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ABSTRACT.  In this study, theoretical models have been developed to predict the velocity-dip-position in steady and uniform 
turbulent flow through open channels. Unlike the previous works where empirical or semi-empirical models were suggested, the 
present models are developed from a mathematical approach based on the concept of entropy theory. Considering dimensionless 
dip-position as a random variable and starting from the Shannon entropy on probability distribution, models are derived by 
maximizing the entropy function using the principle of maximum entropy. It has been shown that proposed models are applicable over 
the whole cross section as well as at the central section of any rectangular open channel. The models are validated with a large 
number of experimental data sets published in literature for a wide variety of flow conditions. Apart from this, the models are also 
compared with other similar models existing in literature and the prediction accuracy of the present models are confirmed by 
computing five different errors for all the models. Out of the two proposed models, the model M2c satisfies the required asymptotic 
boundary conditions. At the end, model M2c is expressed in terms of a damping function. The non-occurrence of maximum velocity at 
the free surface, commonly known as dip-phenomenon, is explained in the light of the proposed damping concept. 
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1. Introduction  

The vertical velocity profile in a uniform turbulent flow 
through open channels has drawn the attention of scientists 
and hydraulic engineers since a long time. The location of the 
maximum velocity from channel bottom has special interest 
among civil engineers, geologists, hydrologists and other re- 
searchers. For more than a century ago, scientists Francis 
(1878), Stearns (1883), Murphy (1904), Gibson (1909) and 
Vanoni (1946) have found the position of the maximum mean 
velocity below the water surface. This phenomenon is known 
as velocity-dip-phenomenon and the location of maximum ve- 
locity from channel bottom is known as velocity-dip-position. 
The maximum velocity in an open-channel at any cross sec- 
tion may occur up to 45% of the flow depth below the free 
surface (Stearns, 1883; Hu and Hui, 1995). Even in the large 
river like the Mississippi River, the maximum velocity ap- 
pears at two-third of the water depth from the channel bottom 
(Gordon, 1992). Moreover, the maximum velocity usually 
occurs beneath the water surface during flood periods (Gor- 
don, 1992). Many experiments have been conducted to mea- 
sure the mean velocity profiles along vertical direction in 
open-channel turbulent flow and it has been observed that at 
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the central section of an open channel the velocity-dip-pheno- 
menon occurs if the aspect ratio of the channel Ar (defined as 
the ratio of channel width b to flow depth h) is less than a 
certain value, called the critical aspect ratio 5cAr  . From 
their experimental observations, Nezu and Rodi (1985) pro- 
posed that 5cAr  . Again, though at the central section of a 
wide open channel (where cAr Ar ) maximum velocity ap- 
pears at the free surface, but near to the sidewall region the 
dip phenomenon appears (Vanoni, 1941). Vanoni (1941) also 
suggested that for wide open channels, there always exists a 
central region where no dip phenomenon occurs. Later on,  
Nezu and Rodi (1985) found that in the central region / 2b（  

( )) / / 2cz h Ar Ar−  − (where z is distance from the side wall) 
maximum velocity always observed at the free surface.  

It is a challenge to scientists and engineers to predict the 
velocity-dip-position at any given distance z from sidewall for 
open channel flows. According to the best of our knowledge, 
till now no mathematical model has been developed for pre- 
dicting the dip-position from a theoretical background. Di- 
fferent analytical (empirical or semi-empirical) and numerical 
models and methods are reported by several investigators time 
to time. Wang et al. (2001) proposed a relation for yd (the lo- 
cation of velocity-dip-position from channel bottom or bed) as 
a function of lateral distance z by observing the pattern of 
measured data obtained by Nezu and Rodi (1986) and other 
eight researchers. Their empirical model represents a linear 
trend of sine wave function and is applicable only to narrow 
open channels. They also proposed a model for dimensionless 
dip-position ( /d dy h = , where h is the flow depth) at the 
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central section of open channels as a function of aspect ratio. 
Yang et al. (2004) analyzed data of Yang (1996) and NHRI 
(1957) and proposed an empirical model for dip position. This 
model is verified for a wide range of channel aspect ratio from 
4.1 to 15. They found that velocity dip may occur very close 
to sidewall region even when channel aspect ratio is large. 
This model is applicable both in wide and narrow open chan- 
nels and also applicable at the central section of any open cha- 
nnels. Absi (2011) considered this model to predict the ve- 
locity-dip-position for validating his proposed velocity model 
named as full dip-modified-log-wake law (fDMLW-law). 
Bonakdari et al. (2008) critically analyzed both the models of 
Wang et al. (2001) and Yang et al. (2004) for small channel 
aspect ratio. They found that both of these models overesti- 
mate the experimental results when Ar is small. On the basis 
of experimental observation from five researchers, Bonakdari 
et al. (2008) proposed a sigmoid model for dip position vary- 
ing Ar. Apart from these empirical and analytical models, re- 
searchers proposed numerical models and methods to deter- 
mine the velocity-dip-position (Wang and Cheng, 2005; Sar- 
ma et al., 2000). Guo and Julien (2008) describes a method to 
determine the dip position by fitting a parabola to the velocity 
data near the free surface region. Guo (2013) studied the ve- 
locity profile for smooth rectangular open channel flows. He 
found that the velocity-dip-position shifts exponentially from 
the water surface to half flow depth as the channel aspect ratio 
decreases from infinity to zero. He proposed an empirical re- 
lation between bed shear stress and free surface shear stress 
based on the experimental data of Hu and Hui (1995) and 
based on this assumption he proposed an empirical model for 
dip position at the channel central section. Besides this, Guo 
(2013) analyzed the models of Wang et al. (2001), Yang et al. 
(2004) and Bonakdari et al. (2008) and found that none of 
these models satisfy the asymptotic condition 0.5 1d   
consistent with Hu and Hui (1995) observations. Pu (2013) 
proposed an empirical model for velocity-dip-position at the 
central section of open channel. This model satisfies both the 
asymptotic boundary conditions. Pu (2013) validated his mo- 
del for both wide and narrow open channel flows with rough 
and smooth beds. Most of these models of velocity-dip-posi- 
tion found in literature are empirically proposed and model 
parameters are determined from limited number of experi- 
mental data and did not satisfy the asymptotic boundary con- 
dition 0.5 1d   (Hu and Hui, 1995). The numerical mo- 
dels based on RANS equation create difficulty regarding com- 
putational purpose and accuracy of the solutions. Therefore, in 
this study we applied the entropy theory based approach to 
develop a model for the velocity-dip-position.  

