. 

 

3.4. Validation of the Algorithms 

In order to validate the presented methods, for a given 
change-point, we will generate several samples from given di- 
fferent left and right normal distributions. After applying our 
method, we will reconstruct the given change-point and the 
parameters of both distributions. We will also suppose that 
there is an only change-point and calculate it applying Algo- 
rithms 1 or 2. 

 
Samples obtained from normal distributions with equal 
variances 

a) If we generate a random sample of size 13500, where 
the left-hand side of the sample (the first 7500 elements) are  
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obtained from a normal distribution N(1,1) and the rest of ele- 
ments (the right-hand side) are obtained from a normal distri- 
bution N(3,1), obviously the theoretical change-point is 7500. 
Applying only Algorithm 1 we obtain K = 7500. With a small- 
er sample size, the means of the distributions are closer and 
the variances are large enough as to not distinguish so easily 
the change-point, and it may be necessary to improve Algori- 
thm 1, as we have done to obtain Algorithm 2. We will show 
this in the following example. 

b) We generate a random sample of size 135, where the 
left-hand side of the sample (the first 75 elements) are ob- 
tained from a normal distribution N(1,1) and the rest of ele- 
ments (the right-hand side) from a normal distribution N(2,1). 
Therefore, the theoretical change-point is 75. The whole sam- 
ple is given in Table 1. Applying only Algorithm 1 we obtain 
K = 83. If we apply Algorithm 2 the estimate of change-point 
is much better, K = 76. 

 

Samples obtained from normal distributions with different 
variances 

a) We generate a random sample of size 4500, with the 
first 2500 elements from a distribution N(1,4) and the rest 
from a distribution N(7,6). Then K = 2500. If we apply Algo- 
rithm 1, we obtain K = 2500. Algorithm 1 may work very well 
even when there are more mixed elements from both dis- 
tributions, due to the close values of the means and variances, 
as evidenced from the following example. 

b) The left-hand side of the sample, the first 1000 ele- 
ments, are randomly generated from N(1,2) and the 800 ele- 
ments of the right-hand side from N(3,4). The theoretical 
change-point is 1000 and, applying Algorithm 1 to the whole 
sample, the estimate K is 1000. When the size of the sample is 
not so large and means and variances do not allow distingui- 
shment between both distributions, sometimes Algorithm 1 
needs an improvement, carried out in Algorithm 2. 

c) In this case the first 100 elements are randomly gene- 
rated from N(1,2) and the 40 elements of the right-hand side 
from N(3,4). Obviously K = 100. The whole sample is given 
in Table 2. Algorithm 1 provides an estimate for K equal to 
103. Algorithm 2 improves this estimate, resulting in K = 99. 

 

3.5. Comparing with Other Change-point Methods 

For the comparison with other methods, we will use the 
randomly generated data used for validation in 3.4. 

 

3.5.1. Gradient Method  

One of the most popular change point detection methods 
for continuous variables is the gradient method (GM). This 
method (the one-dimensional version of a planar or spatial 
method used for edge detection) consists of searching the ma- 
ximum module of the derivative of the considered function 
(the maximum module of the difference sequence in our dis- 
crete-time case). Applying it to the data of 3.4, we can com- 

