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ABSTRACT.  The use of empirical models to predict species distribution is recognized as an important tool in wildlife management. 

Tree-based methods gained considerable attention in the last years mostly due to their flexibility and robustness. Here, we provide an 

overview of tree-based methods by addressing some of their concepts, uses and limitations. For illustrative purposes, we modelled the 

distribution of a red deer (Cervus elaphus) population using fine-scale predictors while applying four modelling methods: three tree- 

based methods (classification trees, random forests and boosted trees) and the generalized linear model by stepwise regression. In order 

to explore alternative trees and achieve the best model performance, a series of classifiers were run with different tuning parameters. 

The random forests and boosted trees models were the most accurate classifiers followed by classification trees and generalized linear 

model by stepwise regression. Despite differences in the predictive accuracy, the results of the four models were consistent with the 

species ecological requirements. Red deer occurred further away from disturbed areas (e.g. villages and other human settlements), agri- 

cultural fields and near shrubs and forest patches. Furthermore, the species often occurred in areas with gentle slopes, preferentially 

with a southern exposure. We observed that classification trees are easy to interpret but may produce unstable decision trees and un- 

wieldy results in the presence of sharp discontinuities. We state that ensemble methods such as random forests and boosted trees are 

valuable tools in predicting species distributions. This study provides the necessary background for the understanding of tree-based 

methods, which will be of great help in further studies in ecological modelling, as it will shed light in the most appropriate technique to 

be used. 

 

Keywords: boosted trees, classification trees, ecological modelling, fine-scale predictors, random forests, red deer 

 

 

 

1. Introduction  

Modelling environmental scenarios became a key tool in 

distinct research fields in order to help manage real-world 

problems. Over the last years, the use of species distribution 

models (SDMs, hereafter) has been increasing due to the 

advances in computing capacity, the increased number of bio- 

informatics, the accessibility to species occurrences and the 

availability of environmental data (see Guisan and Zimmer- 

mann, 2000; Guisan and Thuiller, 2005; Elith et al., 2006; 

Araújo and New, 2007; Elith and Leathwick, 2009 for revi- 

ews). This prominent tool has been successfully used to ad- 

dress a wide variety of ecological issues such as the manage- 

ment of threatened species and biological invasions, the predi- 

ction of species distribution under current and future environ- 
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mental scenarios, as well as the determination of phylogeo- 

graphic patterns (Guillera-Arroita et al., 2015). Amongst the 

classes of SDMs, the habitat or resource selection models 

(RSMs) have been applied to predict the species occurrence 

and habitat selection at finer-scales (Hegel et al., 2010). 

Essentially, both classes of models describe the interactions 

between species distribution and environmental predictors. 

The different types of species data (e.g. presence-only, presen- 

ce-absence, presence-pseudo-absence or presence-background, 

abundance and opportunistic records), the characteristics of 

environmental predictors (e.g. high dimensionality, multico- 

llinearity) and the relationships between the response and exp- 

lanatory variables (e.g. non-linear relationships, heterosceda- 

sticity) pose different methodological and statistical challen- 

ges. Currently, a plethora of modelling techniques is available. 

Even though regression-like techniques remain as the back- 

bone of modelling approaches, tree-based methods, a branch 

of machine learning, constitute an emerging set of quantitative 

tools which have been fairly used (Araújo et al., 2011; Engler 

et al., 2011; Broennimann et al., 2012; Ewijk et al., 2014). 

These include classification and regression trees (CART, Brei- 
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man et al., 1984; Clark and Pregibon, 1992), random forests 

(RF, Breiman, 2001) or boosted trees (BT, Freund and Scha- 

pire, 1996). Their main advantage lays on its high predictive 

power and the flexibility to handle interactions and nonlinea- 

rities (De’ath and Fabricius, 2000; Prasad et al., 2006; De’ath, 

2007). Furthermore, they are non-parametric, they normally 

do not require previous variable selection and are able to deal 

with missing values, outliers and unbalanced data (Vayssiéres 

et al., 2000). Due to their characteristics, tree-based methods 

are suitable for a range of ecological applications (Debeljak 

and Džeroski, 2011). Despite all these advantages, tree-based 

methods also exhibit some drawbacks, since they are time 

consuming and their high flexibility can lead to a major pitfall 

called overfitting. Overfitting is an undesirable model situa- 

tion which means that flexible models fit the noise rather than 

the general data behavior (James et al., 2013). Overfitting 

mainly occurs in complex models with high variance and low 

bias and could lead to poor model performance on predicting 

new data (Warren et al., 2014).  

Several studies were performed to assess the performance 

of different modelling methods (Thuiller et al., 2003; Segura- 

do and Araújo, 2004; Tsoar et al., 2007; García-Callejas and 

Araújo, 2015). Although these studies may guide methodolo- 

gical and statistical choices, the results showed that models 

predictive performance is highly variable, making it difficult 

to select a statistical method by first-time users. Despite seve- 

ral reviews and comparative studies under the framework of 

SDMs, comprehensive interpretations are still scarce (see Eli- 

th et al., 2010 and Merow et al., 2013). The aim of this work 

is to offer an introductory and non-exhaustive description of 

the key tree-based concepts using an illustrative case study. 