Since the development of the entropy theory by Shannon 
(1948) and of the principle of maximum entropy (POME) by 
Jaynes (1957), there has been a number of applications of 
entropy theory in hydrological and environmental sciences 
(Singh, 1997; Nourani et al., 2015). Chiu (1987, 1989) has 
derived the probability density function for velocity and using 
the POME they derived the models for mean velocity distri- 
bution, turbulent shear stress distribution and particle suspen-  

 

sion concentration distribution. Later on, Luo and Singh 
(2011), Singh and Luo (2011) and Kumbhakar and Ghoshal 
(2016a, b) studied on velocity distribution in an open channel 
flow by employing the concept of Tsallis (1988) and Renyi 
(1961) entropy which are the generalizations of Shannon en- 
tropy. However, the present study focuses on the velocity dip- 
position derived from the Shannon entropy. Chiu and Tung 
(2002) studied the maximum velocity and regularities in open 
channel flows and derived an empirical model using regres- 
sion technique for dip-position which is expressed as:  
 

2( ) ( 1)1 0.2ln , ( )
58.3 ( 1) 1

M

d M

G M e
G M

M e


−
= + =

− +
     (1)   

                          
where M is the entropy parameter (Chiu, 1987). The compu-
tation of velocity-dip-position from this model requires the 
knowledge of M. Chiu and Tung (2002) computed the value 
of M from the average value maxu u−  relation. Therefore, it 
gives an average relation between 

d  and M which may in- 
dicate that exact value may fluctuate or deviate above or be- 
low that proposed relation. Though an explicit model for velo- 
city-dip-position has been developed using the entropy con- 
cept, but the computation of dip-position is not straight for- 
ward. Besides this, the above model gives the range of dip- 
position 0.39 1d  which suggests that the lower asymptotic 
boundary condition is not achieved. Therefore, a more general 
model for velocity-dip-position in an open channel is still 
lacking in the literature.  

Our motivation for the present study stems from the fact 
that a mathematical expression of velocity-dip-position throu- 
ghout the cross section of an open channel based on a theo- 
retical approach is not proposed yet. Though the application 
of Shannon entropy theory for problems of open channel hy- 
draulics has been extensive, still no direct application has 
been made by researchers regarding the location of maximum 
velocity for open channel flow. Therefore, in this study, we 
make an attempt to derive an entropy based model for velo- 
city-dip-position throughout the cross section of an open cha- 
nnel. The knowledge of dip-position will help to understand 
the mean velocity distribution over the entire cross section as 
well as flow dynamics of open channel flow. It will be helpful 
to the river engineers, researchers dealing with open channel 
hydraulics and sediment transportation problems and in a 
number of problems of socio-economic importance like con- 
struction of damps, flood control etc. 

The organization of our work is as follows. In section 2, 
we propose the mathematical approach on the basis of Shan- 
non entropy and principle of maximum entropy (POME) de- 
veloped by Jaynes (1957) for finding dip position. The model 
for velocity-dip-position for the entire cross section and for 
the central section is also derived in this section. Section 3 
depicts the validation of proposed models by comparing these 
with a wide range of 23 experimental data available in lite- 
rature including recent results. The appropriate form of the 
models for entire cross section and at the central section of  
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open channel is also mentioned in section 3. To get a quan- 
titative idea about the goodness of fit of the models when 
compared with other existing models, five statistical para- 
meters (errors) are considered and results are discussed in sec- 
tion 4. In section 5, we discuss the variation of the model with 
variation of different parameters. Section 6 describes the effi- 
ciency of the model and the paper is completed by a conclu- 
sion.  

2. Entropy-Based Formulation 

The location of maximum velocity from channel bed i.e. 
velocity-dip-position yd, may or may not be equal to the flow 
depth. It is established by several investigators that at the cen- 
tral section of a narrow channel yd < h, and of a wide open 
channel yd = h. Due to the presence of cellular seconddary cu- 
rrent in a cross sectional plane (Gibson, 1909), the maximum 
velocity appears at free surface at section 1-1 and it appears 
below the free surface at section 2-2 (Figure 1). As a conse- 
quence, the dip position changes along the cross section. As 
the distance z from side wall increases, the value of yd gra- 
dually increases from lower value y* to upper value d* (where 

y* is the location of maximum velocity very close to side wall 
and d* is the location of maximum velocity at cen- tral section, 
Figure 2). In case of wide open channel, d* = h and for narrow 
open channel d* < h. Therefore, the location of maximum ve- 
locity yd is a function of z and hence one can express dip- 
position yd as: 

 
( )dy z=          (2)   

                                                                           

where Ф is some function of z. To investigate the effect of 
sidewall on location of maximum velocity in open channel 
flow, Yan et al. (2011) performed a series of experiments. All 
experiments were conducted in a 12m long and 0.42m wide 
recirculating rectangular flume with glass sidewalls and over 
a plastic bed. The slope could be adjusted to obtain uniform 
flow conditions. The discharge was measured by an acoustic 
flow meter. The water level was controlled by a tail gate weir 
and measured by a point gauge meter. The TSI Laser Doppler 
Velocimeter was utilized to obtain the velocity distribution. 
The experiments were performed for five different flow dep- 
ths, h = 0.06 m, 0.09 m, 0.12 m, 0.15 m, and 0.18 m and in 
each case, velocities were measured at different positions 
from the sidewall. From a statistical analysis of their experi- 
mental data, they proposed that the flow field may be divided 
into two regions: (a) relatively strong sidewall region and (b) 
relatively weak sidewall region. They also concluded that in 
the former region, the distance to the sidewall greatly affects 
the location of maximum velocity and in the latter region, 
both the distance to the sidewall and the aspect ratio influence 
the location of the maximum velocity. Therefore, in this study 
we consider dip position yd as:  
 

( , , )dy z b h=     (3)  

 
 

Figure 1. Schematic diagram of secondary current in a cross 
sectional plane for open channel flow. 
 

