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ABSTRACT. A fuzzy linear regression (FLR) method is proposed that uses real-time data to accurately predict daily peak flow rate 
for the Bow and Elbow Rivers in southern Alberta. FLR model performance was compared to a non-fuzzy, error-in-variables model 
(EIV). Mean daily flow rate, with a delay of one, two, three or seven days was used as the independent variable. In implementing the 
FLR, a unique hybrid modelling approach was devised that treated peak flow rate as probabilistic and mean daily flow rate as 
possibilistic. Three gauge errors, 5%, 10% and 20%, were tested and compared to quantify uncertainty in observed flow rate. The 
research proposed a new method of computing the exceedance probability of peak flow rate using fuzzy numbers. NSE, PBIAS and 
RSR and a proposed rating system were used to evaluate and compare the methods. Two different calibration schemes were used, 
including a quasi-real time system. The tests demonstrated that FLR with a one day lag was a very good predictor of peak flow rate 
and outperformed EIV for two stations on the Bow River. A test dataset from the floods of June 2013 in Calgary was used for risk 
assessment. The FLR results demonstrated higher flexibility and sensitivity to the flood as it approached Calgary. The fuzzy method 
was able to capture the peak flow rate for the majority of the high flow rate days, while the EIV model was unable to predict this data 
within the 95% confidence interval. 
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1. Introduction  

The June 2013 floods in southern Alberta were one of the 
worst natural disasters to occur in Canada. The floods were 
responsible for four deaths, displaced more than 100,000 Al- 
bertans in over 30 communities (Alberta Government, 2014), 
and caused approximately $6 billion in damage (Environment 
Canada, 2013). Also, the floods contributed to the transport of 
large amounts of sediment and the destruction of river banks, 
channels and aquatic ecosystems (Environment Canada, 2013). 
This event highlighted the importance and necessity of better 
flood protection, effective and timely flood mitigation strate- 
gies, including improved flood prediction.  

The mechanisms behind extreme events in southern Al- 
berta are generally understood and documented (Valeo et al., 
2007; Ardell, 2013a); however, predicting and assessing the 
risk of floods in the future remains a challenge, in part due to 
the uncertainty in the numerical models that are used. Flood 
predicttion using physically-based, deterministic hydrologic 
models (such as a rainfall-runoff routing model) rely on simp-  
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lified, conceptual representation of highly complex, correlated 
and spatially distributed processes that occur in a watershed 
(Cox, 2003; Vrugt et al., 2005; Wijiesekera et al., 2012). This 
leads to considerable uncertainty (Shen et al., 2015). Further- 
more, uncertainty in the data used to calibrate model parame- 
ters and errors in model structure, compounds this issue (Vru- 
gt et al., 2005). 

An alternative to physically-based models is to use data- 
driven models, which are based on generalized relationships, 
links or connections between input and output datasets (Solo- 
mantine and Ostfeld, 2008). The models can characterize a 
system with limited assumptions and have similar, if not be- 
tter performance than physically-based models. In addition, a 
simpler model structure means that the propagation of uncer- 
tainty from different sources is easier to assess. The use of 
data-driven models, such as neural networks, statistical me- 
thods or regression-based techniques (e.g., Li et al., 2015b, Li 
et al., 2015c; Yang et al., 2015), has been widespread in hy- 
drology, particularly for short term daily flow rate forecasts, 
using a variety of input variables (Garen, 1992; Zealand et al., 
1999; Campolo et al., 1999; Schilling and Walter, 2005; Ada- 
mowski and Sun, 2010; Duncan et al., 2011; Li et al., 2015a; 
Nourani et al., 2015). A recent regression based study pre- 
dicted flow in the Bow River in Calgary, using a base dif- 
ference regression model (Veiga et al., 2014). Two-day lead 
times were used to predict daily flow rates at one station, 
using data from upstream locations, with promising results. 
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Another advantage of using a data-driven approach is that 
data collected from on-going monitoring systems, e.g. real- 
time flow rate data that is routinely collected by Environment 
Canada (Environment Canada, 2014) can be used to calibrate 
and validate the model, rather than site specific surveys that 
are required for many physically-based methods.  

Data-driven modelling have intrinsic uncertainties associ- 
ated with it that are not random or probabilistic in nature, 
thus, making it well suited for the use of fuzzy number theory 
(Dubois and Prade, 1997; Ozbek and Pinder, 2006). Fuzzy 
numbers use fuzzy sets (Zadeh, 1965) and possibility theory 
to describe uncertain or imprecise quantities, measurements or 
observations (Huang et al., 2010; Zhang and Achari, 2010; 
Khan and Valeo, 2015). They are more suitable when data is 
missing, incomplete or vague, combined from multiple sites, 
and to represent uncertainty that is not purely of a random 
nature (Bárdossy, 1990; Bárdossy et al., 1990; Bogardi and 
Duckstein, 2003; Guyonnet et al., 2003; Zhang et al., 2009; 
Zhang and Achari, 2010; Huang et al. 2010). A major advan- 
tage of using fuzzy numbers is that they have the ability to 
provide more meaningful information compared to traditional 
techniques, especially in highlighting the possibility and pro- 
bability of events like floods, and the risk of certain events 
can be directly estimated from the fuzzy number itself (Khan 
et al., 2013; Khan and Valeo, 2015). Fuzzy numbers are based 
on possibility theory, which suggests that some of the strict 
assumptions in many probability models can be relaxed, thus, 
making it useful for hydrological systems (Peters, 1994; Kim 
et al., 1996; Kahraman et al., 2006). The consistency principle 
(Zadeh, 1978; Dubois et al., 1993) links possibility and proba- 
bility, implying that something has to be possible before it is 
probable. A number of methods have been created that utilize 
this principle to convert observed data into fuzzy numbers 
(Oussalah, 2000).   

Fuzzy numbers have been widely used in hydrology to 
represent uncertainty in the parameters of numerical models 
(Khan et al., 2013; Khan and Valeo, 2015). The literature de- 
monstrates the utility and advantage of using fuzzy numbers 
and a summary of some of these applications can be found in 
Khan and Valeo (2015). Fuzzy numbers have also been used 
in conjunction with data-driven models to predict flow rate in 
rivers. Alvisi and Franchini (2011) developed a method to use 
fuzzy numbers for the weights in an artificial neural network 
algorithm to predict water level and discharge under uncer- 
tainty. Corani and Guariso (2005) proposed an artificial neural 
network and fuzzy logic based method for river flood predict- 
tions that used a weighted least squares training algorithm, ra- 
ther than the use of fuzzy numbers. Nguyen and Chua (2012) 
used a recursive adaptive network-based fuzzy inference sys- 
tem for real-time flood forecasts, with lead times between 1 to 
5 days. Results from this model were better compared to a 
physically-based model used for comparison. Also, Wang and 
Huang (2013) used a two-stage mixed-integer linear program- 
ming approach to develop a model for flood-diversion plan- 
ning. They represented uncertainties in the system using a fu- 
zzy based approach. Similarly, Wang et al., (2014) used a po- 
ssibility-probability hybrid approach to represent multiple un- 

certainties in a flood management system. In addition to this, 
Ahmad and Simonovic (2011, 2013 and 2015) use a 3D fuzzy 
set approach to assess spatial and temporal variability of ur- 
ban flood damage and risk assessment. Abdalla et al. (2014) 
used a fuzzy based method to quantify the uncertainty in flood 
risk assessment. Lohani et al. (2014) proposed a Takagi-Suge- 
no fuzzy inference system that uses cluster analysis, to predict 
floods using hourly data (rainfall and flow rate). These type of 
fuzzy rule based analysis has been quite successful for flood 
forecasting (Zhang et al., 2012), but conceptual differ from a 
fuzzy number based approach. As described above, a fuzzy 
number based method is when the uncertainty in a para- meter 
is represented through a specific type of fuzzy set based on 
possibility theory.  