First, we provide a literature review focused on the conceptual 

and methodological aspects of tree-based methods. Then, bas- 

ed on a dataset of a red deer (Cervus elaphus) population we 

assess (i) the current species distribution considering three 

different tree-based methods: classification trees, random fo- 

rests, and boosted trees; (ii) the relative importance of the en- 

vironmental variables; and (iii) the performance of the above 

mentioned techniques in comparison with a widely used 

regression-like method, the generalized linear model by step- 

wise regression (GLM, McCullagh and Nelder, 1989). Consi- 

dering the results of previous studies, we hypothesized that 

the predictive performance of ensemble methods (RF and BT) 

were equivalent (Hypothesis 1) and outperformed single cla- 

ssification trees and generalized linear models (Hypothesis 2). 

Our study provides further insights for the understanding of 

tree-based methods, which will be of great help in further 

studies in ecological modelling, as it will shed light in the 

most appropriate technique to be used. 

 

2. Tree-Based Methods – An Overview 

Tree-based methods are a set of supervised approaches 

(Table 1), which are successfully applied in different research 

fields. Their popularity lies on their flexibility to handle mul- 

tifaceted data. The methodological basis involves the segmen- 

tation of a predictor space into a particular number of simple 

subsets (Hastie et al., 2009). 

In the last years, the development of powerful graphical 

Table 1. Terms Used in the Context of Tree-based Methods 

Concept Definition 

Bagging Also known as bootstrap aggregation, is the most simple and one of the most common ways to 

generate an ensemble of weak learners.  

Bag fraction Proportion of the training dataset randomly selected for model fitting.   

Boosting Sequential ensemble process in which a highly accurate predictor is created through the combi- 

nation of several weak and inaccurate classifiers.  

Branch Path taken by individual records until the next node. Branch width reflects the proportion of instan- 

ces that follows a determined path. 

Child node Subset of observations resulting from a parent node split.  

Complexity parameter Define the tree size through its control over the pruning procedure. Pivotal parameter to reduce mo- 

del overfitting.  

Ensemble Set of classifiers which, presumably, produce more stable and accurate results than a single model. 

Particularly useful when the classifiers exhibit an erratic and unstable behavior. 

Error rate The probability that a model incorrectly classifies an instance. Measures the effectiveness of a cla- 

ssifier.  

Learning rate Also known as the shrinkage parameter, determines to what extent the addition of a new tree con- 

tributes to improve the final model, i.e. controls the impact of subsequent fitted learners in the final 

model. Higher predictive performances are often associated to smaller values of shrinkage (Natekin 

and Knoll, 2013). 

Leaves Terminal node representing class labels. It is not partitioned if the node reached the minimum num- 

ber of observations defined, a threshold of splits was achieved or the observations of a child node 

are homogeneous, i.e. belongs to the same class.  

Loss function Commonly used to weight differently the type of errors once some loss functions are more robust to 

noisy and unbalanced data (see Hastie et al., 2009).  
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user interfaces (GUIs), routines and packages for statistical 

software made these techniques accessible to the majority of 

ecologists. Commercial software companies such as Salford 

Systems (www.salford-systems.com) provide the Windows- 

based programs CART® and RandomForests®. DTREG (w 

ww.dtreg.com) offers a broad set of predictive modelling me- 

thods including Decision Trees®, TreeBoost® and Decision 

Tree Forests®. Routines and packages for R statistical soft- 

ware include ‘BIOMOD’ (Thuiller, 2003), ‘ModelMap’ (Free- 

man, 2009) and ‘Rattle’ library (Williams, 2009). Other op- 

tions encompass the R packages ‘rpart’ (Therneau et al., 2013) 

to fit classification and regression tree models, ‘random Fo- 

rest’ (Liaw and Wiener, 2012) to develop random forests mo- 

dels and ‘gbm’ (Ridgeway, 2013) for boosting regression trees. 

These recent advances led to a growing use of tree-based me- 

thods in ecological modelling. 

 

2.1. Classification and Regression Trees – The Classic Tree 

Algorithm 

Classification (categorical variable) and regression (nu- 

merical variable) trees (CART) consist in the binary recursive 

partition (i.e. successive segmentation) of the data into sim- 

pler and more homogeneous subsets (Breiman et al., 1984; 

De’ath and Fabricius, 2000; Vayssières et al., 2000; Hastie et 

al., 2009; James et al., 2013). A traditional structure of a deci- 

sion tree includes a single root node composed by all instan- 

ces or cases, which is then split into two branches resulting in 

two child nodes (Figure 1). The resulting variance from the 

data partition is as homogeneous as possible considering the 

dependent variable. 

The CART models have two main challenges: i) as CA- 

RT considers all possible splits regarding all variables, it is 

defiant to find good splits and ii) to avoid data overfitting. 

The determination of information gain and/or node impu- 

rity measures (entropy, Gini index of diversity or misclassifi- 

cation error) allows overcoming the former challenge (Brei- 

man et al., 1984; Hastie et al., 2009; Therneau et al., 2015). 