Using a dimensional analysis, we can write Equation (3) 
as:  

 
( / , / ) ( / , )d z h b h z h Ar  = =               (4)                                 

 
where d = yd < h is the dimensionless height of velocity- dip- 
position from channel bottom and /Ar b h=  is the channel 
aspect ratio where b denotes the width of the channel. There- 
fore, d can be considered as a random variable and has a pro- 
bability distribution. Following the similar definition for velo- 
city distribution and considering the general form of the cu- 
mulative probability distribution proposed by Singh (2011), in 
this study we assume that the CDF for velocity-dip-position 
as: 

 

max

( ) (  )
n

d d

z
F P dip position

z
 

 
=  =  

 
          (5)                                  

 
where ( )

d
F  is the cumulative distribution function, P denotes 

probability, n is the fitting parameter which describes the de- 
clination of the CFD curve and zmax is the maximum value of z. 
Generally, in a cross sectional plane the flow is symmetrical 
about the center line. Therefore, the value of 

d appears in a 
symmetrical manner on both sides of the center line. Due to 
this reason, the maximum value of z is considered as b/2 i.e. 
zmax = b/2 as on the other side of the center line ( )d z = d  
(b-z). Therefore, the probability density function (PDF) of d  
is obtained by differentiating Equation (5) with respect to

d  
as follows: 

 
1 1

max
max

( )( )
n

d d
d

d d

dF dF dz z d
f n z

d dz d z dz

 


 

− −
   

= = =    
  

     (6)                                

 
The hypothesis that the cumulative distribution function 

( )dF   changes with z, which is presented in Equation (5), is 
tested with the experimental data from Yang (1996), NHRI 
(1957) and Yan et al. (2011). The results are plotted in Figure 
3 for all experimental data and the coefficient of regression is 
obtained as R2 = 0.98. From the figure one can observe that 
the data points are well described by the cumulative distribu- 
tion function proposed in Equation (5).  



 S. Kundu and K. Ghoshal / Journal of Environmental Informatics 33(2) 113-128 (2019) 

116 

To find the probability density function ( )df  of d , we 
have applied the Shannon entropy for velocity-dip position 
which is given as (Shannon, 1948; Shannon and Weaver, 
1949): 

 
*

*

( ) ( )ln ( )
D

d d d dH f f d


     = − 
                (7)  

                             
where 

* and
*
D the lower and upper bounds of d . Equation (7) 

defines a measure of uncertainty of the function ( )df  . To 
find ( )df  , the principle of maximum entropy (POME) deve- 
loped by Jaynes (1957, 1982) is applied which includes the 
specification of certain information called constraints, on ve- 
locity-dip-position. According to the POME, to get the least 
biased probability of the random variable, we maximize the 
entropy function H subject to some specific constraints. 
 

  
Figure 3. Cumulative probability for ( )dF  . Black 
symbols from NHRI (1957), magenta symbols from Yang 
(1996) and blue symbols from Yan et al. (2011). 
 

2.1. Specifications of Constraints 

If the dip-position data are available, one way to express 
the information is in terms of constraints. To define the con- 

straints, the total probability law must be satisfied for the pro- 
bability density function ( )df  . Therefore, the first constraint 
is given as: 

 
*

*

1 ( ) 1
D

d dC f d


 = =            (8) 

                                                   
Generally the other constraint is taken as the mean of d . 

But several authors used other different kinds of constraints in 
their study (Singh, 1998; Singh and Luo, 2011). Therefore, 
following Singh (1998) and Singh and Luo (2011) to derive 
the velocity-dip-position model for the present study, the other 
constraint is taken as: 

 

( ) ( )
*

*

2 ln 1 ( ) ln 1
D

d d d dC f d


   = − = −       (9)                               

 
Equation (9) gives the mean of the logarithmic values of 

( )1 d− . 
 

2.2. Maximization of Entropy Function 

In order to get the least biased probability density fun- 
ction ( )df  , the Shannon entropy function given by Equa- 
tion (7) is maximized by POME subject to the constraints 
given by Equations (8) and (9). The method of Lagrange 
multiplier is employed here to maximize the function H. The 
Lagrange function is given as: 

 

 

( )

* *

* *

*

*

0

1

( )ln ( ) ( 1) ( )

      ln 1 ( )

D D

d d d d d

D

d d d

L f f d f d

f d

 



     

   

 
= − − −  

 
 

 
− − 

 
 

 



    (10) 

in which 0 and 1 are Lagrange multipliers. One can also write 

 

  
Figure 2. Variation of velocity-dip-position for (a) wide and (b) narrow open channels along a cross sectional plane. 
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Equation (10) by neglecting integration signs as: 
 

  ( )0 1( )ln ( ) ( 1) ( ) ln 1 ( )d d d d dL f f f f      = − − − − −  
 (11)    

              
In order to obtain ( )df  which maximizes L, the Euler-La- 

grange equation of calculus of variation has been used. There- 
fore differentiating L with respect to f (considering f as varia- 
ble) and equating the derivative /L f  to zero one obtains: 

 

  ( )0 10 ln ( ) 1 ( 1) ln 1d d

L
f

f
   


= = − − − − − −


     (12)               

 
Rearranging Equation (12), the probability density func- 

tion ( )df  for velocity-dip-position containing the Lagrange 
multipliers is expressed as: 

 

( ) 1
0( ) exp( ) 1d df


  

−
= − −            (13)                                           

 
Therefore, the cumulative distribution function ( )dF  is 

obtained as: 
 

*
1 1

*

0
*

1

1 1exp( )( ) ( ) (1 ) (1 )
1d d d d

D

F f d
 




    



− + − +−
 = = − − −
 −  

  (14) 
 
One can observe from Equations (13) and (14) that the 

probability density function and the cumulative distribution 
function depend on the value of Lagrange multipliers λ0 and λ1. 
Therefore, determination of these parameters is required which 
gives the complete understanding of these functions. 