While the benefits of a fuzzy number based approach for 
flow rate prediction have been investigated, the use of fuzzy 
linear regression (FLR) to predict peak flow rate has not been 
explored. FLR is a method used to extend simple linear regre- 
ssion for applications involving fuzzy numbers, i.e. for uncer- 
tain or imprecise systems (Khan and Valeo, 2015). This pro- 
perty makes them ideally suited for data-driven techniques 
that model environmental systems. It provides an alternative 
method when simple linear regression may not be possible, 
e.g. when assumptions of simple linear regression are not met 
(including when the assumption of linearity is invalid), or if 
there is obvious fuzziness or uncertainty in the underlying da- 
ta or process coefficients (Savic and Pedrycz, 1991; Chang 
and Ayyub, 2001). FLR tries to capture the vagueness, and the 
non-random or fuzzy error in the model structure: it is assumed 
that deviations are due to system fuzziness, i.e. the fuzziness 
of the regression coefficients (Chang and Ayyub, 2001). In 
simple linear regression models, the independent variable x 
predicts dependent variable y and in ordinary least squares re- 
gression, it is assumed that x are observed without error (i.e. 
they are fixed). This assumption is typically only true when 
the independent variables are controlled and the effect on the 
dependent variable is measured. Often in engineering applica- 
tions, the dependent data are observed with an error, or bias, 
or are random rather than fixed (Maddala, 1988). This intro- 
duces a bias in the model coefficients such that the least 
squares estimates of the regression coefficients will be under- 
estimated (Fuller, 1987; Maddala, 1988). Unlike a traditional 
simple linear regression model, FLR allows uncertainty in the 
input parameters to be included in the analysis. The benefit of 
using a fuzzy number based approach with a data driven 
method (FLR) to predict flow rate is that real-time data, which 
is often routinely collected, can be used to accurately predict 
peak flow rate. The uncertainty in the system and in the data 
can be collectively represented in a fuzzy number. A risk ana- 
lysis can then be directly conducted using fuzzy numbers to 
assess the risk of flow magnitudes beyond a given threshold. 

The objectives of this research is to improve peak flow 
rate prediction, and flood risk assessment, in southern Alberta, 
using a data-driven method in order to provide water resource 
managers sufficient lead time (e.g. between one and seven 
days) to implement flood defence systems. Data from three 
sites on two rivers (the Bow River and Elbow River) which 
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flow through Calgary, Alberta are used. Currently, the Go- 
vernment of Alberta provides information to municipalities, 
including Calgary, which are at risk of flooding. This includes 
real-time and daily flow forecasting (Walford, 2014), which is 
required, for example, by the City of Calgary to empty the 
Glenmore Reservoir (on the Elbow River) in the event of a 
risk of a large flood (City of Calgary, 2014). A number of fac- 
tors impact the accuracy of these predictions during extreme 
events, including the use of data from hundreds of different 
sites, lack of knowledge of the precise magnitude and location 
of upstream precipitation, the destruction of upstream moni- 
toring stations, and uncertainty with meteorological forecasts 
(Ardell, 2013a; Ardell, 2013b; Walford, 2014).   

Thus, there is a need for improved real-time flow rate 
predictions, particularly with respect to the timing and magni- 
tude of the peak flow rate, to help mitigate against the impacts 
of the floods, as experienced in 2013. An FLR method (deve- 
loped in in Khan and Valeo, 2015) is proposed that uses real- 
time data to predict daily peak flow rate using lagged daily 
flow rate. This approach retains the simplicity and benefits of 
simple linear regression, but with the ability to incorporate 
uncertainty that improves risk assessment and the prediction 
of extreme floods. This FLR method is unique because fuzzy 
number inputs, outputs and regression coefficients are used, 
whereas other fuzzy regression techniques only use fuzzy re- 
presentations for some (not all) of these parameters (Khan and 
Valeo, 2015). In addition, this method uses probability-possi- 
bility transformation to define fuzzy numbers with uniquely 
non-linear membership functions; this is much more suitable 
for analysis of flow rate.  

The results from this analysis are compared to observa- 
tions, as well as the results from an error-in-variables (EIV) 
regression model. Both these methods attempt to describe an 
uncertain system with an error in the observations (Bárdossy 
et al., 1990) using a relatively simple data-driven model, with 
the key difference that one method is based on probability 

theory (EIV) while the other is based on possibility theory 
(FLR). 

2. Methods 

2.1. Data Collection: Site Description and Selection 
Criteria 

The Bow River basin, located in southern Alberta, has an 
area measuring approximately 25,123 km2 and provides signi- 
ficant economic activity in the form of supplying drinking wa- 
ter for a major urban centre (the City of Calgary), and irriga- 
tion water for several irrigation districts in the Prairie region 
in Alberta (BRBC, 2010a). For this research, three monitoring 
sites in the Bow River basin were selected for peak flow rate 
prediction and flood risk assessment. These sites are: “Bow 
River at Banff” (Environment Canada WSC Station ID: 05BB 
001), “Bow River at Calgary” (ID: 05BH 004), and “Elbow 
River at Bragg Creek” (ID: 05BJ004). The first two sites are 
located on the Bow River, whereas the last is located on the 
Elbow River (a tributary that merges with the Bow River in 
downtown Calgary); see Figure 1 below for the relative loca- 
tion of each site in Alberta.  

The Bow River originates in Bow Lake, located in the 
Rocky Mountains and flows south-easterly through Banff 
(drainage area of 2210 km2) and Calgary (drainage area of 
7870 km2), meeting the Oldman River, and ultimately drai- 
ning into Hudson Bay (Robinson et al., 2009; Environment 
Canada, 2014). The Bow River averages a 0.4% slope over its 
645 km length, measuring as high as 7 m/km in the Rocky 
Mountains (BRBC, 2010a; BRBC, 2010b). The Bow River is 
supplied by precipitation accumulated in the snowpack in the 
Rocky Mountains, precipitation and discharge from shallow 
groundwater. Runoff peaks in the spring (typically in June) 
while low flows are seen in the winter (January) (BRBC, 2010 
b). While the River is unregulated at the Banff monitoring sta- 
tion, Bearspaw Dam regulates flow immediately upstream of 
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Figure 1. The locations of the three sites used in this research: (a) Bow River at Banff, (b) Bragg Creek at Elbow River, and 
(c) Bow River at Calgary. 
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Calgary city limits. The headwaters of the Elbow River are lo- 
cated at Elbow Lake in the Rocky Mountains. The river flows 
easterly, through the hamlet of Bragg Creek (drainage area of 
791 km2), and merges with the Bow River in downtown Cal- 
gary. The Elbow River has an average grade of 1% over its 
124 km length; the total drainage area of the Elbow River 
sub-basin is 1235 km2 (BRBC, 2010b; BRBC 2010c; Envi- 
ronment Canada, 2014). The Glenmore Dam in Calgary regu- 
lates the downstream flow of the Elbow River through Cal- 
gary. These rivers flow through many residential communities 
and the commercial centre of Calgary. Thus, the importance 
of peak flow prediction and flood risk assessment of these 
rivers is extremely important for the safety of the residents in 
Calgary, and for protection of significant assets in downtown 
Calgary.  