Table 1. Randomly Generated Samples with Equal Variances 

Time Sample 

1-14 -0.63, 1.55, 2.87, 0.39,  0.23, 0.33, 0.26, 1.35, 0.57, 0.53, 2.88, 1.19, 1.35, 0.29, 
15-28 -0.92, -0.26, 0.25, 0.99, 0.28, -0.02, 1.71, 2.10, 0.71, -0.20, 1.28, 0.67, -1.25, 1.67, 
29-42 1.15, -0.45, 1.13, 2.04, 3.07, 1.29, 0.78, 0.78, -0.14, 1.75, 1.66, 0.92, 0.44, 1.54, 
43-56 0.10, 0.67, 1.04, 1.46, 1.57, 1.15, 1.05, -0.03, 0.12, -1.39, 1.27, 1.34, 0.42, 2.21, 
57-70 2.05, 0.97, -0.09, 0.45, 1.33, 1.97, -0.79, 1.51, 0.91, -0.04, 0.69, 1.86, 2.07, 1.23, 
71-84 1.43, 0.48, 2.80, 0.94, -1.56, 0.98, 2.79, 2.34, 0.55, 0.59, 1.84, 0.60, 0.65, 3.83, 
85-98 0.24, 1.29, 1.64, 2.33, 3.38, 1.77, 1.74, 2.53, 1.71, 3.52, 0.11, 1.27, 2.22, 4.00, 
99-112 2.77, 2.32, 1.78, 2.50, 1.58, 2.57, 1.46, 0.51, 1.04, 1.43, 1.62, 2.89, 2.17, 1.80, 
113-126 1.96, 1.21, 1.59, 2.22, 2.06, 1.07, 0.88, 2.79, 2.24, 0.50, 1.92, 1.11, 0.03, 0.23, 
127-135 0.66, 2.29, 1.92, 1.48, 1.42, 0.40, 2.94, 2.95, 4.35 

 
Table 2. Randomly Generated Samples with Different Variances 

Time Sample 

1-14 0.50, -2.29, 0.88, 1.47, 3.14, -3.07, 1.91, 1.01, 0.62, 0.66, 0.61, 0.35, 3.22, -3.22, 
15-28 1.63, 2.87, -0.22, 1.97, 3.12, 1.13, 4.33, 3.79, -1.57, 2.03, 4.90, -1.34, 1.62, -1.68, 
29-42 2.97, 1.28, 1.98, 0.51, 0.83, 1.07, 4.43, 1.46, -1.30, 1.01, 4.21, 2.69, -0.06, 2.57, 
43-56 1.11, 1.39, 2.29, -1.06, 1.61, 0.07, -0.50, -1.34, -1.74, 1.62, 1.54, -1.63, 0.97, -2.30, 
57-70 -1.65, 0.08, 0.49, -0.78, 2.96, -0.19, -1.17, 2.08, -2.51, -1.37, -0.49, -1.11, 1.79, 1.19, 
71-84 3.00, -1.07, 0.73, 2.03, -1.76, 0.65, 1.44, -0.02, 0.01, 3.63, 0.62, -0.11, -0.12, -0.14, 
85-98 -2.98, 3.42, -0.28, 4.02, -1.32, -0.45, -0.13, -0.79, -0.72, -0.94, 0.32, 1.83, 3.21, -1.88, 
99-112 0.79, 4.03, -2.80, 2.72, 2.09, 10.34, -1.30, 9.41, 8.62, 5.24, 3.34, 0.73, 3.60, 3.72, 
113-126 4.17, 7.60, 7.84, 7.52, 6.38, -0.10, -0.63, 3.17, 6.95, -2.01, 4.60, 6.57, 6.36, 5.06, 
127-140 3.90, 5.08, 2.07, 3.28, 0.71, 6.50, -4.70, 0.70, 0.46, 1.68, 9.80, -0.33, 3.77, -1.32 
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pare the performance of the considered methods. As we can 
judge from the comparisons of both methods (Table 3), our 
algorithms performs better than the GM, especially for large 
size samples. 

 

Advantages and disadvantages of GM and Algorithms 1 and 2 

The advantages of the GM are: It is computationally very 
fast, performs rather well for small size samples and requires 
no assumption on piecewise normality of the distribution of 
the observed data. Our methods advantage over the GM is that 
ours seems to perform better for both small and large size 
samples and also estimates the parameters of the observed 
data distribution.  

The disadvantages of the GM are its uselessness for large 
data series, and it fails to estimate the parameters of the ob- 
served data distribution. The disadvantage of our method is it 
requires an assumption of piecewise normality for the observ- 
ed data and we sometimes have to transform the data to obtain 
the normality. Furthermore, for large size samples, the GM 
(taking only a few seconds) is faster than our method (require- 
ing several minutes). 