 
2.3. Determination of Lagrange Multipliers 

Equations (13) and (14) contain two unknown Lagrange 
multipliers λ0 and λ1 which are determined in the following 
way. Substitution of Equation (13) into Equation (8) gives: 

 

( )
*

1

*

0exp( ) 1 1d d

D

d




  
−

− − =     (15)                                       

( ) ( )1 1
* *

0
1

1 11 1
exp( )

1
D

 





− + − +
− − −

 =
−

           (16)                            

 

( ) ( )1 1
0 * * 1

1 1 ln 1 1 ln[ 1]D
 

  
− + − +  = − − − − −

 
       (17)                        

 
Equation (17) shows that λ0 is a function of λ1. Therefore, 

differentiating Equation (17) with respect to λ1 we get: 
 

( ) ( )

( ) ( )

1 1

1 1

* * * *0

1 1* *

1 1

1 1
1 ln(1 ) 1 ln(1 ) 1

11 1
D D

D

 

 

 

 

− + − +

− + − +

− − − − −
= −

 −− − −
             

 (18) 
 

On the other hand, Equation (15) can also be written as: 
 

( )
*

1

*

0 ln 1 d d

D

d




  
−

= −                    (19)  

                                    
Differentiating Equation (19) with respect to 1 and app- 

lying the Liebnitz rule of differentiation under the integral sign 
we obtain: 

 

( )

( )

( )

*
1

*

*
1

*

0

1

1 ln(1 )
ln 1

1

d d d

d

d d

D

D

d

d









  





 

−

−

− −


= − = − −


−





        (20)      

                 
Comparing Equation (18) and Equation (20) and elimi- 

nating 0 one obtains the equation for 1 as: 
 

( ) ( )

( ) ( )

( )

1 1

1 1

* * * *

1* *

1 1

1 1
1 ln(1 ) 1 ln(1 ) 1

11 1

                                                              ln 1 d

D D

D

 

 

 





− + − +

− + − +

− − − − −
−

−− − −

= − −

    (21)      

 
Equation (21) contains only one parameter λ0 and there- 

fore can be solved by any numerical method to find its value. 
One can observe from Equation (21) that the value of the 
parameter λ0 depends on the values of * , D* and ( )ln 1 d− . 
Similarly from Equation (17), it can be concluded that the 
value of the parameter λ0 also depends on * , D* and ( )ln 1 d− . 
In real situation, the value of * is difficult to measure since it 
appears very close to the side wall. Hu and Hui (1995) mea- 
sure the location of maximum velocity close to channel side- 
wall and found that velocity-dip occurs at 50% of the flow 
depth from channel bottom. Therefore, following this result 

* 0.5  is considered in this study. The values of these La- 
grange multipliers can be calculated either by any numerical 
methods or by using least square technique from experimental 
data. 

 
2.4. Proposed Models 

Substituting Equation (16) into Equation (13), the pro- 
bability density function ( )df  of velocity-dip-position is ex- 
pressed as: 

( )

( ) ( )

1

1 1

1

* *
1 1

( 1) 1
( )

1 1
d

df
D



 

 




−

− + − +

− −
=

− − −
                 (22) 
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Similarly substituting Equation (16) into Equation (14), 
the cumulative distribution function is obtained as: 

 

( ) ( )

1 1

1 1

*

* *

- 1 - 1

- 1 - 1
(1- ) - (1- )( )
1- - 1-

d
dF

D

 

 

 




+ +

+ +
=                     (23) 

 
To obtain the model for velocity-dip-position d we 

compare Equation (5) and Equation (23) which results: 
 

 
( ) ( )

1 1

1 1

*

max* *

1 1

1 1
(1 ) (1 )
1 1

d

n
z

zD

 

 

 



− + − +

− + − +

 − − −
=  

− − −  
          (24)   

                                      
After simplification of terms, the entropy based model 

for the velocity-dip-position is obtained as: 
 

0 *

1/

max
1d

mn
z

a a
z


  
 = − +  
   

       (25)  

                                        
where 1 1,m = − + 0 *(1 )ma = −  and ( ) 0* *1 m

a D a= − − .   
If the lateral distance z from side wall is made dimen- 

sionless by flow depth h, Equation (25) reduces to: 
 

 0 1
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1d

mn
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a a
h


  

= − +  
   

                 (26)  

                                      
where 1 *(2 / )na a Ar=  is a parameter that depends on the 
aspect ratio of channel. Equation (26) is referred as model M1 
in this study. One can observe from Equation (26) that the 
velocity-dip-position is expressed by a power type model and 
the proposed model M1 contains two unknown parameter 0a  
and 1a and two exponents m and n. Despite the difficulty of 
the measurement, the values of the model parameters are cal- 
culated from the experimental data by using least square fit- 
ting technique. It can be observed that number of unknown 
parameters is four which is comparatively more than the num- 
ber of parameters present in other models in several previous 
studies (Wang et al., 2001; Yang et al., 2004; Bonakdari et al., 
2008; Absi, 2011; Guo, 2013). Therefore, we try to reduce the 
number of parameters in the proposed model. It can be ob- 
served form Equation (26) that to compute the values of pa- 
rameters, the value of the Lagrange multiplier λ1 is required. 
Therefore, to find its value, Equation (21) is solved nume- 
rically and the value obtained as λ1 = 1.0458. This suggests 
that λ1 > 1 and λ1 ≈ 1 and consequently 1/m = -21.835. To re- 
duce the number of parameters, we assume that 1/m -→  . 
Therefore, under this assumption, Equation (25) reduces to: 
 

2 3
max

1 expd

n
z

a a
z


  
 = − −  
   

                 (27)                                

where 1/
2 0

ma a=  and 3 0* / ( )a a ma= . If the lateral distance 
z from side wall is made dimensionless by flow depth h, 
Equation (27) reduces to: 
 

2 41 expd

n
z

a a
h


  

= − −  
   

                       (28)     

                             
Where 4 3(2 / )na a Ar= . Equation (28) is referred as model 
M2 in this study. It can easily be observed from Equation (28) 
that it contains two unknown parameters 2a and 4a and an un-
known exponent n. All these model parameters in M2 are cal- 
culated from experimental data by using least square fitting 
method. 

At the central section of open channel flows, velocity- 
dip-position is only affected by the channel aspect ratio Ar 
(Yan et al., 2011). More precisely if the aspect ratio cAr Ar  
(where Arc is the critical aspect ratio (Nezu and Rodi, 1985)) 
at the central section, the maximum velocity occurs below the 
free surface; otherwise it appears at the free surface. Therefore, 
the proposed models are modified in the following way. The 
model M1 is expressed as: 

 
1/

501
/ 2d

mn

c

z Ar
a a

b Ar


  
 = − +  
   

                    (29)    

                       
where 0 *(1 )ma and 5 *( / )c

na a Ar Ar= . In a similar 
manner, model M2 is modified as: 
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/ 2d
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c
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b Ar
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  
 = − −  
   

         (30) 

                             
where 6 4 ( / )c

na a Ar Ar= . The location of maximum veloci- 
ty can be calculated from M1 as well as from M2 if the values 
of the models parameters are specified. The following section 
describes the computation of model parameters and the vali- 
dity of the models M1 and M2 with experimental data. 