Eleven years of hourly flow rate data for each station was 
obtained from Environment Canada for the period January 1, 
2000 to December 31, 2010. The annual median flow rate at 
Banff, Calgary and Bragg Creek varied between 11 - 26 m3/s, 
47 - 85 m3/s, and 4 - 8 m3/s, respectively for the selected 
period. The annual peak flow rate at Banff, Calgary and Bragg 
Creek varied between 142 - 306 m3/s, 172 - 787 m3/s, and 15 - 
307 m3/s, respectively. The highest peak flow rate at Banff 
(306 m3/s) occurred in 2007, and in 2005 for Calgary (787 
m3/s) and Bragg Creek (307 m3/s). The peak flow rates in 
2005 are associated with a flood event in Calgary and sou- 
thern Alberta, which estimated to have cost approximately 
$400 million in damage (Environment Canada, 2005; Valeo et 
al., 2007). This flood event was the last major flood in sou- 
thern Alberta prior to the floods in June, 2013. It is important 
to note that though the drainage area at Bragg Creek is almost 
three times smaller than the drainage area at Banff, the maxi- 
mum annual peak flow for these sites is similar, and the 
median annual flow at Bragg Creek is much lower than the 
peak flow rate, indicating that this site is prone to flash 
flooding. 

The hourly flow rate collected for each site was filtered 
by removing dates where shift corrections (usually due to ice 
conditions) were applied by Environment Canada. Typically 
for the eleven year period, the data ranged between mid- 
March to early-November for Banff and Calgary, and from 
mid-February to late October for Bragg Creek. Any data po- 
ints within the selected range that had corrections applied 
were removed from further analysis. In addition to this, a se- 
cond filter was applied to remove the low flow rate periods, 
since the primary objective of this research was to predict 
peak flow rates. To do this, the first and last day where the 
daily peak flow rate was greater than the ice-free median flow 
rate were used as the lower and upper limits of the data range, 
respectively. This reduced the data from an original, unfiltered 
set of 4018 days of hourly flow rate data to 1583 days for 
Banff, 1860 for Calgary, and 1633 for Bragg Creek, i.e. repre- 
senting about 40% of available data.  

The filtered data was used to calculate the daily peak 
flow rate (QP). An initial correlation analysis was conducted 
using QP and several other variables, including daily mean 

flow rate (QD), daily precipitation, lagged QP, (computed at 
different lags between one to seven days), and various com- 
binations of these variables as well. This preliminary analysis 
showed that while an auto-regressive approach (using lagged 
peak flow rate) to predict QP showed promise, a better overall 
performing model structure was to use QD at different lags. 
This was based on the magnitude of the correlation coefficient 
for each site at differrent lags. It should be noted that a similar 
analysis was conducted using upstream data (i.e. at Banff) to 
predict peak flow rate downstream (i.e. at Calgary), and lower 
correlations were found for the entire study period using up- 
stream data rather than local data (correlation coefficient of 
0.82 vs. 0.95 on average, respecttively). Details of this analy- 
sis, including different combinations of variables tested as the 
independent variable, are not discussed here but may be found 
in Khan (2014) and Khan and Valeo (2014). Thus, these two 
variables were used to construct the EIV and FLR regression 
models to predict QP, in the form of: 

 
( ) ( )( )P DQ t f Q t d= −  (1) 
 

where QP(t) is the daily peak flow on day t, QD(t-d) is the 
mean daily flow on day t-d, and d is the lag in days, selected 
as either 1, 2, 3 or 7 days for this research. These lags were 
specifically selected to give sufficient lead time to operators 
of the proposed method to enact flood defence systems in a 
timely manner. The 7 day lag represents the limit of the app- 
licability of the proposed method. Model performance is ex- 
pected to diminish in proportion to the number of lag days be- 
tween a lag of 3 and 7 days, thus, analysis for lags of 4, 5 or 6 
days is not included.   

 

2.2. Error-in-Variable Linear Regression 

A simple linear regression model is proposed to predict 
QP using QD at different lags. However, ordinary least squares 
regression assumes that the independent variables (in this case 
QD) are observed without error (i.e. they are fixed). This as- 
sumption is only true for controlled experiments, and not 
when monitoring data is being used to find suitable relation- 
ships between variables. The bias introduced by this error re- 
sults in an underestimation of regression coefficients, even for 
very large samples (Fuller, 1987; Maddala 1988). Thus, to ac- 
count for the uncertainty in the calculated QD being used to 
predict QP, an EIV regression model is specified as follows: 

 
P DQ A BQ= +  (2) 

 
where QP is the daily peak flow rate of interest, A and B are 
the regression coefficients to be calculated, and QD is the cal- 
culated mean daily flow rate (i.e., the average of the 24 hourly 
data points observed). The authors propose that this calculated 
QD is not the true mean daily flow rate, but a value with un- 
certainty. The true mean daily flow rate ΦD is given by: 

 

D DQ uΦ = +  (3) 
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where u is a random error term, which we assume to be the 
standard error of the mean, estimated as: 

 

 u T
n

σ= ±  (4) 

 
where T is the t-statistic for 23 degrees of freedom, σ the stan- 
dard deviation of the observations of hourly flow rate and n 
(which equals 24) is the number of data points. Therefore, for 
each calculated QD (mean of observations), we also calculate 
the daily standard deviation (σ) and then calculate the daily 
error (u). By taking this uncertainty in the calculated mean 
daily flow rate, an unbiased estimate of the slope coefficient B 
can be calculated by: 

 

( ) ( ) ( )( ),   D P DB COVAR Q Q VAR Q VAR u= −  (5) 

 
The constant A can be estimated from (QP – BQD). Once 

the regression coefficients have been calculated, the unbiased 
estimate of the variance of the predictions, and the confidence 
interval of the predictions can be calculated using the standard 
procedure (Wittink, 1988). The derivation of this EIV regres- 
sion method is widely available in many regression or econo- 
metric textbooks with good descriptions in Fuller (1987) and 
Maddala (1988). It is worth noting here that the similarity of 
EIV and FLR is that they both attempt to consider error in the 
observations. The differences between the two is that the basic 
assumptions of each method are completely distinct: the error 
in EIV is assumed to be the same for all values, whereas in 
the fuzzy case each value will have its own membership func- 
tion, and the data requirements for the EIV are higher (Bár- 
dossy et al., 1990).  

Typically, after a regression analysis has been conducted, 
an analysis of residuals must be conducted to ensure that the 
initial assumptions of the model have not been violated. The 
four principal assumptions of linear regression are: (i) the 
mean of residuals r is zero, E(r) = 0; (ii) the residuals have a 
constant variance (with respect to time, and the data), var(r) = 
σ2; (iii) the residuals are independent or uncorrelated, 
cov[(r1,r2)] = 0; and (iv) the residuals are normally distributed, 
r ~ N(0, σ2). Of these assumptions, the third assumption (auto- 
correlation of the residuals) is most important for time series 
data (such as the dataset considered in this research). A vio- 
lation of this assumption, however, is not critical if the first 
assumption holds. Then, the presence of significant autocorre- 
lation suggests that though the regression coefficient estimates 
are still unbiased, they are no longer the most efficient esti- 
mates, in other words they are not minimum variance esti- 
mates (Wittink, 1988; Montgomery et al., 2006). This means 
that the predicted variance of the coefficients is lower than the 
actual variance, the standard error is artificially low, and that 
the coefficient of determination is artificially higher. Thus, the 
presence of significant autocorrelation will show a stronger 
relationship between the dependent and independent variables 
than what truly exists, and the use of confidence intervals and 

hypotheses testing may not be appropriate (Montgomery et 
al., 2006).  

