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ABSTRACT. In aquatic environments, a complex interplay exists among physical, chemical, and biological water quality characteristics, 
which are constantly influenced by exogenous factors such as hydrological, meteorological and geological conditions. Due to the spatial 
and temporal variations of exogenous factors, the relationship between the water quality parameters and these factors hence becomes 
complicated and challenging. Given the large data matrix, one type of methods frequently seen in the literature belongs to the multivariate 
analysis which generates a qualitative measure of the relationships among variables in a geometrically intuitive way. However, a 
quantitative evaluation from a probabilistic perspective is favorable since it defines a measurable causality among variables so that more 
efficient water management strategies can be formulated. This paper illustrates a new way to discover the relationship between two 
variables by estimating their joint distribution which fully interprets the statistical dependence. A multivariate Gaussian mixture model 
was employed to describe the data. The model parameters were determined using the previously developed estimation approach, which 
is capable of dealing with both multivariate variables and censored data. The joint distribution and the conditional distribution were 
computed and used to describe the statistical distribution of water quality parameters, which are subject to the effects of hydro-
meteorological conditions. The method was demonstrated by a case study on the Bow River in Alberta, Canada. The results shed light 
on how one variable affects the distribution of the other variable under complex environments in a probabilistic context. 
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1. Introduction 

Water quality protection and restoration has received 
increasing attention over the past several decades because of 
the concern of water quality degradation in natural water bodies 
including streams, lakes, and estuaries. The degradation of 
water quality, which is ascribed to both anthropogenic activities 
(e.g., urbanization and industrialization) and changes in hydro-
meteorological conditions, could lead to the impairment of 
water quality standards and thus hinder various beneficial uses 
of water. It was documented that, in the U.S., about 44% of 
stream miles, 64% of lake acres, and 30% of assessed bay and 
estuarine square miles in the less than 30% waters investigated, 
do not meet the requirements for water uses such as fishing and 
swimming (US EPA, 2004). In Canada, the water quality 
problems exist in many regions as stated in a recent report (En-
vironment Canada, 2011).  

In water quality management, water quality standards de-
scribe the conditions of the water quality variables and play a 
fundamental role in protecting the quality of water bodies. 

Having the quantitative baselines of these variables in place 
facilitates establishing treatment controls, conducting water-
shed planning, as well as protecting and restoring aquatic envi-
ronments. However, these standards, determined for a specific 
type of water beneficial use, have rarely been elaborated to 
address complex issues. For example, the issue of site-specific 
attainability and impacts of flow (US EPA, 2003), which vary 
at intra-annual scale, is largely responsible for the variation of 
water quality in aquatic environments in addition to anthropo-
genic activities. From this viewpoint, site-specific thresh-
olds/targets as the benchmarks for identifying whether a water 
body is impaired and further taking management actions are 
required. These thresholds are normally derived from the cur-
rent situation or baseline conditions. If the thresholds do not 
reflect the practical changes, all subsequent procedures and 
management actions will be affected. Similar to water quality 
standards, the processes to determine the thresholds, in general, 
do not take the impacts of exogenous factors such as hydro-
meteorological variables into consideration, regardless of the 
recognition of their roles in affecting water quality. 

Water quality phenomena are naturally multidimensional 
since water quality processes intertwine with each other, and in 
addition to that, exogenous factors such as geological, meteor-
ological, and hydrological conditions largely contribute to the 
spatial and temporal variation of water quality in aquatic envi-
ronments. While there are many different approaches to ex-
plore the relationship of variables, multivariate statistical tech-
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niques including cluster analysis, principle component analysis, 
factor analysis, discriminant analysis, and self-organizing map 
are most frequently adopted to qualitatively identify critical 
influential factors on water quality and spatial and temporal 
variations from complex data sets (Singh et al., 2004; Panda et 
al., 2006; Shrestha and Kazama, 2007; Li et al., 2015). In 
particular, these methods have the merit of computational sim-
plicity and provide a geometrically intuitive interpretation due 
to the data matrix structure, for instance, in the principal 
component analysis. However, they are not capable of quan-
titatively measuring the relationship between two or more 
variables of interest and therefore are hard to establish the link-
age of variables for model formulation. On the other hand in 
surface water bodies, the hydro-meteorological response of 
water quality can magnificently vary under different conditions. 
For example in a river, flow and water temperature can pre-
dominantly explain the variation of dissolved oxygen (DO) lev-
els, while their roles vary with hydrological conditions, such as 
high, medium, and low flows (He et al., 2011). Suspended sol-
ids affect aquatic biota differently under different hydrological 
regimes (such as flood conditions and base-flow conditions) 
(Bilotta and Brazier, 2008). Furthermore, the dependence of 
water quality on the hydro-meteorological conditions may 
complicate the task of identifying the water quality targets for 
management, determining the cause of water quality degrada-
tion (human activities or changes in natural conditions) (Poole 
et al., 2004), and assessing management effectiveness (Stow 
and Borsuk, 2003). Different water quality levels have often 
been observed during dry and wet seasons in various water 
bodies, such as in the Danjiangkou Reservoir in China (Tan et 
al., 2015). In addition, Xia et al. (2015) stated that climate 
change, which would alter hydro-meteorological conditions, 
potentially affects water quality in different types of water 
bodies in different ways. These facts argue that the hydro-
meteorological dependence of water quality is very common 
and should be properly represented in the statistical chara-
cteristics of water quality data (Frey and Rhodes, 1998). The 
multidimensional nature of water quality challenges resear-
chers and practitioners to statistically explore the data and sub-
sequently to derive feasible water quality management object-
tives/or targets, upon which to base more effective manage-
ment decisions. 