 

3.5.2. Statistical Test Method Applying “Maximum Type” 
Statistics  

We have considered this method to make a comparison 
because it is frequently used in meteorological and hydrolog-
ical data series to discover systematic changes in the mean of 
the measured quantities, such as precipitation, air pressure or 
temperature. The idea is to test the null hypothesis that claims 
no change in the parameters of the normal distribution of the 
series against the alternative hypothesis claiming that there 

exists a time k when the distribution of the series changed its 
mean. For testing the null hypothesis the used test statistic is 
the maximum of the absolute values of the corresponding test 
statistics, which are calculated for each possible time point. In 
other words, the maximum is taken over all possible time poi- 
nts where the change might occur. The null hypothesis is re- 
jected if the test statistics is larger than a corresponding cri- 
tical value (which depends on the sample size n), and the time 
point where the previous maximum is attained will be the 
change point k to be found. For more details, see Jaruskova 
(1997) and Jaruskova (1996). 

Applying this maximum type statistical method (MTSM) 
to the data of 3.4, we can compare the performance of MSTM 
and our method (Table 4). Again, we can judge from the a- 
bove comparisons of both that our method works better than 
the MTSM, especially for large size samples. 

  

Advantages and disadvantages of MTSM and Algorithms 1 
and 2 

The advantage of the MTSM is its performance for small 
size samples, and in most cases performs much better than the 
GM. The advantages of our method over the MTSM are that 
our method seems to perform better for both small and large 
size samples, and it also estimates the parameters of the ob- 
served data distribution. Moreover, in our method it is not ne- 
essary calculate critical values according to the sample size.  

A disadvantage of both methods is the assumption that 
piecewise normality of observed data is required, and that 
sometimes a data transformation is necessary to obtain it. The 
disadvantages of the MTSM are that for large data series, it 
gives a worse change-point estimation than ours and it doesn't 

Table 3. Comparison with the Gradient Method (GM) 

Based on samples of 3.4, obtained from normal distributions with equal variances 

Sample used Theoretical change-point From Algorithms 1 and 2 From GM 

section a) K = 7500 K = 7500 K=2808 

section b) (Table 1) K = 75 K = 76 K=84 

Based on samples of 3.4, obtained from normal distributions with different variances 

section a) K = 2500 K = 2500 K = 3815 

section b) K = 1000 K = 1000 K = 1695 

section c) (Table 2) K = 100 K = 99 K = 104 

 

Table 4. Comparison with the Maximum Type Statistical Method (MTSM) 

Based on samples of 3.4, obtained from normal distributions with equal variances 

Sample used Theoretical change-point From Algorithms 1 and 2 From MTSM 
section a) K = 7500 K = 7500 K = 7320 
section b) (Table 1) K = 75 K = 76 K = 76 
Based on samples of 3.4, obtained from normal distributions with different variances 

section a) K = 2500 K = 2500 K = 2043 
section b) K = 1000 K = 1000 K = 1057 
section c) (Table 2) K = 100 K = 99 K = 85 
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estimate the parameters of the observed data distribution. Fur- 
thermore, the calculation of exact critical values for testing is 
complicated and an approximation of the critical values is ne- 
cessary when n > 10. 

4. Experimental Data 

The developed change-point methodology can be applied 
to the analysis of temporal or spatial data sequences in a wide 
range of fields, and for monitoring agro-ecological and forest 
systems, aquatic ecosystems, etc. In the present paper we illu- 
strate the efficiency of our method in applying it to detect cha- 
nge-points in the “ready-made” time-series data on the bacte- 
rial mat coverage of a seafloor area. The data we will use have 
been collected by the authors of Matabos et al. (2011a), and 
made available at Dryad Digital Repository: http://dx.doi.org/ 
10.5061/dryad.db2gd, see Matabos et al. (2011b). Since we 
use these data for illustrating our methodology, we only 
shortly summarize the circumstances of data collection below. 
For a complete description of the experiments we refer the 
reader to Matabos et al. (2011a,b). 