 

2.3. Fuzzy Linear Regression 

The objective of the FLR method is similar to the ordi- 
nary least squares approach to linear regression, however, in- 
stead of minimizing the residual between an observed and 
regressed value, the distance between two fuzzy numbers is 
minimized instead. Given a set of fuzzy observations

idQ and

ipQ , and their corresponding membership functions, µ(
idQ ) 

and µ(
ipQ ), for (i = 1, 2, ..., n) a regression model is defined 

as: 

 

p dQ A B Q= +    (6) 

 
where the coefficients A and B are fuzzy numbers. The object- 
tive is to solve the following least-squares optimization prob- 
lem: 

 

2

1

, ,  min ( ) ( )
i ip

i
d

n

A B Q A B Qr d
=

+=      (7) 

  
where 2 ,   ( ) [ ]

i i i ip d p dQ A B Q Q A B Qd
μ

=+ − −       for i = 1, 2, ..., n and 
µ = 0 to 1. The metric d measures the sum of the 
squared-deviations of the observed (

ipQ ) and predicted 

idA B Q+  intervals […]µ, for all α-cuts between µ = 0 and µ = 
1. Using fuzzy arithmetic ensures that the coefficients  and 

 are normal and convex, a requirement of fuzzy numbers. 
Using the FLR method means that the output of the me- 

thod is also a fuzzy number, in this case a set of values corres- 
ponding to the upper and lower limits of α-cuts at 0, 0.25, 0.5, 
0.75, and 1. These five levels were selected to give a full 
spectrum of possible values of the fuzzy number. The pre- 
dicted membership value can be used to calculate the excee- 
dance probability of a value within the fuzzy set using a possi- 
bility to probability transformation. This is useful since proba- 
bilities are more readily understood by water resource mana- 
gers and the general public. A description of a probability to 
possibility transformation and its inverse are described below.  

 

2.3.1. Probability to Possibility Transformations 

A number of different methods exist to create fuzzy num- 
bers from observed data; these methods are known as probabi- 
lity-to-possibility transformations. A recent summary of di- 
fferent conceptual approaches to these transformations is pro- 
vided in Mauris (2013). For this research a method by Dubois 
et al. (2004) is adapted and implemented to convert the sub- 
daily flow rate observations to QP and QD into fuzzy numbers. 
This method was designed to convert a uni-modal discrete 
probability distribution to a triangular fuzzy set. It was adapt- 
ed by Khan and Valeo (2014) to create non-linear discrete 
fuzzy numbers. The basic premise of this transformation is to 
convert a non-specific probability distribution to a member- 
ship function where the modal value has a μ = 1, and the su- 
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pport (the limits of the α-cut interval) is calculated using an 
uncertainty value e (details of this value are discussed below). 
The values of the fuzzy number at other membership levels 
are calculated using a relationship between the probability and 
possibility that matches the area under the probability density 
function (pdf) to the highest membership level.  

To convert the observed QD and QP to fuzzy numbers, 
two different approaches were taken. For QD, a non-specific 
probability distribution was converted to a fuzzy number using 
the method described above. Hourly observations (24 points), 
the modal value (where the membership level was equal to one) 
and a support calculated using an uncertainty value e (details 
of this are given below) were used. For QP, a specific pdf 
(assumed to be a Normal distribution, with the mean value as 
the observed peak flow rate for a given data, and a variance 
calculated using the error value e) was used to construct a fu- 
zzy number using the method outlined above. This represents 
a hybrid modelling approach, where a probabilistic parameter 
(QP) is used with a possibilistic parameter (QD) in one regre- 
ssion model.  

 

2.3.2. Significance of the Error Value e 

The value of e used for these transformations represents 
the uncertainty associated with the measured flow rate. Typi- 
cally, analysts assume that the in situ measured data from ri- 
ver flow rate measurements (such as that provided by Envi- 
ronment Canada) are within ±5% of the true value at the 95% 
confidence interval (Hamilton and Moore, 2012; Papa et al., 
2012). Others consider that this random uncertainty associated 
with the measurement of the flow rate to be negligible (Bal- 
dassarre and Montanari, 2009) or as low as 1% of the true 
value at the 95% confidence interval (Shrestha and Simo- 
novic, 2010). However, if other components of uncertainty as- 
sociated with determining flow rate are included (e.g. stage- 
discharge relationship, shape of river bed, etc.), this accuracy 
declines significantly. Many in the research community advo- 
cate for uncertainty levels between 15 and 20% of the true 
value (Papa et al., 2012), with 15% considered as “optimistic” 
(Baldassare, 2012). McMillan et al. (2012) provide a list of 
typical quantitative results of combined flow rate uncertainty. 
In one studies this uncertainty is listed as high as 100% for 
low flows, 10% for medium flows, and 20% for high flows 
(Krueger et al., 2010; McMillan et al., 2012). Daily discharge 
uncertainty is listed with a range of ± 100 - 200% for low 
flows and ±100% for high flows by Harmel and Smith (2007) 
and up to 50% by Hamilton and Moore (2012) for all magni- 
tudes. Pappenberger et al. (2006) reported uncertainty with 
peak flow rates to range between 8 and 25%, Baldassare and 
Montanari (2009) reported a range from 6.2% to 42.8% at the 
95% confidence interval, and Westerberg et al. (2011) give a 
range between -43 to 73%.  

The literature shows a very wide range of error values, 
with little consensus on the optimal value. Thus, three differ- 
rent error values, e, were selected for this research: 5%, 10% 
and 20% and the analysis was conducted using each value. 
These values represent a conservative estimate of flow rate 

uncertainty, which have been selected to demonstrate the app- 
lication of a fuzzy number based method and for comparison 
with a probabilistic method; the authors recognize that the va- 
lue of e is not limited to only these values (i.e. higher e values 
can be used). The 5% represents the case where only random 
uncertainty is considered, whereas the 20% represents the 
case for high flow rates, which are of primary interest for this 
research. In another application using fuzzy number analysis 
to quantify and characterize peak flow rate, Shrestha and Si- 
monovic (2010) used an error value of 50% to represent the 
support of the fuzzy number: thus, the selected values of e in 
this research are within a conservative range. Figure 2 below 
shows examples of the QD and QP transformations for an e 
value of 20%. 

 

2.3.3. Possibility to Probability Transformations 

Defuzzification, or transforming the possibility distribu- 
tion of a fuzzy number to a probability distribution, is impor- 
tant when an estimate is needed on whether something is 
“probable” rather than “possible”. For example, while fuzzy 
regression might give a prediction of future peak flow rate as 
a fuzzy number, an estimate of the probability associated with 
the magnitude of peak flow rate is needed, often to commu- 
nicate the risk of a flood. For example, a fuzzy number might 
predict that the peak flow rate to be 500 m3/s with a mem- 
bership level equal to 0.75, but a decision maker might need 
to know how likely a flow rate of that magnitude is, before 
making a decision. For this case, an inverse transformation 
can be used to calculate the point estimate of probability for 
any given value (based on Oussalah, 2000 and Dubois et al., 
2004). However, in most hydrological applications, we are 
interested in exceedance probability P(x > X) rather than pro- 
bability of a single event x. Thus, an inverse transformation to 
calculate the exceedance probability was developed specifi- 
cally for non-symmetric fuzzy numbers for discrete systems.  