Recently, water quality management has attempted to 
address the causal relationships between water quality and hy-
dro-meteorological conditions in the practices. For instance, 
different management targets are determined based on strati-
fied water quality data according to the seasons and/or flow 
conditions (CCME, 2003; Government of Alberta, 2012). 
However, so far it appears to be quite arbitrary and lack statis-
tical justification when grouping data under different con-
ditions for the subsequent water quality assessment and sta-
tistical analysis. This can be overcome by conducting the pro-
babilistic characterization of water quality in a multivariate 
context such that the causal relationship between two or more 
variables can be represented and reflected into the obtained 
characterization of water quality. The multivariate distribution 
describes the correlated random variables in terms of joint dis-
tribution, from which the probability distribution of one varia-
ble conditioned upon the remaining variables can be readily 

derived. Therefore, the advantages of the multivariate distribu-
tion analysis can be employed to fulfill the aforementioned 
needs for water quality characterization. Most recently, Hoff-
man and Johnson (2011) employed the multivariate distribution 
analysis to assess the overall contamination level of several 
dissolved trace metals including copper, lead, and zinc whose 
toxicity need to be corrected based on water hardness. Wang et 
al. (2012) used the multivariate distribution analysis to investi-
gate the complicated linkages of chlorophyll a and ambient wa-
ter quality. Both studies supported that the multivariate 
distribution is more effective for understanding the interaction 
of water quality and environmental variables.  

This paper attempts to explore the probabilistic causal re-
lationship of water quality variables by applying an efficient 
multivariate distribution approach that can statistically charac-
terize data while accounting for the dependence between two 
or more variables. Similar to univariate distribution analysis for 
environmental data, two practical problems, i.e., unknown un-
derlying distribution of data and censored observations below 
detection limits (DLs) were dealt with for properly representing 
the statistical characteristics of water quality data. Conven-
tionally, the substitution method, which replaces the data points 
below DLs with zeros, DLs, or half of the DLs, is used due to 
its simplicity. However, it is well acknowledged that the sub-
stitution method lacks statistical justification and often yields 
biased results (Singh and Nocerino, 2004; Helsel, 2010). In the 
proposed methodology, the multivariate variables are modeled 
with Gaussian mixtures which can flexibly approximate the 
statistical characteristics of the complex data set. This paper 
further applied the developed expectation maximization (EM) 
algorithm (He, 2013) to estimate the distribution parameters in 
the presence of both uncensored and multiple censored ob-
servations. The joint and conditional probability distributions 
of variables of interest were hence derived from the estimated 
multivariate distribution. This paper incorporates the covari-
ance of variables for taking their dependence into the analysis. 
In addition, applications of this method are illustrated with a 
case study of the Bow River in southern Alberta, Canada and 
potential in enhancing water quality management is discussed. 