For the study of biological cycles in benthic ecosystems, 
the VENUS multi-sensor cabled seafloor observatory was es- 
tablished in the deep-water environment of Saanich Inlet, Bri- 
tish Columbia, Canada. Three species were observed by a re- 
motely operated digital camera, providing an abundance of 
shrimp (Spirontocaris spp.), squat lobster (Munida quadrispi- 
na) and bacterial mat coverage (Beggiatoa spp.).  

We will only discuss the bacterial mat coverage. The lat- 

ter was registered at hourly intervals during three periods: No- 
vember 2 ~ 9, 20 ~ 23 and November 30 to December 4, in 
2009, related to the changes in the abiotic environmental data.  

5. Results 

In the experimental situation shortly described in the pre-
vious section, we apply our change-point estimation method 
using the time-series data of Table 5. The first observation co- 
rresponds to November 2, 16:00 hrs, the next to 17:00 hrs and 
the rest of the observations were taken hourly until the last 
considered observation taken on November 9, 8:00 hrs. 

If we apply Algorithm 1 to these data, we obtain that 
there is a change-point at K = 28 (applying Algorithm 2 pro- 
vides no improvement of this value). This change-point cor- 
responds to November 3, 19:00 hrs.  

If we want to search for another change of distribution, 
and we apply again Algorithm 1 only for the right-hand side 
of the sample, we find that there must be another change-point 
for Kr = 77, the second change-point for the complete sample 
would be at K2 = 105, which is on November 7 at 0:00 hrs.  

In many statistical procedures normal distribution of the 
involved samples is required. It is very important therefore to 
check for this normality assumption because, if violated, in-
terpretation and inference may not be reliable or valid. For 
this reason, we have checked normality applying three of the 
most common normality tests (Shapiro-Wilk, Lilliefors (Kol- 
mogorov-Smirnov) and Anderson-Darling). According to No- 
rnadiah and Yap (2011), Shapiro-Wilk is the most powerful 

Table 5. Data Obtained in Matabos et al. (2011a,b), on the Percentage of Bacterial Mat Coverage 

Time (hours) Percentage of bacterial mat coverage 

1-7 10.4840000, 10.3785333, 19.6990000, 13.4586000, 18.1868667, 9.6732000, 14.9852000; 
8-14 13.2225667, 11.4599333, 8.1870667, 4.9142000, 4.9316667, 3.8830667, 8.0873333; 
15-21 5.6105333, 7.6965333, 9.7825333, 9.8237333, 10.7416000, 13.7971333, 20.7617333; 
22-28 18.8464667, 14.4726667, 17.4436667, 15.1624000, 15.1121333, 17.7154000, 17.7116667; 
29-35 0.8414667, 2.2057333, 5.2884000, 6.4312000, 9.1613000, 11.8914000, 9.9539667; 
36-42 8.0165333, 10.0968000, 4.4086667, 1.2552667, 3.0557333, 9.9876000, 9.8244000; 
43-49 3.3898000, 7.7288000, 7.2358000, 6.7428000, 5.5994000, 7.7983333, 5.9444000; 
50-56 8.4119333, 8.0767333, 6.9683333, 4.8029333, 4.9704000, 7.2590667, 6.9236667; 
57-63 12.3139333, 10.9673333, 5.9108667, 9.3456667, 8.5384667, 8.7076667, 8.8768667; 
64-70 9.6138667, 12.5473333, 7.9389333, 6.4124000, 7.4238667, 6.7345333, 8.9609333; 
71-77 7.9157333, 10.5557333, 5.5783333, 10.2988667, 3.3476667, 5.5553333, 5.3493333; 
78-84 5.8724000, 5.3806000, 6.8749333, 4.2702000, 10.2589333, 5.5500667, 3.9351667; 
85-91 2.3202667, 2.5566000, 4.5210000, 6.4854000, 4.9810667, 6.9393333, 4.7274667; 
92-98 7.8811333, 14.0878667, 6.6545333, 9.2467333, 7.9180667, 7.1427333, 7.7186667; 
99-105 6.1379333, 8.5431333, 5.6254667, 6.3112000, 4.8482667, 6.3447333, 12.6581333; 
106-112 6.1377333, 0.2495333, 1.1498000, 3.6782000, 4.3822333, 5.0862667, 4.1902000; 
113-119 2.5320667, 4.8067333, 8.2410667, 7.4472667, 8.0230667, 4.8510667, 5.9036667; 
120-126 6.1734667, 6.3130667, 6.9166000, 6.8148000, 4.8423333, 2.8698667, 3.9376000; 
127-133 3.8878000, 3.3624000, 2.8688000, 2.3149333, 1.7610667, 2.9851333, 3.3612000; 
134-140 4.1124000, 3.9806667, 4.0778667, 2.1974667, 4.2291333, 3.8029333, 4.4337333; 
141-147 7.2634000, 2.9838667, 4.9395333, 4.7098000, 8.7615333, 7.9837000, 7.2058667; 
148-154 3.7946000, 5.3313333, 4.2742667, 3.9970667, 5.1236000, 6.8789333, 4.6097333; 
155-161 5.8856000, 4.2232000, 5.5406000, 4.5637000, 3.5868000, 3.3167333, 2.4931333 