For any x in X in the support of a fuzzy number [a, b], we 
have the corresponding membership level μ(x) and the paired 
value μ(x′) which also shares the membership level. The value 
μ(x) is the sum of the cumulative probability distribution bet- 
ween [a, x′] and [x, b], labelled AL and AR, respectively: 

 
( ) L Rx A Aμ = +  (8) 

 
where AR represents the exceedance probability that the pre- 
dicted value is greater than x. Given the fact that the fuzzy 
number is not symmetrical, we use the lengths of the two 
intervals [a, x′] and [x, b] to establish a relationship between 
AL and AR. Using this ratio, we can estimate AR as: 

 

( ) ( ) [1 ( ' ) ( )]RA P x X X x a b xμ= > = + − −  (9) 

 

Thus, this predicted value P(x > X) can be used by water 
resource managers to determine if there is a serious risk of 
high peak flow rate in the predicted time period, and if it 
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warrants the implementation of flood defence strategies. For 
this research a flow rate magnitude corresponding to the 2% 
flow rate (QP2%) for the eleven year period (from 2000 to 
2010) was calculated for each site. This value, QP2% is ex- 
ceeded 98% of the time in the eleven year period at each site. 
These values were 173 m3/s at Banff, 305 m3/s at Calgary, and 
59 m3/s at Bragg Creek. These values were then used to es- 
tablish the probability of predicted peak flow rate for a given 
day to be higher than QP2%. This procedure can be used by 
decision makers to create a set of rules relating to flood risk 
management. For example, if there is more than a 5% chance 
of the predicted flow to be greater than QP2%, a flood defence 
warning is issued. 

 

2.4. Quantifying Model Performance 

Three metrics are used to quantify and compare the per- 
formance of the EIV and FLR model. These are the Nash- 
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), percent 
bias (PBIAS), and the ratio of the root mean square error to 
the observed standard deviation (RSR). If a data set of obser- 
vations yi has a mean y and corresponding predictions at each 
point i denoted by pred

iy then: 

 

1 1
)1 ( ( )

n npred
i i ii i

NSE y y y y
= =

= − − −   (10)

1 1
100( ) ( )

n npred
i i ii i

PBIAS y y y
= =

= −   (11) 

2
2

1 1
()( )

n npred
i i ii i

RSR y y y y
= =

= − −   (12) 

 
These metrics were calculated for each crisp and fuzzy 

simulation. For the fuzzy data, the metrics were calculated at 
each membership level (μ = 0, 0.25, 0.50, 0.75 and 1). How- 

ever, this meant that for each metric, there were five intervals 
of metric values for each fuzzy number (corresponding to ea- 
ch membership level), making it difficult to compare results 
between the crisp and fuzzy results. Thus, a rating system 
developped by Moriasi et al. (2007) was extended for use with 
fuzzy numbers. We assign a numerical value to each of the 
qualitative ranks provided by Moriasi et al. (2007), as listed in 
Table 1. For each fuzzy number, each metric was calculated at 
each membership level, and assigned a rating value according 
to Table 1. The overall metric for each fuzzy number was then 
the average of the five (corresponding to each μ). Furthermo- 
re, this rating was assigned to each of the calculated metrics 
for the crisp results to enable a quantitative comparison be- 
tween models. 

To directly compare the crisp and fuzzy results, these 
metric ratings were then combined to give an “average ra- 
ting” (AR) of each model: this was the average of the rating 
(i.e. 0, 0.33, 0.66 and 1) of each metric (NSE, RSR or PBI- 
AS). The AR were then assigned a qualitative rating similar to 
Moriasi et al. (2007) for comparison and are shown in Table 
2. 

Once this step was completed for all metrics (NSE, RSR 
and PBIAS) an overall rating was calculated by using the 
same rating table. In doing so, one model could be compared 
to another by the use of only one overall metric. This system 
was used to make more direct comparisons between different 
models (i.e. models at differrent lags, or with different error 
values). 

In addition to these three metrics, a performance metric, 
D, was calculated for the risk analyses stage of this research. 
D measured the relative difference between the observed peak 
flow rate and upper limit of either the fuzzy support, or the 
95% confidence interval, for events where the observed peak 
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Figure 2. A sample of results of transforming observed hourly flow rate to fuzzy mean daily flow rate, and fuzzy mean peak flow 
rate, for July 2, 2005. An e value of 20% was used for these conversions. 
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flow rate was greater than the QP2%. The objective of calcu- 
lating and then comparing this metric was to determine which 
model performed better (i.e. was closest in magnitude to the 
observation) in cases where both models underpredicted the 
observed peak flow rate. The distance was calculated as: 

 

 upper iD y y= −  (13) 

 
where yupper is either the upper limit of the fuzzy support []μ = 
0, or the 95% confidence interval.  

 

2.5. Model Implementation 

Two distinct modelling approaches were taken. In the 
first phase, two proof-of-concept models (one using EIV me- 
thod, the second using the fuzzy method) were constructed 
using the entire dataset, at different lags. In the second phase, 
a recursive algorithm was employed for both regression me- 
thods, where an additional year of data was sequentially 
added to the models, and updated the model parameters. The 
purpose of the first phase is to show the global appropri- 
ateness of the data driven technique to predict peak flow rate 
and quantify the performance of both regression methods. The 
purpose of the second method is to demonstrate the utility of 
the methods in a quasi-real-time state. Lastly, the final version 
of the recursive model was then used for a test data set com- 
prised of the 2013 flood year in Alberta.  

 

2.5.1. Proof-of-Concept Models 

A proof-of-concept model was constructed for both the 
EIV regression method and the FLR method at each of the 
three sites. In each case, six years of data was used for model 
construction, specifically data from 2000, 2002, 2004, 2006, 
2008 and 2010. Model validation was done using another five 
years of data, specifically, 2001, 2003, 2005, 2007 and 2009. 
The flood year of 2005 was not included in the calibration. 
This modelling exercise was conducted at four different lags, 
(i.e. lagged QD(t – d)) where d = 1 day, 2 days, 3 days or 7 
days. In addition to this, three different error values, e, were 
used for fuzzy number construction, namely e of 5%, 10% 
and 20%. Thus, a total of 12 models were constructed and va- 
lidated at each of the 3 sites (with 4 lags and 3 error values). 
Error analyses were conducted for each model.  

 

2.5.2. Recursive Models 

For each type of regression model, the recursive model- 
ling set started with using data from the year 2000 for cali- 
bration, and data from the year 2001 for validation. An error 

analysis was then conducted for both model types. Following 
this, the calibration dataset was updated to include the years 
2000 and 2001, while the validation dataset used data from 
the year 2002; the regression parameters were updated and 
another error analysis was conducted. This process was con- 
tinued until ten years of data were used for calibration, and 
the final year (2010) was used for validation. This meant a 
total of ten models were constructed and validated for each of 
the three sites, at four different lags (1, 2, 3 and 7 days), at 
three error values (5, 10, and 20%). The rating system descri- 
bed earlier was used to condense the results from the error 
analyses on each model to ease comparison between different 
simulations.  

A risk analyses was then conducted on days when the ob- 
served flow was higher than QP2%. It should be noted that for 
each case where this was true, the predicted flow from the va- 
lidation dataset was used for the analysis. For brevity’s sake 
this analysis was only conducted on models that used a 1 day 
lag for QD, and an error value e of 20%, for each site.  

 

2.5.3. Test Case 

To test the developed models, an independent dataset was 
used. This was daily peak flow rate and daily mean flow rate 
at Calgary for the year 2013, which was an extreme flood year 
in southern Alberta. Regression coefficients from the last re- 
cursive model, i.e. where ten years of data from 2000 to 2009 
was used for model construction, was used to predict peak 
flow rate using the 2013 mean daily flow rate (only with a lag 
of one day, and an error value of 20%). An error analysis 
between the observed and predicted peak flow rate was con- 
ducted. Following this a risk analysis was conducted on the 
days in 2013 where the observed peak flow rate was higher 
than the historical (i.e., the 2000 - 2010 period) QP2%. 