For illustrative purposes, we provide an example of splitting 

criteria for binary data using the information gain (Figure S1). 

The information gain is an entropy-based concept whose va- 

lues range between 0 (no entropy; target variable only comp- 

rises observations with the same values, which means that no 

further information is required to classify the observations) 

and 1 (maximum entropy; corresponds to higher amounts of 

disorder, meaning that the values of the target variable are 

equally distributed across the records). 

Nonetheless, pruning the tree reduces model overfitting. 

A pruned tree allows a simple and systematic representation 

of the data, increasing the accuracy of predictions of unob- 

served data. The pruning process can be performed by speci- 

fying the number of instances per terminal node, by using the 

minimum split argument, or a more refined method, the com- 

plexity parameter (cp) (Williams, 2011; Therneau et al., 20 

15). 

The development of a CART model is performed in four 

main steps: i) partition of the training dataset; ii) fitting a 

model to the data considering previous data partitions; iii) 

stop when the residuals of the model are approximately zero 

or the number of remaining observations is low; and iv) prun- 

ing the tree to avoid overfitting. 

 

2.2. Random Forests – More than A Bagging Approach 

The high variance of environmental data leads to unwie- 

ldy classification and decision trees (Hastie et al., 2009). To 

overcome this shortcoming, several samples from the training 

dataset can be taken through a procedure referred as bootstrap 

aggregation. Also known as bagging, this averaging model 

works by reducing the variance through the construction of n 

decision trees using n bootstrapped training sets and then ave- 

raging a set of predictions (James et al., 2013). 

The RF is a modified bagging-based algorithm where 

 

Out-of-bag error The subset of training observations used to grow a decision tree is called “bag”. The instances left 

out called as “out-of-bag” are used to estimate the error rate. 

Overfitting Commonly occurs when a model is excessively complex. Overfitting could lead to poor predictive 

performance on new and unseen datasets (Warren et al., 2014). Overfitting can be avoided through 

the use of several techniques such as the complexity parameter, cross-validation, and regulari- 

zation, to name a few. 

Recursive partitioning Iterative top-down process where nodes are split sequentially in order to increase the homogeneity 

of child nodes with respect to the response variable.  

Root The first node in the traditional structure of a decision tree. Encompasses all the instances that form 

the dataset.  

Split Data partition in two datasets based on a particular question. The proper choice of the splitting 

criteria is necessary to increase the homogeneity of outputs and information gain. 

Supervised learning Machine learning branch that entails learning the relationship between known predictors and res- 

ponse variable, seeking predictive models to forecast the response to unseen data. 

Tree complexity Number of nodes in a tree. Tuning parameter of boosted trees that, together with the learning rate, 

rules the number of trees added to the ensemble. 

 

http://www.salford-systems.com/
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each tree is independently constructed using several bootstrap 

samples and the new trees are independent from the previous 

ones (Breiman, 2001). The RF algorithm fits many decision 

trees to a dataset, and then combines the predictions from all 

the trees (Figure S2). This algorithm begins with the selection 

of several bootstrap samples from the initial dataset, i.e. each 

classifier has access to a different data subset. A decision tree 

is fitted to each bootstrap sample, but at each node only a 

smaller number of randomly selected variables (e.g. the squa- 

re root of the number of variables) are available for the binary 

partitioning. This clear degree of randomness constitutes a sa- 

feguard against overfitting. The final model is built by aggre- 

gating a set of predictions from the individual trees (Cutler et 

al., 2007; Hastie et al., 2009). The RF algorithm retains the 

variables that provide more information in the discrimination 

of item classes (Evans et al., 2011). The RF is able to measure 

the contribution of each predictor, even when its effects are 

covered by multicollinearity issues (Strobl et al., 2009).  

The method’s performance depends on two fundamental 

parameters: i) the overall number of trees (nt), which should 

increase as the number of variables/instances increases, and ii) 

the number of variables considered for each split, whose value 

restriction ensures that correlation among fitted trees is small.  

 

2.3. Boosted Trees – A Collection of Weak Learners 

The BT models are built using an algorithm that com- 

bines decision trees and boosting (Friedman et al., 2000; 

De’ath, 2007; Elith et al., 2008). AdaBoost was the original 

boosting algorithm (Freund and Schapire, 1996). Here, sequ- 

ences of models are assembled and successive trees change 

the observation weights giving lower or higher relevance to 

those cases correctly or incorrectly classified, respectively. 

Each observation has an initial weight calculated as wi = 1/n, 

where wi is the weight of each observation and n is the number 

of observations (Figure S3). This process starts with the fit of 

the first classifier of the weighted data. A detailed statistical 

description of AdaBoost rationale is presented in Friedman et 

al. (2000) and Hastie et al. (2009).  