*Matabos et al. (2011a,b). 
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normality test among them. These formal normality tests su- 
pport graphical methods as the normal quantile-quantile plot 
(QQ-plot) that we present next. As we can see in Figure 1, 
there are substantial deviations from a straight line in the re-
sulting plot, which means that the complete sample does not 
proceed from a normal distribution, as the formal normality 
tests will confirm. In Figure 2 we see what happens if we di- 
vide this original sample in three subsamples according to the 
two obtained change points. The corresponding resulting plots 
are approximately linear, which means that these three sub- 
samples proceed from normal distributions as the previous 
normality tests will confirm. 
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Figure 1. Normal quantile-quantile plot for the complete sam- 
ple. 
 

If we apply the Shapiro-Wilk normality test to the whole 
sample with a significance level 05.0 , the p-value ob- 
tained is 3.562·10-8, (applying Lilliefors test for normality, p- 
value = 3.569·10-5), which for both normality tests means that 
there is enough evidence to reject the normality of the whole 
data set. However if we use the information obtained pre- 
viously and consider two samples, one between the first ele- 
ment and position K = 28 and the other one the rest of the 
sample, the Shapiro-Wilk test for normality applied to both 
samples separately provides the following p-values, 0.4234 
and 0.1364, for the first and second samples, respectively, (for 
Lilliefors test the corresponding p-values are 0.623 and 0.27 
71). This indicates that both tests to accept that both data sets 
proceed from normal distributions. If we divide the second 
sample in two parts, according to the obtained Kr =77, the 
Shapiro-Wilk test applied to these two last samples separately 
provides p-values equal to 0.9507 and 0.5213, respectively 
(0.8555 and 0.2328, respectively, for Lilliefors test). This 
means that we can also accept that considering these three 
samples, the three data sets proceed from three normal distri- 
butions. The same conclusions were obtained when we appli- 
ed the Anderson-Darling normality test to all the considered 
samples in a similar way. The estimate of these three bacterial 
mat coverage distributions by the sample means and sample 
standard deviations are N(12.36534,4.83452), N(7.051384, 2.6 
93788), and N(4.631949, 1.834058).  

In summary, we have accepted that the data correspond-
ing to the percentage of bacterial mat coverage during the pe- 
riod November 2 ~ 9 do not proceed from only a normal dis- 

tribution. Normality tests have proven that the data could pro- 
ceed from the previous three normal distributions. At this 
moment it seems interesting to check through hypotheses tests 
and confidence intervals the values of their means.  