3. Validation with Data and Comparison with 

Existing Models 

To test the validity of the entropy based proposed models 
M1 and M2, existing data reported in literature from 23 
researchers are considered. All the details of the data sets are 
given in Table 1. Including all the data sets, the aspect ratio 
has a wide range from 0.1552 to 15. Proposed models are also 
compared with the models of Wang et al. (2001), Yang et al. 
(2004), Bonakdari et al. (2008), Guo (2013) and Pu (2013). 

 
3.1. Validation over the Whole Cross Section 

To test the validity of the proposed models M1 (Equation 
(26)) and M2 (Equation (28)) over the entire cross section, 
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experimental data from NHRI (1957), Yang (1996) and Yan et 
al. (2011) are selected. The values of the model parameters 
are calculated from experimental data by using Matlab non- 
linear curve-fit function. From the curve fitting results, the va- 
lue of parameters for model M1 is obtained as 0a = 1.032, 

1a = 0.02176, n = 1.208 and 1/m = -21.84. The R2 value for 
this fitting is obtained as 0.80. Similarly, for the model M2, 
the value of the model parameters are obtained as 2a = 0.5005, 

4a = 0.4426 and n = 1.232. The R2 value for this fitting is 
obtained as 0.8. The results obtained from the proposed mo- 
dels are plotted in Figure 4 together with the all experimental 
data. From the figure, one can observe that both the proposed 
models M1 and M2 agrees well with the experimental data 
throughout the whole cross section of the channel. More pre- 
cisely, it can be observed that both the models M1 and M2 
give almost similar results over the whole cross section. Due 
to the scatteredness of the data points near the side wall region, 
in both these models the value of coefficient of regression 
(numerical value of R2) is less. 

In this study we also compare the proposed models M1 
and M2 given by Equations (26) and (28) respectively with 
the models of Wang et al. (2001) and Yang et al. (2004). The 
explicit formulas of these models over the whole cross section 
are shown in Table 2. All these models are plotted in Figure 4 
for comparison purpose. To show the results more precisely, 
all curves are plotted in a semi logarithmic graph paper. From 
the figure, one can observe that model of Wang et al. (2001) 
deviates from the experimental data when z/h > 2. In the ran- 
ge of z/h between 0.001 to 2, all the models give almost simi- 
lar results. To get a quantitative idea about the prediction ac- 

curacy of these models, five error terms (Mean absolute stan- 
dard error, Average percentage relative error, Sum of squared 
relative error, Sum of logarithmic deviation error and Root 
mean square error) are calculated for all these four models 
(M1, M2, model of Wang et al. (2001) and model of Yang et 
al. (2004)) which are discussed in details in the next section. 
All the calculated values of the errors are shown in Table 2. 

 
3.2. Validation at the Central Section 

The validity of the proposed models M1 (Equation (29)) 
and M2 (Equation (30)) at the central section of open 
channels are also tested with the existing experimental data 
in literature. Since at the central section of open channels, 
dip position is mainly affected by channel aspect ratio (Nezu 
and Rodi, 1985; Yan et al., 2011), we modify the proposed 
models. At the central section z = b/2 and the models M1 and 
M2 can be expressed from Equation (29) and Equation (30), 
respectively as: 
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                      (32)  

Table 1. Details of Selected Data Set 

Serial no. Data source Range of aspect ratio Data points 
1 Murphy (1904) 0.1552 ~1.3460 5 
2 Gibson (1909) 0.256 ~ 2 5 
3 Vanoni (1946) 4.9973 ~ 11.8951 28 
4 NHRI (1957) 4.1 ~ 15 24 
5 Guy et al. (1966) 7.94 ~ 8.54 6 
6 Rajaratnam and Muralidhar (1969) 3.2834 ~ 10.8396 4 
7 Knight and Macdonald (1979) 1.0120 ~ 1.012 1 
8 Sarma et al. (1983) 2.0240 ~ 7.9835 3 
9 Zippe and Graf (1983) 6.1728 ~ 7.6336 5 
10 Hu (1985) 1.6642 ~ 11.1319 13 
11 Nezu and Rodi (1985) 1.0086 ~ 6.0011 3 
12 Coleman (1986) 2.0578 ~ 2.1317 7 
13 Nezu and Rodi (1986) 0.1888 ~ 5.42 68 
14 Cardoso et al. (1989) 4.6729 ~ 7.3529 5 
15 Wang and Qian (1989) 3 ~ 3.75 3 
16 Tominaga et al. (1989) 2.0054 ~ 7.9946 3 
17 Wang and Fu (1991) 4.1664 ~ 4.2913 4 
18 Kironoto and Graf (1994) 2.069 ~ 6.8966 8 
19 Song and Graf (1994) 3.0039 ~ 4.5878 12 
20 Wang and An (1994) 3.7975 ~ 4.1667 5 
21 Yang (1996) 4.47 ~ 9.84 88 
22 Larrarte (2006) 1.7562 ~ 2.9248 25 
23 Yan et al. (2011) 2.3058 ~ 6.9988 5 
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Equations (31) and (32) are referred as model M1c and 
M2c respectively in this study. From both the equations, it is 
observed that the dip position depends on the value of critical 
aspect ratio cAr . Following the study of Nezu and Rodi (1985), 
in this study 5cAr  is considered. To find the value of para- 
meters present in the above models, existing experimental da- 
ta from 21 different experiments are considered (From Hu (19 
85) to Song and Graf (1994) which are given in Table 1). The 
values of the parameters are computed by using least square 
nonlinear curve-fitting technique in Matlab. From the curve 
fitting results, the value of parameters for model M1c is 
obtained as 0a = 1.0045, 5a = 0.01228, n = 1.265 and 1/m = 
133.9. The R2 value for this fitting is obtained as 0.84. Simi- 
larly, for the model M2c, the value of the model parameters 

are obtained as 2a  = 0.495, 6a  = 1.678 and n = 1.75. The R2 
value for this fitting is obtained as 0.87. The results for the 
models M1c and M2c for different aspect ratio are plotted in 
Figure 5. From Figure 5 one can observe that both the mo- 
dels M1c and M2c agree well with experimental data for a wi- 
de range of channel aspect ratio. Also one can verify from the 
figure that when 0,  0.5dAr → for M1c and d → 0.5 for 
M2c and when Ar → , both M1c and M2c implies d → 1. 
This suggests that model M2c satisfies both the asym- ptotic 
boundary conditions. The scatterness of the data points about 
the model Equations (31) and (32) in Figure 5, indicate the 
uncertainty due to measurements errors and other possible 
factors. The 95% upper and lower confidence limits of d  at 
a given value of Ar are also shown in the figure. 