3. Results and Discussion 

3.1. Model Performance Comparison 

3.1.1. Proof-of-Concept  

The proof-of-concept models were constructed using 6 
years of data, and validated using 5 years of data. These mo- 

Table 2. Rating System Used to Compare the Average Rank of 
each Simulation 

Description Average Rating 

Very good AR > 0.9 

Good 0.66 < AR ≤ 0.9 

Satisfactory 0.33 < AR ≤ 0.66 

Unsatisfactory 0.0 < AR ≤ 0.33 

Table 1. Rating System Used to Rank and Compare Performance of the Models (Adapted from Moriasi et al., 2007) 

Description NSE RSR PBIAS Rating 

Very good 0.75 <  NSE ≤ 1.00 0.00 < RSR ≤ 0.50 PBIAS ≤ |10|% 1 

Good 0.65 <  NSE ≤ 0.75 0.50 < RSR ≤ 0.60 |10|% ≤ PBIAS < |15|% 0.66 

Satisfactory 0.50 <  NSE ≤ 0.65 0.60 < RSR ≤ 0.70 |15|% ≤ PBIAS < |25|% 0.33 

Unsatisfactory NSE ≤ 0.5 RSR ≥ 0.50 PBIAS ≥ |25|% 0 



 U. T. Khan and C. Valeo / Journal of Environmental Informatics 28(2) 71-89 (2016) 

 

79 

dels were constructed at each of the 4 lags, and 3 error values, 
for each site. Figures 3 to 5 shows sample results for one par- 
ticular model: Bow River at Calgary, with a lag of 1 day and e 
of 20%. Figure 3 shows the trend plots of two years, 2010 
(which was used for calibration, and is one of the lowest flow 
years in the dataset) and 2005 (which was used for validation 
and was a flood year). The figure shows that in general the 
observed peak flow rate falls within the 95% confidence 
interval (CI) and within the interval defined by the α-cut at μ 
= 0. For the Bow River at Banff site, the amount of 
observations captured within the predicted fuzzy interval (at μ 
= 0) for lags of 1, 2, 3 and 7 days were 92.6, 82.2, 79.9 and 
57.1%, respectively. At the Bow River at Calgary site, the 
amount of observations captured within the predicted fuzzy 
interval (at μ = 0) for lags of 1, 2, 3 and 7 days were 97.2 
92.1, 85.2, and 72.1%, respectively. Lastly, at the Elbow River 
at Bragg Creek site, the amount of observations cap- tured 
within the predicted fuzzy interval (at μ = 0) for lags of 1, 2, 3 
and 7 days were 91.0, 84.3, 82.1, and 71.3%, respectively. 
These results show that there was minimal im- pact of the lead 
time or peak flow prediction timing since for the majority of 
events (especially at low lags), the observa- tions fell within 
the predicted fuzzy interval for a given day. Of note, in both 
years is that the fuzzy interval increases and decreases at 
different points throughout the years reflecting the certainty 
associated with the prediction, whereas, the EIV  regression 
interval is constant and independent of the magni- tude of the 
predicted peak flow. Thus, during periods of high flow rate, 
the fuzzy interval expands to reflect the associated uncertainty 
with high flow predictions; and at lower flows, it reflects the 
opposite. In some lower flow cases show in Figure 3, the 
fuzzy interval is actually smaller than the crisp interval. While 
the majority of observations are captured within the in- 

tervals, the fuzzy interval is generally closer to the obser- 
vations when the observations do not fall within the interval. 

A plot of the observed versus predicted peak flow rate for 
the entire dataset are included in Figure 4. The figure shows 
that the fuzzy numbers (represented here as a black square 
corresponding to the values at μ = 0) and crisp numbers from 
both regression generally follow the 1:1 line. The fuzzy pre- 
dicttions tend to expand for higher peak flow rates (repre- 
senting the higher uncertainty associated with high peak 
flow). The flood event of 2005 can be seen clearly in the vali- 
dation plot: the fuzzy intervals are closer to the 1:1 line com- 
pared to the crisp results for the flood level flows. Figure 5 
plots the observed mean daily flow and daily peak flow for 
both the calibration and validation datasets. This figure clearly 
illustrates that the fuzzy intervals increase with the magnitude 
of peak flow rate, and thus, capture more of the uncertainty in 
the observations compared to the EIV regression method. 

Figure 6 summarizes three performance metrics in order 
to compare the performance of the EIV and FLR for the e   
= 20% proof-of-concept models (results for the other e values 
are included in the Supporting Information). In general, 
performance decreases, for both methods, as the lags are 
increased. The model rankings (discussed below) show that in 
general the model performances decline from “very good” at a 
1 day lag to “satisfactory” at a 7 day lag. Thus, this indicates 
that the optimum approach for this data-driven method is 
limited to short term predictions, between 1 and 3 days. In 
general, better performance is seen with the higher e value. 

For the Bow River at Banff, the average ranking for the 
validation datasets for the EIV and FLR models is “very 
good” for lags of 1 and 2 days for all e values. The ranking 
decreases to “good” for a 3 day lag, and “satisfactory” for a 7 
day lag for all e values. Results for the calibration datasets 
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Figure 3. Results from the proof-of-concept models for a lag of 1 day, and e of 20%: trend plots of predicted daily peak flow 
rate from the error-in-variables and fuzzy linear regression methods for (a) the calibration (shown for 2010 only), and (b) the 
validation dataset (shown for 2005 only) for the Bow River at Calgary. 
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(not shown) are typically equal to or higher than the valida- 
tion dataset. For the Bow River at Calgary, the average ran- 
king for the validation dataset for the FLR model is “very 
good” for lags at 1 day, “good” for lags at 2 and 3 days, and 
“satisfactory” for a lag of 7 days. The EIV model has ranking 
of “very good” for lags of 1 and 2 days, and “good” and 
“satisfactory” for lags of 3 and 7 days, respectively, for the 
validation dataset. Again, calibration results (not shown) were 
either equal to or higher than the validation datasets. For the 
Elbow River at Bragg Creek, the average ranking for the FLR 
model is “unsatisfactory” for all validation cases, except for a 
lag of 1 day and an e of 20% where it is classified as “satis- 

factory”. The calibration dataset are ranked “satisfactory” or 
“good” for all cases. The validation dataset for the EIV model 
is ranked “satisfactory” (with AR = 0.33) for all four lags.  

Between the sites, the Elbow River at Bragg Creek has 
noticeably lower performance than the other two sites. The 
Bragg Creek site has a much smaller drainage area than the 
other two sites, and a much larger range of annual peak flow 
rate (15 - 307 m3/s). This suggests that this site experiences 
more flash flooding events than the other two sites, and per- 
haps this model structure is not the optimum for this site. An 
independent parameter other than QD could improve model 
performance and be more suitable for this site. 