 
(a) for the first subsample 

(b) for the second subsample

(c) for the third subsample 
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Figure 2. Normal quantile-quantile plots: (a) for the first sub- 
sample; (b) for the second subsample; (c) for the third sub- 
sample. 

 
From November 2, 16:00 hrs until November 3, 19:00 

hrs, the data proceed from a normal distribution with mean 
12.36534. A hypothesis test to check if the mean is this value 
or not provide a p-value equal to 1, which means there is no 
sample evidence to reject the mean at this value. The 95% 
confidence interval for the mean of the normal distribution is 
[10.49071, 14.23997]. From November 3, 20:00 hrs until No- 
vember 7, at 0:00, the data proceed from a normal distribution 
with mean 7.051384, providing the same conclusion for the 
corresponding hypothesis test (p-value = 1) and the 95% con-
fidence interval for the mean of the normal distribution is 
[6.439969, 7.662799]. From November 8, 1:00 hrs, until the 
end of the period, November 9, 8:00 hrs, the data proceed 
from a normal distribution with mean 4.631949, providing the 
same conclusion for the corresponding hypothesis test (p-va- 
lue = 1) and the 95% confidence interval for the mean of the 
normal distribution is [4.140785, 5.123113]. We can observe 
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how the mean of the normal distributions has decreased over 
time. 

For a comparison with other approaches we recall that to 
deal with the uncertainty of the change point, we can either 
calculate a confidence interval for the change-point estimate 
(e.g. in Wang and Wang, 1994), or construct the change-inter- 
val (see López et al., 2010, 2012). In our present approach the 
uncertainty of the change-point was taken into account in the 
cleaning procedure of our Algorithm 2. Of course, as we have 
shown in the Validation section 3.4, the cleaning may improve 
the estimate of the change-point (especially in case of rela- 
tively small samples), or leave it unchanged, depending on the 
size of the concrete data set and the closeness of the para- 
meters of the involved normal distributions. A disadvantage of 
our method might be that, in its present stage, it is developed 
only for normal distributions. Nevertheless, samples from con- 
tinuous variables often give positive answer to normality tests 
in environmental monitoring, as was the case in our appli- 
cation to seafloor bacterial mat coverage data. 

6. Conclusions 

Change-point method is a powerful tool for detecting ch- 
anges in space or time. In particular, our proposed change- 
point estimation method turned out to be efficient, not only in 
previous cases of spatially structured data (see edge detections 
carried out in López et al., 2010, 2012), but also in the case of 
time-series data.  

The extension of our change-point detection method to 
normal distributions, developed in the present paper (Algo-
rithm 1) opens the way to a large scale of applications, partic-
ularly in environmental studies where normal distribution of- 
ten occurs.  

Under the normality assumption on the distributions sep-
arated by the change-point, Algorithm 2 is a new additional 
method that may improve the estimation of the change point 
K0 already estimated by Algorithm 1. In fact, using this K0 and 
Algorithm 2, we can “clean” the original sample by elimi- 
nating a certain number n of sample elements near K0, and 
from this cleaned sample we estimate again the left and right 
distributions and then calculate the change-point from the 
original sample by Algorithm 1. In fact, Algorithm 2 is es- 
sentially the iterative combination of Algorithm 1 and the 
cleaning procedure. Examples used for the validation of Algo- 
rithm 2 show that the latter really improves the estimate of the 
change-point. It is also seen that this does not happen always, 
but is worth it to try.  

For a comparison of our method with others used to de- 
tect of abrupt changes in time-series, we go back to the con- 
trol charts originally used to detect changes in industrial pro- 
duction lines. As the overview by Taylor (2000) points out, 
control charting and the more recent change-point method 
should be considered as complementary tools, since the first 
one has the advantage to work online, while the latter requires 
data about the whole process but offers a deeper insight to the 
process in question. 