Friedman (2001) developed a new approach called gra- 

dient boosting. The performance of such method is improved 

and the overfitting is reduced by the introduction of random- 

ness and by stochastic gradient boosting, where each decision 

tree is constructed by taking a random subsample of the train- 

ing dataset (Friedman, 2002). The aim of the gradient BT is to 

improve the model performance by combining a large number 

of simple trees, i.e. the final outcome is a collection of weak 

learners. The model fit over different trees is improved by 

considering the previous learners and by emphasizing those 

observations incorrectly classified. For regression issues, each 

new tree added to the ensemble is fitted to the residuals of the 

previous tree (Elith et al., 2008).  

The BT procedure is optimized by two main parameters: 

i) the learning rate (lc), also known as the shrinkage parameter 

(λ), which determines how quickly the algorithm adapts to a 

training dataset and ii) the tree complexity (tc), which controls 

the tree size, the ensemble complexity and whether an intera- 

ction is fit. The lc and the tc control the number of trees added 

to the ensemble (Elith et al., 2008). 

 

3. Methods 

3.1. Case Study 

Presence data of red deer (n = 539 observations) were 

systematically collected in Lombada (east part of Montesinho 

Natural Park - Portugal) and Sierra de la Culebra (Spain) 

hunting areas (LSCHA), in Northwestern Iberian Peninsula 

(41º43′ ~ 42º03′N; 6º43′ ~ 6º27′W, Figure 2). The LSCHA 

covers an area of 48,740 ha and is characterized by a hetero- 

 
Figure 1. The structure of classification or regression trees (adapted from Olden et al., 2008). 
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geneous orography with elevation ranges from 566 to 1215 

m.a.s.l. The LSCHA experiences a Mediterranean climate 

with well-marked seasons (Kottek et al., 2006). The vegeta- 

tion is varied and mainly dominated by scrublands and forest 

stands interspersed by semi-natural pastures and meadows. 

Scattered and small-cultivated fields can also be found along 

LSCHA. 

The study area comprises a rich biodiversity. Red deer 

populations experienced a remarkable recovery during the last 

decades and are now common and well-established in several 

regions of the Iberian Peninsula, namely in the LSCHA. The 

rural exodus and occasional reintroduction projects are some 

of the main causes underlying the increase of numbers and 

distribution range of red deer populations (Vingada et al., 

2010). In LSCHA, red deer is considered a game species and 

is also one of the main preys of the endangered Iberian wolf 

(Canis lupus signatus). Given the high ecological and socio- 

economic relevance of red deer, and their recent expansion, 

and by taking advantage of precise data on red deer monitored 

in the LSCHA, we defined a methodological approach to des- 

cribe the environmental determinants of red deer presence at a 

fine geographical scale. 

 

3.2. Presence Data and Environmental Predictors 

Line transects surveys were conducted during the rut pe- 

riod (September ~ October 2012). Transects were chosen to 

provide an equal coverage of the most representative habitats 

in the study area and, thus, reduce the bias associated with the 

systematic prospection of areas with different deer densities. 

Forty-eight transects with an average length of 4.6 km (0.43 ~ 

12.7 km) were surveyed (Figure 2). Whenever an animal/ 

group was detected, the distance from the observation point to 

the animal/group was recorded. Through GPS location and 

trigonometric operations, the exact position of the observed 

animals was determined. For modelling purposes, the 539 

records of red deer presence were divided into training (70%) 

and test (30%) datasets. Presence data was used to establish 

the favourable conditions for the species occurrence, while 

background data (i.e. random set of points within the study 

area, Phillips et al., 2009; Phillips and Elith, 2011) characte- 

rized the environmental domain where the survey was carried 

out. The ratio of presences/background data was set at 1:1, as 

recommended by Barbet-Massin et al. (2012) for classifica- 

tion techniques. The LSCHA was divided into a hexagonal 

grid composed by individual units (side length = 250 m; area 

= 16.24 ha) that retained the environmental characteristics of 

the corresponding section at a finer-scale. Hexagonal units 

were considered more suitable for a range of ecological app- 

lications than the commonly used rectangular grids as they 

provided a better representation of the spatial heterogeneity 

(Clausnitzer et al., 2009). Then, considering the red deer eco- 

logical requirements, their applicability to the study area and 

potential predictive significance, 14 fine-scale variables (Ta- 

ble 2) associated with habitat structure (3), human disturbance 

(2), land use (3), vegetation productivity (1), topography (4) 

and water availability (1) were selected. 

 

3.3. Geographical Background Delimitation 

A variation in the geographical background (GB) extent 

leads to differences in the discriminatory power of SDMs 

(Acevedo et al., 2012). GB can underestimate the role of 

course-scale factors (e.g. climatic drivers), if it is too restrict 

(Sánchez-Fernández et al., 2011). However, if it is too large, 

GB can limit the model’s predictive power when the aim is to 

determine the influence of fine-scale conditions in geographic 

patterns of species distribution (Lobo et al., 2010). Here, we 

adopted the criterion proposed by Acevedo et al. (2012) to 

delimitate the geographical background. By applying a trend 

surface analysis, we improved the model performance and de- 

creased the extent effect on the final outcome. Trend surface 

analysis fits a polynomial surface by least-squares regression 

of geographical coordinates. This method is used to find gene- 

ral data trends and modulation of curvilinear structures is per- 

formed through the addition of polynomial terms to the expla- 

natory data (Legendre and Legendre, 1998). Therefore, trend 

surfaces are normally formulated as nth polynomials, creating 

gradually varying surfaces that describe the physical or geo- 

graphical processes. We fitted several surfaces by increasing 

the polynomial order and, consequently, their complexity. The 

root mean square error of interpolation was used to determine 

the best value to use for the polynomial order. 