2. Materials and Methods 

2.1. Study Area 

The Bow River as the largest tributary of the South Sas-
katchewan River originates from the Rocky Mountains in 
Alberta, Canada and flows towards east through the mountains, 
the Foothills, and the plains. In the upper watershed located 
within the Banff National Park, the river flows through largely 
undeveloped and low intensity agricultural land with good wa-
ter quality. Before entering the downstream watershed largely 
consisting of agriculture land, the river flows through the City 
of Calgary, the most populated community along the river. The 
river supports a blue ribbon fishery and provides drinking water 
to over half of Calgary’s population. The river is usually cov-
ered or partially covered by ice between December and March 
with open water generally begins in April. Flow peaks occur 
around June or July annually, driven by combined rainfall and 
snowmelt. 
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2.2. Water Quality and Hydrological Data 

Water quality varies considerably along the Bow River due 
to the variation in both natural conditions (e.g., hydrology and 
geology) and anthropogenic activities (e.g., point- and non-
point sources pollution due to urbanization). Due to the signif-
icant spatial variation in water quality, five long-term water 
quality monitoring stations have been deployed on the river to 
comprehensively capture the water quality variations. The 
water quality data have been collected on a monthly basis. This 
paper uses the data collected from 1988 to 2009 at two of long-
term monitoring stations; one is located in the upstream of the 
river about 4.5 km above Canmore and the other is situated just 
upstream of the confluence with the South Saskatchewan River 
(near Ronalane Bridge). These two stations are called the up-
stream and downstream stations, respectively, throughout this 
paper. It should be noted that this paper does not target any 
specific water quality parameters but rather aiming to develop 
methods for the data analysis. In this paper, water quality pa-
rameters including DO, water temperature, turbidity, specific 
conductance, dissolved total phosphorus (TP), and TP are se-
lected for the analysis. The data sizes range from 258 to 278. 
All data of DO, water temperature, turbidity, specific 
conductance, TP are above DL; while 20% of dissolved TP data 
is censored.  

Daily flow data collected by the Water Survey of Env-
ironment Canada at the Bow River at Banff (station: 05BB001) 
and the Bow River Near the Mouth (station: 05BN012) were 
used. These two hydrometric stations are in close proximity to 
the upstream and downstream water quality monitoring stations, 
respectively. The flow data corresponding to the water quality 
sampling dates were extracted from the daily flow data sets of 
these two hydrometric stations. It should be noted that the water 
temperatures measured at the upstream and downstream water 
quality monitoring stations are considered to represent the 
meteorological air temperatures since water temperatures are 
usually strongly associated with air temperatures and largely 
affects chemical and biological reactions occurring in water 
column.  
 

2.3. Methodology 

2.3.1. Gaussian Mixture Model (GMM) 

The GMM is a desirable parametric model which can 
closely approximate the unknown probabilistic distribution of 
many water quality parameters (He, 2013). In particular, the 
GMM is theoretically proven to be a universal approximator 
which means that it can approximate any continuous distribu-
tion to any degree given a sufficient number of components 
(Titterington et al., 1985). The typical finite GMM is a linear 
additive model which is given by: 
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where x is an M-dimensional data vector distributed accrding 
to ( | )p x parameterized by ; k is the nonnegative weight 
of the k-th component of the GMM; ( | , )k k kp  x is the k-th 
Gaussian component with mean k and covariance matrix k ; 
i.e.,  
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where the superscript T and | | denote the transpose and de-
terminant of a matrix, respectively. Furthermore, the summa-
tion of all weights must be equal to 1. The parameter set   is 
the set of all component-specific parameters appeared in the 
right side of (1) and can be represented by: 
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The GMM has excellent properties for analysis. For 
instance, if the joint distribution of 1, , Mx x is a mixture of K 
multivariate normal distributions with weights 1{ , , }K  , 
then the joint distribution of any subset of x is a mixture of K 
multivariate normal distributions with the same weights 
(Titterington et al., 1985; Kotz et al., 2000). 
 

2.3.2. Estimation Methods  

Given uncensored data, the standard EM algorithm de-
scribed as follows is employed to recursively estimate the pa-
rameters and weights until a local maximum of likelihood 
function is reached. More details on the standard EM algorithm 
can be found in He (2013). 
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In more general cases, some water quality data are often 
asynchronously censored, which means that individual varia-
bles in the multivariate data are subject to different DLs at dif-
ferent time instant. To deal with the multiple censored data, the 
complete data defined in the EM method include the missing 
and/or censored data points and the measurements above the 
DLs or uncensored data, both of which subsequently form two 
conditional expectations respectively corresponding to the cen-
sored data dz of the length of dN  and the uncensored data x 
of the length of 0N . The estimation algorithm derived by He 
(2013) is summarized as follows: 
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where p denotes the set of parameters as defined in previous 
section; N is the length of the data; and C, D, and G are calcu-
lated by: 
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with ,
ˆ

k i being the estimated covariance matrix between ix and

k . 
 