  
Figure 4. Variation of d  with z/h and validation of entropy based proposed model M1 and M2. 

 

Table 2. Comparison of all Models of Velocity-dip Position Applicable for Entire Cross Section with Experimental Data  

No. Investigators Proposed formula 
Prediction error 

MASE r(%) s1 s2 RMSE 

1 Wang et al. (2001) 
2

0.44 0.212 0.05 sin
2.6d

z z

h h

 
1.1232 11.7696 5.4913 3.8885 0.1564 

2 Yang et al. (2004) 
1

1 1.3exp
d

z

h

 1.0963 8.8211 2.0854 2.1522 0.0721 

3 Kundu and Ghoshal M1 (2016) 

21.84
1.21

1 1.032 0.022
d

z

h

 
1.0893 8.5151 1.8660 1.7450 0.0659* 

4 Kundu and Ghoshal M2 (2016) 
1.232

1 0.5 exp 0.443
d

z

h

 
1.0892* 8.5067* 1.8536* 1.7412* 0.0665 

* corresponds to minimum error. 
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Proposed models M1c and M2c given by Equation (31) 
and Equation (32) respectively are also compared with other 
existing models from Wang et al. (2001), Yang et al. (2004), 
Bonakdari et al. (2008), Guo (2013) and Pu (2013) at the 
central section for different aspect ratio of open channels. The 
explicit forms of the models for all aforementioned resear- 
chers are shown in Table 3. All these selected models are plot- 
ted in Figure 5 together with model M1c and M2c respectively. 
From the figure it can be observed that the computed values 
of velocity-dip-position by all these models are comparable to 
each other. Therefore, to analyze the accuracy of these models, 
five different error terms (Mean absolute standard error, Ave- 
rage percentage relative error, Sum of squared relative error, 
Sum of logarithmic deviation error and Root mean square er- 
ror) are also computed and shown in Table 3. From the table it 
can be observed that the prediction accuracy of M2c is su- 
perior to other all existing models. This result suggests that 
dip-position is best described by an exponential decay type 
model. Therefore, this study not only provides good models 
for dip-position but also gives a theoretical base which was 
lacking in the literature till now. 

4．Error Analysis 

To compare the proposed models M1, M2, M1c and M2c 
with other existing models in literature detail error analysis 

has been carried out. Instead of calculating a single error term 
and determining the result, in this study we consider five 
different statistical parameters in order to get a vivid idea 
about the comparison of all the models. These five different 
statistical quantities are: (i) Mean absolute standard error 
(MASE), (ii) Average percentage relative error (r %), (iii) 
Sum of squared relative error (s1), (iv) Sum of logarithmic 
deviation error (s2) and (v) Root mean square error (RMSE). 
The definitions of these errors are given in details as follows: 
(1) Mean absolute standard error (MASE) is defined as: 
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(2) Average percentage relative error is denoted by r and is 
defined as: 

Table 3. Previous and Present Models on Velocity-dip-position Applicable at the Central Section of any Open Channel  

No. Investigators Proposed formula 
Prediction error 

MASE r(%) s1 s2 RMSE 

1 Wang et al. (2001) 
2

0.44 0.212 0.05 sin
2 2.6 2d

Ar Ar  
1.1356 13.3739  8.2640 5.9303 0.1731 

2 Yang et al. (2004) 
1

1 1.3exp
2d

Ar  1.0804 7.7556 2.5233 2.1966 0.0687 

3 Bonakdari et al. (2008) 
4.2

4.2

42.4

94.7d

Ar

Ar
 1.1234 10.1513  4.1832 5.2937 0.0980 

4 Absi (2011) 
1

1 1.3exp
2d

Ar  1.0804 7.7556 2.5233 2.1966 0.0687 

5 Guo (2013) 

1
1.5

1 exp
d

Ar  1.0822 7.5499 2.1294 2.2093 0.0699 

6 Pu (2013) 
4.4

4.4

40.1

80.5d

Ar

Ar
 1.1035 9.5158 3.3958 3.4267 0.0875 

7 Kundu and Ghoshal M1c 

133.91.265

1 1 0.013
d

c

Ar

Ar

 
1.0835 7.7702 2.3037 2.2485 0.0697 

8 Kundu and Ghoshal M2c 

1.75

1 0.495exp 1.678
d

c

Ar

Ar

 
1.0791* 7.5028* 2.0298* 2.0847* 0.0664* 

* corresponds to minimum error. 
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(3) Sum of squared relative error is denoted by s1 and is 
defined as: 
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(4) Sum of logarithmic deviation error defined using the 
logarithmic value of dip position is denoted by s2 and is 
expressed as: 
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and 
(5) The root mean square error (RMSE) is defined as: 
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where in all these error terms N denotes the total number of 
data points, ,d c  and ,d o  denote the computed and obser- 
ved values of dimensionless velocity-dip-position respective- 
ly. 

The computed values of all these errors for the models 
(detail formulas are given in Table 2) are presented in the 
Table 2 for all the selected experimental data where star (*) 
denotes the least error among all these models. From the error 
results in this table, one can observe that the proposed model 
M2 has the least average percentage relative error of 8.5067% 
which gives the best representation of the experimental mea- 
surements. From the table it can also be observed that in most 
of the cases the least value of all these errors corresponds to 
the model M2. In particular, in spite of less number of para- 
meters than M1 and its simpler form, M2 (Equation (28)) per- 
forms even better than all other formulas proposed by Wang et 

 

  
 

Figure 5. Variation of 
d

  with aspect ratio Ar and validation of proposed model M1c and M2c at the central section of open 
channels.  
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al. (2001) and Yang et al. (2004) and M1. This comparison re- 
sults show the superiority of the proposed entropy based mo- 
del M2. 

Similarly, errors for the models for central section of 
open channel (detail formulas are given in Table 3) are com- 
puted and results are shown in Table 3. From the result it can 
be observed that minimum error corresponds to the proposed 
model M2c in this study with the least value of average 
percentage relative error 7.5028%. The average percentage 
relative error for the other formulas varies from 7.5499% to 
13.3739%. The values of s1 and s2, MASE and RMSE also 
clearly indicate the best performance of entropy based model 
M2c (Equation (32)) compared to other empirical models. 