 
Figure 2. Detail of the study area showing the location of 

the line transects covered during red deer population 

surveys. 



 J. Carvalho et al. / Journal of Environmental Informatics 32(2) 112-124 (2018) 

 

117 

3.4. Performance Evaluation 

We used the area under (AUC) the receiver operating 

characteristic curve (ROC) to measure the discrimination 

power. The AUC provides a way to compare classifiers by 

testing the model accuracy and allows their validation inde- 

pendent of distortions and potential bias (Fielding and Bell, 

1997). The output values range between 0.5, i.e. the scores of 

the two groups do not differ, and 1, i.e. the scores of the two 

groups do not overlap. A set of threshold-dependent measures 

based on the outputs of the confusion matrix was also used to 

assess the model accuracy. These measures included the ove- 

rall accuracy (OA), the sensitivity (Se, true positive rate), the 

specificity (Sp, true negative rate), the true skill statistics 

(TSS) and the Cohen’s kappa. Considering that spatial autoco- 

rrelation between “training” and “testing” datasets may inflate 

the AUC values (Veloz, 2009), we used a truly independent 

dataset from another red deer population located in Lousã 

mountain, centre of Portugal, to assess the model discrimi- 

native performance. Furthermore, we evaluated the model’s 

accordance considering the selection of the most important 

variables for species occurrence. For this purpose, Spearman’s 

rank tests were used to assess the correlation between varia- 

bles importance, ranked according to their order of selection 

by each model. 

 

3.5. Model Specifications and Software 

Distinct tuning parameters were tested to assess their 

effects on model performance. In CT, a series of 10-fold cro- 

ss-validations was run and the most frequent occurring tree 

size was chosen using the standard error (1-SE) rule (De’Ath 

and Fabricius, 2000). We tested two splitting functions (infor- 

mation gain and Gini index) and controlled tree size through a 

complexity parameter corresponding to the minimum cross- 

validation error. Classification trees were fitted using the 

‘rpart’ library (Therneau et al., 2013) and plotted using the 

‘rpart.plot’ library (Milborrow, 2012) for R software (version 

2.15.3, R Development Core Team, 2013). The RF models 

were fitted using the square root of the number of variables 

and a series of 10 ensemble sizes (5, 10, 20, 50, 100, 200, 500, 

1000, 2000 and 5000). The ‘randomForest’ library (Liaw and 

Wiener, 2012) was used for model development. The model 

was fitted with 10-fold cross-validations. The BT based on 

stochastic gradient boosting was built using the ‘gbm’ library 

(Ridgeway, 2013) for R software. For this model, different va- 

lues of tc (1 to 5), lr (0.05, 0.01 and 0.005) and bag fraction 

(bf; 0.3, 0.5 and 0.7) were combined. As the response variable 

is categorical, we used a Bernoulli loss function. Finally, a 

GLM was performed using a stepwise variable selection (fa- 

mily = ‘binomial’; link function = ‘logit’; criterion-based pro- 

cedure = ‘Akaike Information Criterion (AIC; Akaike, 1974)’), 

which is a common approach implemented in distribution 

modelling (stepwise GAM, Araújo et al., 2005; stepwise GLM, 

Barbosa et al., 2008). 

 

4. Results 

A root mean square error of 0.43 was obtained for the 

trend surface analysis through the application of a third-order 

polynomial. The computed area represents the geographical 

delimitation where all the models were fitted and validated 

(41º38′ ~ 42º06′N; 6º49′ ~ 6º17′W, Figure S4).  

 

4.1. Tree-Based Outcomes 

For classification trees, 106 out of the 377 instances were 

misclassified, giving an overall error of 28%. The first tree, 

constructed to its maximum depth, was pruned using the 

complexity parameter (cp = 0.021). The cross-validation (cv) 

reached a minimum value of 0.61 for the largest tree of size 

17 (Figure 3a). There was a relative reduction in the error as 

the size of tree increased and the complexity parameter dec- 

reased. Based on the cv error and cp, the optimal tree size 

comprised six data splits and retained four variables: DUrb, 

DSch, NNESS and NDVI (Figure 3b). Among the CT models 

Table 2. Variables Used to Develop the Models of Red Deer Occurrence* 

Factor Variable Code Average (Min ~ Max) 

Habitat structure Agricultural area (ha) AAgr 2.96 (0.00 ~ 16.24) 

Forest area (ha) AFor 4.02 (0.00 ~ 16.24) 

Shrub area (ha) ASch 7.16 (0.00 ~ 16.24) 

Human disturbance Distance to road network (m) DRoad 950 (15 ~ 4785) 