2.3.3. Joint and Conditional Distributions  

After obtaining the joint distribution of multivariate data, 
the conditional probability, namely the distribution of y given a 
specific x or the range of x, can be derived. For the convenience 
of illustration, the computation of the conditional probability in 
a bivariate context is given below. This however can be easily 
extended to more than two variables.  

For two Gaussian random variables x and y with 
2~ ( , )x xx   and 2~ ( , ),y yy    respectively, the condi-

tional distribution of y given x is: 
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where  is the correlation coefficient between x and y. For data 
reasonably described by the GMM, the conditional probability 
distribution can be computed by the following equation: 
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where ( | , )kp y x  is obtained from (1). With the computed
( | )p y x , it is convenient to assess the likelihood of two random 

variables. Furthermore, the likelihood of one variable given the 
other variable falling within any specified range of interest can 
also be evaluated. 

3. Results  

This paper demonstrates the potential application of the 
proposed approach with the real water quality data instead of 
targeting specific water quality parameters. To illustrate the 
generality of the proposed approach for different scenarios of 
water quality parameters, the proposed approach was applied 
to both the uncensored and censored data sets.  
 

3.1. Variations of Hydro-meteorological and Water Quality 
Variables and Their Dependence 

In the riverine environment, both flow and water quality 
generally exhibit certain seasonal variations. Taking down-
stream station for example, Figure 1 shows the boxplots of flow, 
DO, dissolved TP and TP, respectively. It is obvious that DOs 
vary inversely as flow. In particular, the lower DOs correspond 

to higher flows. In addition, the water quality response to the 
hydrological conditions can be further observed from Figure 2, 
in which the flow is divided into low flow (base flow) and high  
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Figure 1. Box plots of (a) flow, (b) DO, (c) dissolved TP and 
(d) TP at the downstream station. 
flow (above base flow) conditions. As demonstrated in these 
figures, the dependence of the water quality parameters on flow 
tends to vary with the hydrological conditions. For example, 
DO’s variation under low flows appears stochastic; whereas the 
hydrological dependence of DO can be seen under high flows 
in Figure 2(a). Similar to DO at the upstream station, the 
dependences of both turbidity and dissolved TP on flow show 
different trends under low and high flow conditions at the 
downstream station as illustrated in Figures 2(b) and 2(c), re-
spectively. By closely examining Figure 2(d), flow response of 
specific conductance can be spotted, whereas its response to 
flow is different from the other water quality parameters which 
also present their different responses to the low and high flows. 
In addition, this figure shows that the dependence of specific 
conductance on flow is consistent in the range of flow from 0 
to 60 m3/s and the specific conductance is more or less constant 
when flow is above 60 m3/s. Similarly, the dependence of TP 
on flow and its variation under different flow ranges at the 
downstream station can be observed in Figure 2(f). The scatter 
plots, on the other hand, can assist in dividing regimes in most 
cases as seen in Figure 2. A rough division of flow can be ob-
served for each variable while this appears to be ambiguous for 
dissolved TP. In addition to flow, the dependence of DO on 
water temperature at the downstream station is illustrated in 
Figure 2(e). 

The histograms of DO and dissolved TP at the downstream 

station and specific conductance at the upstream station are dis- 
 
played in Figure 3 as examples. The shapes of these histograms 
imply that a single distribution will not be able to closely fit the 
data, especially shown in Figures 3(a) and 3(c). It appears that 
different distributions would be needed for differrent ranges of 
the water quality parameters. This is expected since different 
governing mechanisms play determining role in different hy-
dro-meteorological conditions, which correspondingly result in 
complex distribution of the water quality parameters. 

 
3.2. Uncensored Multivariate Distribution Analysis  

For the uncensored case, the data of flow and DO observed 
at the upstream station were used here as an example. As shown 
in Figure 4(a), individual Gaussian components in the GMM 
were determined for describing the variables under different 
flow regions as the shape of the joint distribution appears to be 
separated by flows (high and low flows). Figure 4(b) presents 
the conditional cumulative probability distributions of DO 
given the ranges of flow, which show the different hydrological 
response of DO under different flows. Figures 5 ~ 7 illustrate 
the results for flow and DO at the downstream station, water 
temperature and DO at the upstream station, and flow and tur-
bidity at the downstream station, respectively. These figures 
indicate that the dependence of water quality on hydro-meteor-
ological variables varies at different conditions and also sug-
gest that their dependence varies spatially, as observed from 
Figures 4 and 5.  