5. Variation of the Model with Change of Parameters 

From the comparison results and error analysis in pre- 
vious two sections, one can find that among two proposed 
models, M2 gives better result in predicting velocity-dip-po- 
sition for the entire cross section of any open channel. The 

other advantage of this model is that it contains less number 
of parameters. Therefore, in this section we will discuss the 
variation of the modified model M2 (Equation (30)) with the 
change of parameters over the half cross section. The modi- 
fied Model M2 (Equation (30)) contains three parameters 2a , 

3a and the exponent n. First the effect of change of aspect ra- 
tio on dip position is considered. Thereafter, for a particular 
value of aspect ratio the variation in dip position with afore- 
mentioned parameters are discussed. 

Figure 6(a) shows the variation of dip position with the 
variation of channel aspect ratio. In the figure the change in 
dip position for seven different values of the aspect ratio Ar = 
2, 3, 5, 7, 10, 12 and 15 is plotted. The values of other 
parameters are kept fixed to 2a  = 0.495, 3a  = 1.678 and n 
= 1.75. From the figure it can be observed that for any fixed 
value of aspect ratio, d  gradually decreases with decrease 
of lateral coordinate Z (=z/(b/2)) . More precisely, when Ar 

7 , the decrease of d  happens gradually and for Ar > 7, 
decrease of d  is not gradual. Furthermore it is also clear 
from the figure that for higher values of aspect ratio (gene- 

 

 
 

Figure 6. Variation of M2 with model parameters over the half cross section (a) variation with different aspect ratio Ar; (b) 
variation with parameter 2a ; (c) variation with parameter 3a ; and (d) variation with exponent n. 
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rally indicates wide open channel) in the region 0.7 1Z  , 
the change in dip position is almost negligible. This indicates 
that for wide open channels, in a region about the center line, 
the effect of channel aspect ratio on dip position is almost 
negligible and flow becomes two-dimensional. These results 
support the findings of Nezu and Rodi (1985). Figure 6(a) 
also indicates that at the central section (Z = 1), when 7Ar   
the dip position occurs on or below 90% of the flow depth 
from channel bed and for Ar > 7 no significant dip occurs at 
the central section. 

Figure 6(b) shows the variation of dip position for six 
different values of parameter 2a  (from 0.1 to 0.5 with an 
increment of 0.1). Here the value of other parameters are kept 
fixed at Ar = 8, 3a  = 1.678 and n = 1.75. Figure 6(b) shows 
that at any fixed position from side wall, the value of d  de- 
creases with increase of 2a . The deviation of d for two 
different values of 2a  gradually increases near the side wall 
region. Also it can be observed from the figure that at a very 
close region to side wall, regardless to the value of all other 
parameters, dip always appears. 

In Figure 6(c), the variation of dip position with the va- 
riation of parameter 3a is discussed. The change in d for six 
different values of 3a = 0.5, 0.8, 1, 1.3, 1.7 and 2 are plotted in 
the figure. The value of other parameters are kept fixed at Ar 
= 8, 2a  = 0.459 and n = 1.75. Figure 6(c) shows that for a 
fixed value of Z, d  increases with the increase of 3a . It is 
also found that at the central section where Z = 1, significant 
dip occurs for 3a  < 2 otherwise maximum velocity appears 
at the free surface. 

Similarly, in Figure 6(d) the effect of exponent n on dip 
position is discussed. In the figure the change of dip for six 
different values of n is plotted. The value of other parameters 
are kept fixed at Ar = 8, 2a = 0.459 and 3a = 1.678. It is 
interesting to observe from the figure that in the region 
0 0.625Z  , dip value decreases with increase of n and in 
the region 0.625 1Z  , dip value increases with increase of 
exponent n. In other words, the point Z = 0.625 becomes a 
point of reflection of the curves. 

6. Discussion 

In this section a critical appraisal of the proposed models 
developed by using entropy concept has been described. At 
the central section of open channels, the turbulent shear stress 
is described as a function of only vertical co-ordinate y which 
can be expressed as (Yang and McCorquodale, 2004): 
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Equation (38) suggests that turbulent shear stress over the 

entire water column depends on the mean vertical velocity. A 
number of studies have been carried out by several scientists 
and it is widely accepted from the result that vertical velocity 
in the flow is induced by the secondary currents. A thorough 
literature about the secondary current can be found in Nezu 

and Nakagawa (1993), Wang and Cheng (2006) and Kundu 
(2015). The proper distribution for turbulent shear stress can 
be found from Equation (38) if a model for uv is known. Yang 
et al. (2004) proposed that: 
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where 1 is a parameter. Inserting Equation (39) into Equation 
(38) we get the shear stress distribution as: 
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Guo (2013) envisaged 1 *b  as an “apparent” shear stress 

1 at the water surface. Like the Reynolds shear stress, 1  
acts like a shear stress at free surface and it physically im-
plicates momentum transfer by secondary currents near the 
water surface (Guo, 2013). From the no slip boundary con- 
dition at the channel bottom Guo (2013) proposed that 1 1   
and obtained the asymptotic boundary condition 0.5   

1d  . 
From the discussion and error analysis in previous 

sections, it has been observed that proposed model M2c gives 
the best result in the context of matching with the experi- 
mental data and providing least errors. In this section, we 
discuss the asymptotic behavior of our model M2 for Ar →  

0  and Ar → . It has already been pointed out by Guo 
(2013) that most of the previous empirical models are less 
adequate in the sense of not preserving the asymptotic boun- 
dary conditions i.e. 0.5d →  when 0Ar →  and 1d →  
when Ar → . To discuss the asymptotic behavior of model 
M2c, first we consider that 0Ar → . Then for cAr Ar  
one can observe that: 
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which implies from Equation (32) that: 

 
21 1 0.495 0.5d a → − = −         (42)                                           

 
Similarly, as a second case we consider Ar → . Then 

cAr Ar  which implies: 
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and consequently Equation (32) implies that: 

 
1d →             (44)                                                             
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This suggests that the proposed model M2c satisfies the 
asymptotic boundary conditions as proposed by Hu and Hui 
(1995). It is important to mention herein that interested read- 
ers can check in a similar way that proposed model M1c is 
satisfying the upper asymptotic boundary condition only. This 
fact also indicates the superiority of the model M2c than M1c. 