Distance to villages (m) DUrb 1754 (0 ~ 5078) 

Land use Distance to agricultural fields (m) DAgr 465 (0 ~ 3257) 

Distance to forest (m) DFor 357 (0 ~ 2650) 

Distance to shrubs (m) DSch 136 (0 ~ 1511) 

Vegetation productivity Normalized Difference Vegetation Index NDVI 0.30 (-0.15 ~ 0.51) 

Topography Slope (degrees) Slp 10 (0 ~ 27) 

Northness NNESS -0.08 (-0.92 ~ 0.96) 

Eastness ENESS -0.01 (-0.90 ~ 0.93) 

Terrain roughness RNESS 155 (4 ~ 326) 

Water availability Distance to main water lines (m) DRiv 1327 (55 ~ 5035) 

*The average and range values were obtained from individual hexagonal units. 
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developed, these four variables were most frequently selected 

due to the amount of explained deviance. The relatively high 

number of splits showed that the estimated response did not 

depend only on the main effects. An increasing distance to 

urban areas, a decreasing distance to shrubs and a negative 

exposure to north predicted red deer presence. 

Regarding the RF model, the results showed that the 

addition of trees to the ensemble had three main effects: i) the 

model discriminative performance increased, ii) the out-of- 

bag (OOB) error decreased (Figure S5), and iii) the cartogra- 

phic projections became more stable (Figure 4). Considering 

the model that fits 1000 trees (highest AUC and one of lowest 

out-of-bag errors), the variable with the strongest effects was 

DUrb, followed by DAgr, AAgr, DRiv, DSch and ASch. The 

variables DRoad, Slp, NDVI, DFor and AFor were associated 

with moderate effects, while variables related with terrain 

roughness (RNESS) and exposure (NNESS and ENESS) show- 

ed weak effects in the prediction of red deer occurrence (Fig- 

ure 5).  

The best BT models were achieved using the following 

parameters: lr of 0.005, and a tc of 5 reserving a bf of 0.5. The 

variable importance plot showed strong effects for DUrb, 

DRiv, DSch, DRoad and DAgr, which are partially in agree- 

ment with the previous models tested. Moderate effects were 

observed for RNESS, AAgr, Slp and NNESS. Finally, weak 

effects were observed for DFor, NDVI, ENESS and AFor 

(Figure 5). The partial dependence plots showed: i) a predo- 

minantly linear positive trend for DUrb, ii) a downward trend 

for DSch, Slp and DFor, iii) weak effects for RNESS, NNESS  

and ENESS, and iv) modal, i.e. difficulty in defining a pattern 

or a trend, effects for the remaining variables (Figure 6). The 

response of red deer to the 12 most influential variables indi- 

cates that the species occurs in areas further away from hu- 

man settlements, near water lines, shrubs, forest patches and 

 

Figure 3. Classification tree of the red deer occurrence. (a) 

Unpruned tree; (b) Pruned tree through the complexity 

parameter. Branch width provides a visual proportion of 

instances that were clustered on each side. Predictor variable 

abbreviations are shown in Table 2. 

  

 

  

 

Figure 4. Cartographic representation showing an increased stability of random forest models with an increase in the 

number of trees in an ensemble. (AUC) - area under the curve and (OOBError) - out-of-bag error. 
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in areas with smooth terrain slopes. The exposure effects re- 

presented by NNESS and ENESS had little effect, although a 

tendency for deer occurrence in hillsides exposed to south was 

observed. 

 

4.2. GLM by Stepwise Regression 

The most parsimonious model retained 10 variables. 

From the initial set of 14 environmental variables, the follo- 

wing factors were dropped: DAgr, ASch, AFor, and ENESS. 

The model outcome was partially in agreement with the 

tree-based methods. The DUrb had a positive effect in the 

occurrence probability of red deer. Additionally, the variables 

DSch, Slp, DRoad, AAgr, DRiv, NNESS, NDVI, DFor and 

RNESS had negative effects. An increase in the measured 

units of these variables decreased the species occurrence pro- 

bability. 

 

4.3. Evaluation of Models Performance 

The results for model discrimination and threshold- 

dependent measures are summarized in Table 3. The predicted 

distributions for all the algorithms are presented in the Figure 

 
Figure 5. Variable importance plot providing a summary 

of the relative contributions (%) of environmental 

predictors in boosted trees models (open squares) and 

random forests (black squares). 

 
Figure 6. Partial dependence plots for the twelve most relevant predictor variables identified in boosted trees (BT) 

model. Rug marks at the bottom of plots show the distribution of records across the variable range, in deciles. Symbols 

in the upper right corner represent, (+) positive trend, (-) downward trend, (*) weak effects, and (**) modal effects. 
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7. Models discrimination and their respective spatial projec- 

tions, using a truly independent dataset, are also reported 

(Table 3, Figure S6). The results showed positive correlations 

and spatial agreement between the models, indicating a partial 

concordance of variable importance among the methods app- 

lied (Table 4). Considering the results from all the models, the 

variables were ranked as follows: Durb, DSch, DRoad, DRiv, 

DAgr, Slp, AAgr, NNESS, NDVI, RNESS, DFor, ASch, AFor 

and ENESS.  