For a comparison with other change-point detection me- 
thods, we note that our method needs an a priori knowledge 
on the type of the distribution. For an overview of non-para- 
metric methods, where no such knowledge is supposed, see 
Brodsky and Darkhovsky (1993) and Cheng (2012, 2013). We 
also note that the intuitive and elementary way we deal with 
the case of several change-points, turned out to be efficient in 
the considered environmental application. For a theoretically 
elaborated approach to the multiple change-point case see e.g. 
Hawkins (2001).  

Although the application to time-series data on bacterial 
mat coverage was intended to illustrate the extension of this 
method from discrete to normally distributed variables, it also 
agrees with certain observations of Matabos et al. (2011a). In 
fact, when applying cross-correlation analysis, the bacterial 
mat coverage showed significant correlation to oxygen con- 
centration in the water. Depending on the time lag considered 
after a change in dissolved oxygen concentration a weak but 
significant correlation is obtained, 27.0r , for a 6 hour lag. 
In other words, following a major oxygen intrusion, they 
found a rapid disappearance of bacterial mats. This disappear- 
rance coincided with a rapid increase in shrimp abundance in 
the highly oxic environment, which might impact feeding on 
the bacterial mats. Another option to explain the disappear- 
rance of Beggiatoa spp. mats is to consider that they migrate 
downward (and out of sight) to avoid high oxygen levels. In 
any case, the question remains open: which one is the real (or 
the dominant) cause of the observed phenomenon? The results 
of our change-point analysis, to some extent, also contributes 
to the study of this problem:  Before the observed major oxy- 
gen intrusion, our method also provided two change-points 
(each of them follows a local maximum of the oxygen con- 
centration, see Figure 2 of Matabos et al., 2011a). This sepa- 
rated normal distributions and at each change-point the mean 
value changed to a smaller one, giving an insight to the effect 
of minor peaks in oxygen concentration. For a complex auto- 
mated image analysis of detected bacterial mat coverage based 
on the data collected in the VENUS Undersea Cabled Obser- 
vatory, see Aguzzi et al. (2011). 

It should be noted that we continued searching for further 
change-points inside these three samples. However, as we 
proceeded, the subsamples obtained were too small, and so we 
stopped the search and kept the previously obtained two chan- 
ge-points as final results. 

Finally, as we look forward we note the developed chan- 
ge-point methodology might also be applied to temporal or 
spatial data sequences for monitoring epibenthic marine eco- 
systems, or similarly, for detecting heterogeneities in certain 
terrestric ecosystems, see Healey et al. (2014) and Boluwade 
and Madramootoo (2015). Of course, as we have discussed in 
the Results section, normality tests should be applied for a 
correct application of our method, lest normal distribution of 
environmental data be taken for granted, see e.g. Rong (2000). 
As already emphasized in general terms, our method can be 
applied to detect abrupt changes, which gives it potential 
environmental and ecological applications under the normali-  
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ty condition of the distributions involved. We will shortly 
discuss this issue below for an outlook. The well-known ob- 
servation that many variables turn out to be approximately 
normally distributed, is theoretically justified by the central li- 
mit theorem of probability theory, see Durrett (2010). In en- 
vironmental context important examples of time series are 
confirmed to be normally distributed. For example, in Jones 
and Hulme (1996) it is reported that in regions where boun- 
dary conditions do not change dramatically, monthly mean 
temperature (as well as monthly mean maximum or minimum 
temperature) have the tendency to be normally distributed (at 
this point we also note that most precipitation time series are 
not normally distributed, see Legates, 1991). In time series of 
environmental data, the random variable in question often 
takes only positive values, and hence has an asymmetric dis- 
tribution which, of course, cannot be normal. It often occurs, 
however, that the variable log-normally distributed, i.e., its 
log-transformed is normally distributed. Therefore, in these 
cases our change-point detection method can be also applied. 
Here we only recall e.g. Bell (2001) where it is shown that 
log-normal distribution is appropriate for particulate data and 
the majority of the nitric oxide, oxides of nitrogen and sulphur 
dioxide data sets. Also, Holland and FitzSimons (1982) argue 
that log-normal distributions can represent aerometric data of 
positive skewness, like ozone data. To finish, for other trans- 
formations to achieve normal distributions in environmental 
data we refer to Mateu (1997), where such transformations 
have been applied to atmospheric parameters and particle con- 
centrations.   
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Appendix 

In this Appendix we explain how we calculate the sample 
size n used in Algorithm 2, Step 5a). Let us assume we have 
an n-sample  nxx ,...1 , which is homogeneous. We know that 
this sample is taken either from a normal distribution   
 11,N  or from another normal distribution  22, N . 