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

d
ic

te
d
 d

a
ily

 p
ea

k 
fl
ow

, 
m3 /s

Calibration dataset for BOW RIVER AT CALGARY; LAG  = 1 day; Error = 20%

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

d
ic

te
d
 d

a
ily

 p
ea

k 
fl
ow

, 
m3 /s

Validation dataset for BOW RIVER AT CALGARY; LAG  = 1 day; Error = 20%(a) (b)

 
Figure 4. Results from the proof-of-concept models for a lag of 1 day, and e of 20%: observed versus predicted peak flow rate 
plots for the error-in-variables (black circle with line) and fuzzy linear regression (black boxes) methods for (a) the calibration, 
and (b) the validation dataset for the Bow River at Calgary. 
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Figure 5. Results from the proof-of-concept models for a lag of 1 day, and e of 20%: observed peak flow rate, the 
error-in-variables regression line, 95% confidence intervals, and fuzzy interval at μ = 0 for the (a) calibration and (b) validation 
dataset for Bow River at Calgary. 
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3.1.2. Recursive Methods 
Figures 7 to 9 show results for recursive Model 5 for the 

Bow River at Calgary (Model 5 uses data from 2000 to 2004 
for model construction and 2005 for validation). The trend 
plot in Figure 7 shows results from 2005, for a lag of 1 day, 
and e of 20%. These results again highlight the flexibility of 
the FLR approach: the predicted intervals increase and de- 
crease as a function of the observed mean flow rate, and 

capture the majority of the observations. This is also high- 
lighted in the results show in Figures 8 and 9. Note that in 
instances, the EIV results do not come close to the 1:1 line, 
but the FLR method (black squares) are closer to, or intersect, 
the 1:1 line. This means that for the same case, the FLR 
method can come closer to predicting the peak flow rate for a 
major flood event (2005) one day in advance, as compared to 
the EIV method.   
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Figure 6. RSR, NSE and PBIAS values for the validation dataset for e = 20% proof-of-concept models: the markers (circle, 
square, rhombus, and triangle) represent results for different lags (1, 2, 3 and 7 days, respectively): Banff (a), Calgary (b) and 
Bragg Creek (c). 
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Figure 7. Results from the recursive model for a lag of 1 day, and e of 20%: trend plots of predicted daily peak flow rate from 
the error-in-variables and fuzzy linear regression methods for the validation dataset (for 2005) for the Bow River at Calgary. 
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Figure 10 shows plots of the three performance metrics 
used, for each model, for each site, for each lag, and for e = 
20%. In general, the RSR plots show that the performance of 

all models, at all sites, does not change as the amount of data 
used is increased. This suggests that the issue of “over-lear- 
ning” have been avoided in this case. The RSR performance 
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Figure 9. Results from the recursive models for all lags, and e of 20%: observed peak flow rate, the error-in-variables regression 
line, 95% confidence intervals, and fuzzy interval at μ = 0 for the validation dataset (for year 2005 only) for Bow River at 
Calgary. 

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

di
ct

e
d
 d

ai
ly
 p

ea
k 

fl
ow

, 
m3 /s

Validation dataset for BOW RIVER AT CALGARY; LAG = 1 day; Error = 20%

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

d
ic
te

d
 d

a
ily

 p
ea

k 
flo

w
, 
m3 /s

Validation dataset for BOW RIVER AT CALGARY; LAG = 3 day; Error = 20%

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

di
ct

e
d
 d

ai
ly
 p

ea
k 

fl
ow

, 
m3 /s

Validation dataset for BOW RIVER AT CALGARY; LAG = 2 day; Error = 20%

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

Observed daily peak flow, m3/s

P
re

d
ic
te

d
 d

a
ily

 p
ea

k 
flo

w
, 
m3 /s

Validation dataset for BOW RIVER AT CALGARY; LAG = 7 day; Error = 20%

 
Figure 8. Results from the recursive models for all lags, and e of 20%: observed versus predicted peak flow rate plots for the 
error-in-variables (grey lines) and fuzzy linear regression (black boxes) methods for the validation dataset (for year 2005 only) 
for the Bow River at Calgary. 
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decreases with increasing lags, and generally, a better perfor- 
mance is seen for the fuzzy system as the e value increases. 
Better performances are generally seen at Banff and at Cal- 
gary than at Bragg Creek. The NSE values for Bragg Creek 
are much lower than those of the other two sites at lag 7; indi- 
cating the lack of a linear relationship. The improvement with 
increasing e is more noticeable for Calgary and Bragg Creek 
than for Banff, where performance is high for all three e 
cases. The results confirm that performance decreases as lag 
increases, and an improvement can be seen (especially for 
Calgary and Bragg Creek) as e increases.  

For the FLR validation case, for an e of 20%, the average 
ranking for Banff ranges from “very good” for all 10 models 
at 1 day lag, to a range between “good” and “very good” for a 
2 day lag, “satisfactory” to “good” for a 3 day lag, and “satis- 
factory” for the 7 day lag (with one unsatisfactory case for 
Model 10). For Calgary, the average ranking for the FLR mo- 
del was “very good” for both 1 and 2 day lags (with the 
exception of Model 5 for the two day lag which had a rating 
of “good”). The ranking was “satisfactory” to “very good” for 

the 3 day lag, and “satisfactory” to “good” for the 7 day lag. 
Lastly, for Bragg Creek, the average ranking for the FLR 
models was between “unsatisfactory” and “very good” for a 1 
day lag, “unsatisfactory” and “good” for the 2 day lag, and 
“unsatisfactory” to “satisfactory” for the 3 and 7 day lags. 
Similar results were seen for the EIV case. 

The last component of the model performance evaluation 
was calculating D. First, all days where the observed peak 
flow rate was higher than the calculated QP2% flow rate were 
isolated. There were 30 occurrences of these high flows at 
Banff, 36 at Calgary, and 32 at Bragg Creek between 2000 
and 2010. Then, for each model (only recursive models with e 
of 20% are considered for this analysis) the days when the 
observed flow did not fall within the predicted intervals for 
both EIV and FLR was isolated. The distance between the 
upper limit of the interval and the observed peak flow rate 
was then calculated, and the mean of these distances was sum- 
marized for each model for each site; these results are shown 
in Table 3.  

This table shows that for days when the models entirely 
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Figure 10. RSR, NSE and PBIASvalues for the validation dataset for all ten recursive models with e = 20%: the markers (circle, 
square, rhombus, and triangle) represent result for different lags (1, 2, 3 and 7 days, respectively), for each of the three sites: 
Banff (a), Calgary (b) and Bragg Creek (c). 

Table 3. Distance Results for all Lags for an e = 20% for each Site 

Distance (m3/s) 

Lag Banff Calgary Bragg Creek 
FLR EIV No. FLR EIV No. FLR EIV No. 

1 day 0 24 15 160 231 3 88 87 9 
2 days 19 39 8 111 152 10 86 75 22 
3 days 46 52 11 100 127 16 89 76 25 
7 days 102 74 22 127 118 24 76 65 30 
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under predict the observed peak flow rates, the FLR has a 
smaller distance between the highest point of the interval and 
the observation for a majority of cases. For example, in Banff 
the FLR has a significantly smaller distance (calculated using 
the two-sample Kolmogorov-Smirnov test at the 5% level) for 
the 1 and 2 day lag cases than for EIV. For Calgary, the FLR 
performs substantially better than EIV for lags 1 to 3; how- 
ever, these differences were not significant and were impacted 
by the low sample size. Lastly, for the Bragg Creek models, 
the EIV has a smaller distance than the FLR for all cases, but 
these were not found to be significantly different.  

 

3.2. Flood Risk Assessment 

Due to the importance of flood risk assessment for the 
City of Calgary in the wake of the June 2013 floods, the risk 
assessment reported here is only for the Calgary site using the 
recursive model with a 1 day lag and e of 20% (only valida- 
tion data was used for this analysis). A subset of the full data- 
set was taken to highlight the difference between the models. 
For each site, days when the observed flow was greater than 
the QP2% was selected, reflecting high peak flow observations. 
The data is further filtered to include only the days when ob- 
served values are not captured within the EIV model interval, 
and when the EIV model under predicts the observations. A 
plot of the 95% CI of the predictions, the corresponding ob- 
servations, the fuzzy number, and the QP2% (the “Warning” 
flow”) are plotted in Figure 11.  