 

5. Discussion 

The clear identification of environmental processes that 
shape species distribution and resources selection is of para- 

mount importance for wildlife management and conservation 

(Guisan et al., 2013). Here, we demonstrated the usefulness 

and accuracy of tree-based methods to explain and predict the 

patterns of species’ distributions at population scale. As expe- 

cted, our results suggested that the predictive accuracy and 

spatial projections of tree-based methods vary as a function of 

the model parameterization. We found that the discriminative 

ability of RF and BT models were equivalent, which is in 

agreement with our first hypotheses (Figure 5; Table 3). This 

result corroborates a recent study where RF and BT showed 

similar performances (García-Callejas and Araújo, 2015). The 

predictive capabilities of RF while assessing species range 

shifts under climate change (Prasad et al., 2006), predicting 

invasive species (Cutler et al., 2007) and managing important 

economic species (Vincenzi et al., 2011) were already demon- 

strated. Likewise, BT proved its usefulness in modelling spe- 

cies richness (De’ath, 2007) and distribution even when han- 

dle sporadically sampling (Elith et al., 2008). Notwithstanding 

their predictive capabilities, some authors suggest to avoid RF 

because it may be more computationally taxing than BT 

(García-Callejas and Araújo, 2015). We showed that CT and 

GLM by stepwise regression perform substantially worse than 

RF and BT methods, which corroborates our second hypo- 

thesis. The high performance of RF and BT has already been 

documented with and without temporal transferability (Prasad 

et al. 2006; García-Callejas and Araújo, 2015) and may be 

associated with a smoother response surface in which predi- 

ctive probability gradually increases without skipping classes. 

 

Figure 7. Predictive probability of red deer presence in 

the study area considering the four modelling techniques. 

 

Table 4. Spearman’s Correlation Matrix Comparing the Rank 

Order of Variable Selection by the Four Modelling Techniques* 

 CT BT RF GLM 

CT 1.00 0.73 0.50 0.69 

BT - 1.00 0.62 0.65 

RF - - 1.00 0.46 

GLM - - - 1.00 

*CT – Classification Trees; BT – Boosted Trees; RF – Random Forests; 
GLM – Generalized linear model by stepwise regression. 

Table 3. Threshold-Dependent and -Independent Measures Assessed by Models* 

Method CT  RF BT GLM 

OA 0.72  0.83 0.81 0.69 

Se 0.72  0.82 0.80 0.68 

Sp 0.70  0.84 0.82 0.71 

TSS 0.42  0.66 0.62 0.39 

Cohen’s kappa 0.42  0.64 0.62 0.38 

AUC 0.76 (0.70)  0.86 (0.85) 0.85 (0.84) 0.74 (0.77) 

*CT – Classification trees; RF – Random forests; BT – Boosted trees; GLM – Generalized linear 
model by stepwise regression. Performance measures evaluated were: (OA) – Overall accuracy; 

(Se) – Sensitivity; (Sp) – Specificity; (TSS) – True skill statistics; Cohen’s kappa and (AUC) – 

Area under the curve. Values in brackets represent the AUC values gathered from a truly 
independent dataset. 

 



 J. Carvalho et al. / Journal of Environmental Informatics 32(2) 112-124 (2018) 

 

121 

Further, through a forward stagewise fitting, i.e. the fitted 

trees are kept unchanged while the number of trees added to 

the ensemble increased, and model averaging, BT algorithm 

reduces the bias and the variance of the final model. The RF 

algorithm cannot achieve bias reduction because the classifi- 

cation trees that form the ensemble are fitted in the same way, 

however, due to averaging, the model variance decreases. 

Regarding CT, one of the main model weaknesses is the fact 

that the final classifier probably would not be the optimal tree, 

which promotes erratic model behavior (Hastie et al., 2009). 

Non-linear relationships, strong correlations among variables 

and the fact that all predictors are on a continuous scale are 

possible reasons for the outperformance of ensemble approa- 

ches in relation to single trees. Additionally, the presence of 

modal effects and even a slightly change in the value of a 

particular variable may lead to a large variation in the predic- 

tions (Hastie et al., 2009). Nevertheless, the hierarchical struc- 

ture, i.e. the response to one variable in top splits influences 

the response in the splits below, of decision trees (even single 

trees), makes them potentially more resilient to multicollinea- 

rity than conventional statistical approaches such as regre- 

ssion-like methods (e.g. GLM). However, the hierarchical 

structure of recursive partitioning techniques can be also an 

issue, once classification errors recorded in top splits are 

reflected on final data partitions. Yet, the model outcomes 

depend on each particular situation and involve many factors 

such as the spatial and environmental distribution of species 

(Segurado and Araújo, 2004), the structural characteristics of 

the data (Foody et al., 2011), the geographical background 

(Acevedo et al., 2012), the selection of optimal model settings 

(Elith et al., 2008), among others. For instance, Dettmers et al. 