Since the establishment of the velocity-dip-phenomenon, 
several scientists like Prandtl (1925), Vanoni (1941), Gibson 
(1909), Karcz (1981), Kinoshita (1967), Nezu and Rodi 
(1985), Nezu and Nakagawa (1993), Wang and Cheng (2005), 
Wang and Cheng (2006), Yang et al. (2012) tried to find out 
the reason behind this phenomenon and it has been widely 
reported that due to the presence of cellular secondary current 
in a cross sectional plane, velocity dip occurs. It has also been 
known that in a wide open channel, the strength of secondary 
current gradually diminished from sidewall to the central sec- 
tion. Due to the negligible effect of secondary current at cen- 
tral section, flow becomes two dimensional (Vanoni, 1941; 
Nezu and Rodi, 1985). This fact indicates that the dip-position 
appears at the free surface when effect of secondary current 
becomes negligible and it appears below free surface when 
there is significantly strong secondary current. It can be ima- 
gined that a damping factor based on the strength of second- 
dary current is acting which compels the dip position to ap- 
pear below the free surface. This effect of damping gradually 
increases from central section towards the sidewall as strength 
of secondary current gradually becomes important; whereas at 
the central section of a narrow open channel, the damping is 
dominant as the effect of secondary current cannot be ne- 
glected. From the result of M2 plotted in Figure 5 it is clear 
that the height of dip-position from channel bottom gradually 
decreases to the value 0.495 at the side wall. Therefore, the 
model M2c can be expressed as: 

 
21 ( , )d a Z Ar = −                (45)                                     

 
where 

6( , ) exp
n

c

Ar
Z Ar a Z

Ar

  
  = −  
   

       (46)  

                                            
The advantage of this equation is that it gives a physical 

inset of the real dip phenomenon. The function ( , )Z Ar is 
introduced here as a “damping factor” and the coefficient 2a  
is introduced as “damping coefficient”. The variation of the 
damping function (1, )Ar at channel central section is plotted 
in Figure 7 for different channel aspect ratio. From the figure, 
one can see that as the aspect ratio increases, the dam- ping 
gradually disappears at the central section of open chan- nels. 
This indicates that for wide open channel flows, at the central 
section there is no damping effect on the location of 
dip-position and as the channel gradually becomes narrow, the 
damping appears which shifts the dip-position from channel 
free surface towards channel bottom. Also it is noticeable 
from the figure that when cAr Ar , 0.0919 which imp- 
licates that the damping can be neglected at the central section 

of wide channels. 
Similarly, in Figure 8 the damping function ( , )Z Ar is 

plotted for 0 1Z   i.e. over the half cross section for nine 
different aspect ratio Ar = 1, 2, ... , 9. From the figure it can be 
observed that for narrow open channels when 5Ar  , the 
damping function having the range from 0.1 to 0.5 which in- 
dicates that damping effect cannot be neglected over the wh- 
ole cross sectional plane of the channel. On the other hand, if 
the channel becomes wide, for example if 6Ar  , it can be 
observed from the figure that there exists a central region 
about the center line, where the damping effect becomes less 
than 5% and it can be assumed to be negligible. Vanoni (1941) 
and Nezu and Rodi (1985) observed the same result in their 
experiments. It is important to note here that since the change 
for aspect ratio for narrow and wide open channel is gradual, 
there always exists a fuzziness of the dip-position as well as a 
critical aspect ratio value for open channels. This indicates 
that in case of an open channel having aspect ratio 6 or 7, 
velocity-dip-phenomenon sill may occur. This conclusion also 
agrees with the result of Guo (2013) who suggested that 
two-dimensional flow occurs if 8Ar  . 

 

  

Figure 7. Damping function for different aspect ratio of open 
channels at the central section. 

 

  

Figure 8. Damping function for different aspect ratio of open 
channels over the cross section of open channels. 
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7. Conclusions 

Applying the entropy theory based on probability dis- 
tribution of a random variable and using the principle of ma- 
ximum entropy, new theoretical models for predicting velo- 
city-dip-position in an open channel flow is derived. The ma- 
jor importance and findings of this study are as follows. 
（1）The models have been developed from a theoreticcal 

basis rather than proposing them empirically like previous 
researchers. These models are simple in nature and easy to 
apply to find the dip-position. 
（2）No estimation of parameter is required to find the 

velocity-dip-position from the proposed models. 
（3）The validation of the models by comparing with 23 sets 

of experimental data shows that models are applicable 
throughout the whole cross section of any rectangular open 
channel. It is also found that at the central section of open 
channels, dip-position changes only with the aspect ratio 
which is consistent with previous results. 
（4）The efficiency of these models are compared with all 

other existing models in literature by computing five di- 
fferent errors. The obtained results of error analysis show that 
out of all existing models, proposed models predicts dip- 
position more accurately over the whole cross section of open 
channels for a wide range of aspect ratio. 
（5）It is also found that out of the two models M1c and M2c 

developed for central section in this study, model M2c 
provides best accurate results and satisfies both the asymp- 
totic boundary conditions, whereas the model M1c only satis- 
fies the upper boundary condition. 
（6）Finally, model M2c is expressed by introducing a 

damping factor which helps to understand the interrelation 
between the secondary current and the velocity-dip-position. 
From the analysis, it is found that at the central section of 
wide open channels the effect of damping is less than 10% 
and the effect increases exponentially for narrow open chan- 
nels. 

Nomenclature 

*a , ia    parameters, i=1,2,...,6 
Ar      channel aspect ratio 
Arc   critical aspect ratio  
b   width of the open channel  
C1, C2 constraints  
D*  maximum value of d   
f    probability density function (PDF)  
F   cumulative distribution function (CDF)  
G  a function 
H  entropy function  
L  Lagrange's function  
m  a parameter  
M  entropy parameter  
n  a parameter  
N  total number of data points  
P  probability  

r   average percentage relative error  
s1  sum of square relative error  
s2  sum of logarithmic deviation error 
u  streamwise time mean velocity 
u*  shear velocity  
u  streamwise depth mean velocity 
umax  streamwise maximum velocity 
v  vertical time mean velocity 
y    vertical co-ordinate 
yd  location of umax from bed  
z    lateral co-ordinate  
zmax      maximum value of z  
Z   dimensionless lateral distance 

1    a parameter 
0 , 1  Lagrange multipliers 
d   dimensionless dip-position 
*    minimum value of 

d
 

,d c   calculated value of 
d

 
,d o   observed value of 

d  
t   turbulent shear stress 
*b   bed shear stress 
1   apparent shear stress 

 ,   functions 
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