On each subplot, two probabilities calculated using the 

possibility to probability transformation are listed. The first 
value represents the probability that the predicted fuzzy peak 
flow will be higher than the QP2% flow, and the second repre- 
sents the probability that the predicted fuzzy peak flow will be 
higher than the observed peak flow. These plots show that 
even when the EIV model’s predicted peak flow rate does not 
capture the observed flow within its 95% CI, the fuzzy predict- 
tions not only capture this high flow but can estimate the pro- 
bability of that event. For example, in Calgary on 8 June 2005 
with a one day lag, the EIV interval is between 241 and 282 
m3/s, whereas the observed peak flow for the day was 312 
m3/s. The fuzzy number meanwhile ranges between 170 and 
355 m3/s, and predicts the probability that the peak flow 
would be greater than 312 m3/s (what was observed) as 12%. 
Based on this, a water resource manager in the municipality 
could issue a flood advisory a day before this high peak flow 
was seen.  

The utility of the fuzzy number approach lies in its ability 
to calculate the probability of exceedance from its predictions. 
A water resource manager can provide a risk tolerance, e.g. if 
the probability that a predicted peak flow will be higher than 
QP2% is greater than 5%, a “flood advisory” can be issued. An- 
other tolerance for a more certain outcome, e.g. if the probabi- 
lity that a predicted peak flow will be higher than QP2% is 
greater than 50%, a “flood warning” can be issued. In general, 
the fuzzy predictions are equal to, if not better than the EIV 
method, but in addition, fuzzy numbers can provide more 
meaningful information for flood mitigation. 

 
Figure 11. Possibility to probability transformations for high peak flow rate days (> QP2%), for Bow River at Calgary, with a lag 
of 1 day, and e of 20%. 
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3.3. Model Application: 2013 Flood Data 

An analysis using the developed model was conducted on 
an independent dataset: Model 10 (both EIV and FLR) for the 
1 day lag and e of 20% were used to predict the peak flow rate 
at Calgary in 2013. A similar analysis as for the previous years 
was conducted and is summarized in Figures 12 - 14 below. 

As Figure 12 shows, the fuzzy interval encompasses the 
peak flow rate for the entire year except for the one day lea- 

ding up to the flood. This is highlighted in Figure 13, where 
the black boxes (representing fuzzy numbers) all cross the 
1:1: line at all times, except for one occasion. However (dis- 
cussed in detail below) during this particular day the fuzzy 
number is still able to predict the risk of high peak flow (i.e. 
P(x > QP2%)) whereas the EIV method does not warn of this 
risk. The RSR value for the FLR ranged between 0.50 and 
0.72, whereas the EIV had a value of 0.60. The NSE values 
for FLR ranged between 0.48 and 0.76, whereas the EIV had 
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Figure 12. Results from the test case of 2013 for a lag of 1 day, and e of 20%: trend plot of predicted daily peak flow rate from 
the error-in-variables and fuzzy linear regression methods for the Bow River at Calgary. The insert shows the days of interest in 
June 2013 when the highest flows were measured.
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Figure 13. Results from the test case of 2013 for a lag of 1 day, and e of 20%: (left): observed versus predicted peak flow rate 
plots for the error-in-variables (grey lines) and fuzzy linear regression (black boxes) methods; and (right)observed peak flow 
rate, the error-in-variables regression line, 95% confidence intervals, and fuzzy interval at μ = 0 for the Bow River at Calgary. 
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a value of 0.62. Lastly, the PBIAS for FLR ranged between 
1.7 and 9.2%, whereas the EIV had a value of 5%. For both 
models, the average ranking was “satisfactory”, which is 
somewhat lower compared to the other 1 day, 20% e models 
for Calgary discussed earlier.   

To focus on the flood event, a critical 12 day period from 
the 18th to the 29th of June, 2013 is plotted in Figure 12 as an 
insert. The figure clearly shows that the FLR method is more 
flexible and reactive to the flood event, by coming closer to 
the observed peak flow on the 20th of June 2013 (unlike the 
EIV method) and capturing the peak flow rate on the 21st of 
June 2013, which lies within the fuzzy interval. In fact, during 
this period, the EIV did not capture the observed peak flow 
within its 95% CI interval 9 out of the 12 days, whereas the 
FLR method only missed the observations on 3 out of 12 
occasions. 

 Figure 14 shows the possibility to probability transfor- 
mation for this 12 day period in 2013. It shows that on June 
20th 2013, the fuzzy method still predicts a ~4% chance that 
the observed peak flow will be greater than the warning 
level (QP2%) whereas the EIV interval is still under the 
threshold. Thus, even with an event that rises extremely 
rapidly (from 235 m3/s to 1600 m3/s in 18 hours on June 20, 
2013), the FLR method can predict a small risk of high peak 
flow a day in advance.  

4. Conclusions 

A fuzzy linear regression model was developed in this 
paper and tested against an error-in-variables implementation 

of ordinary least squares regression for flood prediction in a 
large river basin. A unique way of transforming a possibility 
to a probability for this particular type of data-driven model- 
ling technique was also developed. In addition, the authors 
proposed a method to compare and evaluate fuzzy linear re- 
gression modelling to ordinary least squares regression mo- 
delling by modifying Moriasi et al.’s (2007) categories of mo- 
del performance. In applying the models to the Bow River 
system in southern Alberta that experienced devastating floods 
in 2013, the research showed that the flood in June 2013 could 
not have been predicted with any confidence using current, 
conventional methods of probabilistic reasoning but could have 
been predicted a full day in advance, and potentially three 
days in advance for the City of Calgary using only observed 
real-time flow data gauged in the Bow River inside Calgary 
(WSC ID: 05BH004). This would provide enough advance 
warning to initiate flood response measures. The implement- 
tation of this fuzzy linear regression would be amenable to re- 
production as a web-passed app for use by forecasters or the 
public. 

The proposed method can be further fine-tuned to im- 
prove model performance. For example, given the availability 
of sub-hourly flow rate data at some Environment Canada sta- 
tions, it may be possible to use hourly, or perhaps 6-hour ave- 
raged data, rather than daily (24-hour averaged) data that was 
used in forming the models in this paper. Thus, the effect of a 
1 time-unit lag would be less significant than in the current 
method, even though in the FLR method, the impact of the lag 
is compensated by the size of the fuzzy interval in most cases. 
However, it is important to note that by reducing the lead time 

 
Figure 14. Possibility to probability transformations for high peak flow rate days (> Qp2%), for Bow River at Calgary in 2013 
during the flood, with a lag of 1 day, and e of 20%. 
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to sub-daily lags, that there will not be enough time to for wa- 
ter resource managers to implement flood defence systems, 
which is the primary objective of this risk-based peak flow 
prediction method.  

Another method of improving performance could be by 
increasing the error value e to up to 40% or 50% (from the 
maximum of 20% assumed in this paper). Increasing the win- 
dow of the fuzzy number would improve model performance 
and capture more events within the fuzzy interval. It should be 
noted that even with such a high uncertainty band the pro- 
posed model has shown that it still reduces to a small inter- 
val when necessary (i.e. during low flow). Also, in this research 
it was assumed that the daily peak flow rate was a probabi- 
listic parameter and converted to a fuzzy number for analysis; 
this is the most straight forward approach. However a number 
of propositions on converting a single flow measurement to a 
fuzzy number have been proposed and can be considered.  

Lastly, of the three sites considered, the models did not 
perform as well at the Elbow River at Bragg Creek site, as 
they did as the other two sites. Given this site’s smaller drai- 
nage area and history of flash flooding, a different indepen- 
dent parameter might improve model performance, such as 
using lagged peak flow rate rather than lagged daily mean 
flow rate. 
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