Suppose that R21,   with 21    and 0, 21  . We 
have to find out whether our n-sample is taken either from   
or  . Let us suppose firstly that 21, are equal, but keep 
the distinctive notation. We consider two hypotheses: 

H0: the sample is taken from  , that is, the population 
mean is 1 ; 

H1: the sample comes from  , that is, the population 
mean is 2 . 

We use a statistic RRS n :1  and let us denote by  rQ  
the rejection region and  aQ  the acceptance region.  

Type I error is:  

 

        trueis ,... 011 HQxxSP rn                 (A1) 

 

Type II error is:  

 

     )( trueis ,... 111   HQxxSP an               (A2) 

 

For each fixed sample size n and significance level α we 
have a total error: RRnE : ,   )(,  nE . The 
question is, for a fixed n, where is the minimum of  ,nE  
attained? If we consider that we have a sample of size 1, it 
makes sense that the rejection region was of the form 

  ][ yXQr  . Therefore, Type I error is 
y



 ( )f x dx, where f 
is the probability density function of a  11,N . Type II 
error is y

 ( )g x dx, where g is the probability density function 
of a  22,N . 

We try to find out which y  would minimize the sum of 
both errors. Let us denote: 
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That is, we want to find the value of y  such that )( y  
= 0 and y  is a minimum: 
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Case 1: Suppose equal variances,   21      

It is easy to prove that 
2 1

( ) / 2y     verifies )( y  
= 0 and 0)(   y . Therefore, 
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( ) / 2y     is a mini- 

mum point of )(y . 

 

Case 2: Suppose different variances, 21    

It is not difficult to prove that, in this case,  
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is a minimum point of )(y . Now our aim is the following. 
Given these two distributions: 
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where we suppose 21    and 0, 21  , see how the 
error depends on 1 , 2  and 1 , 2 : 
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Case 1:   21  and 
2 1

( ) / 2y n     

We have that the total error in function of n  (we will de- 
note it by )(nE ) would be: 
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where Z follows distribution N(0,1). Which would be the 
inverse function of )(nE ? Our purpose is the following: 
given an error 0 , we want to obtain the corresponding 

0n  so that )(nE  for all 0nn  . Then we have: 
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Using the qnorm function of statistic software “R” we can 

obtain the corresponding quantile for a distribution N(0,1), 
then we have:   
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Therefore, given the values of  ,,, 21 , we have: 
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Case 2: 21    and y is given as:     

 

2
1

2
2

)(2

2

12
12

2
21

2
12

2
21

2
2

2
1

ln)()(






















n

nn

y   

(A13) 
 

In this case the total error is  ( ) 1 ( )E n P n y     
 ( )P n y  , where:  
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Again, our objective is to obtain a value of 0n  that 
assures that, given the error ,  )(nE  holds for all n > n0. 
It is guaranteed that:  
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Then, given an error ,  we want to obtain for each one 
of the above probabilities a value of n , choosing finally the 
largest one. Let us search for n  that makes Equations (14) 
and (15) equals to 1-  /2 and  /2, respectively. Then with 
the qnorm function of statistic software “R” we have:  
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and taking into consideration the value of y  in function of 
n , we solve these two previous equations with the help of the 
software “R”, obtaining two values of n  and choosing the 
greater one, denoted note by 0n .Then, for both cases (equal 
or different variances), given an error ,  we can calculate a 
sample size n0 so that, )(nE  for all .0nn  In Algorithm 
2 Step 5a), we will choose n = 1)( 0 nround . 
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