(2002) concluded that CT and GLM showed equivalent resu- 

lts. Nonetheless, Franklin (1998) demonstrated that the CT 

outperforms GLM, but Thuiller et al. (2003) achieved oppo- 

site results. Even though some previous studies showed that 

ensemble methods perform consistently better than other app- 

roaches (e.g. GLM), a recent research reported that GLM 

showed higher predictive performances than RF in modelling 

the species richness of vascular plants (Lopatin et al., 2016). 

These inputs corroborate the idea that model selection is 

context-dependent. Some authors state that this variability in 

model projections endangers their applicability in real-world 

problems and suggest the use of multiple models in combi- 

nation, i.e. ensemble forecasting, instead of single-model fore- 

casts (Araújo and New, 2007).  

 

5.1. Models Accuracy, Variable Importance and Ecological 

Meaning 

Notwithstanding the differences in predictive accuracy, 

the main results gathered from the four models coincided with 

species ecological requirements and the predictors deemed 

important by the models were partially in agreement (Table 4). 

All the models identified the distance to urban areas and the 

distance to shrubs as the most important variables in predi- 

cting red deer occurrence, thus confirming previous findings 

(Carvalho et al., 2012; Torres et al., 2012; Torres et al., 2014). 

Red deer occurred further away from disturbed areas (e.g. 

villages and other human settlements), agricultural fields and 

near shrubs and forest patches. Additionally, the species often 

occurred in areas with gentle slopes, preferentially with sou- 

thern exposure. The remaining variables exhibited modal effe- 

cts, which makes it difficult to define patterns of selection. 

Some studies on the diet of red deer found a preference for 

shrub species like Pterospartum tridentatum, Cistus ladanifer, 

Halimium lasianthum, Rubus ulmifolius and Erica sp. (Alva- 

rez and Ramos, 1991; Ferreira, 1998). Transition areas (eco- 

tones) hold a great importance for red deer to cope with 

seasonal changes in resource availability being also important 

regarding the use of open feeding sites and the proximity of 

refuge areas against adverse weather and predators (Putman 

and Flueck, 2011). We showed that red deer occurred far from 

agricultural fields, which is in disagreement with Mysterud et 

al. (2002), however similar results were already reported in 

our study population (Torres et al., 2014). This fact can be an 

adaptation to contrasting seasonality, human disturbance or a 

hiding behavior to reduce predation risk. 

 

5.2. Tree-Based Methods – Pros and Cons 

The CT models are intuitive and easy to interpret. Never- 

theless, when handling with sharp discontinuities of variables 

distributions, the algorithm may produce unstable decision 

trees and unwieldy results visualization (Hastie et al., 2009). 

In RF models each single tree is developed with a random 

subset of instances and variables, which reduces the variance. 

However, the method also shows some limitations once the 

aggregation by average does not allow bias reduction. Furth- 

ermore, the ability of RF to handle with non-symmetric error 

distributions is questionable (Lopatin et al., 2016). Regarding 

BT, one advantage is that the use of appropriate loss functions 

(e.g. Bernoulli, Poisson) allows the analysis of different res- 

ponse variable distributions (e.g. binomial, count; Natekin and 

Knoll, 2013). Moreover, the BT algorithm is able to reduce 

both bias and variance of the final outcome. While in regre- 

ssion-like modelling the AIC is commonly used to identify the 

most parsimonious model by penalizing the addition of pre- 

dictor variables, in tree models a problem arises when deci- 

ding the number of splits and the tree size (Zuur et al., 2007). 

Large tree sizes result in a lot of information, which is then 

difficult to interpret. Contrarily, small trees may result in a 

poor fit, which may hamper the description of occurrence- 

environment relationships. Besides, knowing that complex 

models (e.g. trees with several splits or ensembles with hun- 

dred trees) are more likely to match training data and lose 

performance when applied to new unseen instances, the sele- 

ction of the optimal settings represents a challenging task. 

Understanding how model complexity affects model predic- 

tions is beyond the scope of our paper, however it was discu- 

ssed in detail by Merow et al. (2014). In tree-models, the 

model complexity can be controlled by several parameters 

addressed in introductory sections (e.g. minimum number of 

observations per terminal node, complexity parameter, num- 

ber of trees and learning rate/shrinkage parameter). 
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6. Conclusions 

Machine learning methods, namely those based on deci- 

sion trees, are highly customizable and became increasingly 

prominent in the modelling arena. By offering an illustrative 

explanation of tree-based methods key concepts, we showed 

its applicability and usefulness in predicting species distribu- 

tion. As reported in previous studies there is no “million 

dollar” model, however we corroborate some previous find- 

ings in showing that ensemble techniques perform consis- 

tently better than other approaches. Although ensemble algori- 

thms are extremely useful tools to identify the main intera- 

ctions, describe the dominant patterns and quantify the impor- 

tance of predictor variables, some factors (e.g. attributes of 

the data, geographical background, variables and error distri- 

butions, multicollinearity, among others) should be considered 

in the selection of modelling approaches and model parame- 

ters once they may influence the model performance and the 

optimal settings.  
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