Figure 2. Scatter plots of (a) DO and flow at the upstream station, (b) turbidity and flow at the downstream station, (c) dissolved 
TP and flow at the downstream station, (d) specific conductance and flow at the upstream station, (e) water temperature and DO at 
the upstream station, and (f) flow and TP at the downstream station. 
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Figure 3. Histograms of (a) DO and (b) dissolved TP at the 
downstream station and (c) specific conductance at the up-

stream station. 

 
Figure 4. Results of (a) the joint probability density function 
between flow and DO and (b) the conditional cumulative pro-
bability distributions of DO given flows at the upstream station. 
 

 
Figure 5. Results of (a) the joint probability density function 
between flow and DO and (b) the conditional cumulative pro-
bability distributions of DO given flows at the downstream 
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station. 

 
Figure 6. Results of (a) the joint probability density function 
between water temperature and DO and (b) the conditional 
cumulative probability distributions of DO given temperatures 
at the upstream station. 
 

 
Figure 7. Results of (a) the joint probability density function 
between flow and turbidity and (b) the conditional cumulative 

probability distributions of turbidity given flows at the down-
stream station. 
3.3. Censored Multivariate Distribution Analysis 

The data sets of flow and dissolved TP observed at the 
downstream station were used as an example to demonstrate 
the applicability of the proposed approach to censored data sets. 
In the data sets, dissolved TP data are subject to detection limit 
of 0.003mg/L; while there is no censoring in the flow data. The 
derived joint distribution and conditional cumulative probabil-
ity distributions of dissolved TP given flows are presented in 
Figures 8(a) and 8(b), respectively. It is observed that the 
conditional cumulative probability distributions behave quite 
similar for small and large values of dissolved TP under both 
flow conditions while the conditional probability on high flows 
is relatively smaller than that on lower flows when the 
dissolved TP has a moderate value, typically ranging from 0.01 
to 0.08 mg/L. 

 
Figure 8. Results of (a) the joint probability density function 
between dissolved TP and flow and (b) the conditional cumu-
lative probability distributions of dissolved TP given flows at 
the downstream station. 

4. Discussions 

4.1. Hydro-meteorological Regimes and Water Quality 
Management 

In water quality management, in particular for ecosystem 
protection, regime based water quality management has been 
increasingly advocated by many researchers (e.g. Poff et al., 
1997; Poole et al., 2004). This implies that the information on 
natural factors and their regimes should be emphasized in the 
practices by the means of their distributions across space and 
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time. Among the natural or environmental factors, flow regu-
larly manifests prominent seasonal variation of water quality 
and has been demonstrated to be primary cause of seasonal 
variations of many physical, chemical and biological water 
quality parameters (Interlandi and Crockett, 2003). In addition, 
water temperature which is strongly associated with meteoro-
logical condition, especially air temperature, certainly affects 
chemical and biological processes. From the perspective of 
ecosystem protection, Poff et al. (1997) argued to consider flow 
regimes in terms of the magnitude, frequency, timing, duration, 
and rate of change in flow, which describe the aspects of a flow 
regime both temporally and spatially. Regarding flow, this 
proposed distribution analysis approach is capable of taking the 
effects of two out the five aspects aforementioned, namely 
magnitude and frequency, into consideration. The effects of 
other three aspects of flow regimes can be included if having 
sufficiently long-term data series to quantify them statistically; 
it is however not discussed in this paper. 

On the other hand, in aquatic environments, the causal-
effect relationship between water quality parameters and 
hydro-meteorological variables is very difficult to formulate 
using physically-based models or simple empirical models ob-
tained from statistical analysis. This is especially true consid-
ering the fact that the governing mechanisms of water quality 
are complicated, as implicitly suggested in Figures 2 and 3. The 
governing mechanisms of pollutant transport and/or the sources 
of pollutants can be distinct under different hydro-meteoro-
logical conditions. For example, under high flows both flow 
and temperature might play significant roles on DO levels; 
whereas the biological processes, photosynthesis and respira-
tion of periphyton and macrophytes, may override the roles of 
hydro-meteorological factors under low flows in rivers. As a 
result it is logical to conduct water quality management con-
sidering different hydro-meteorological conditions, which shift 
and in turn would lead to the shift of their roles on water quality 
in an intra-annual scale. Therefore, the determination of thre-
sholds/targets of water quality without considering the com-
plicated causal-effect relationship is very likely to cause in-
efficient water quality management. For instance, the water 
quality violation may not be detected. In addition, the assess-
ment of the effectiveness of pollutant management actions in 
reducing pollutant loads may yield unexpected results if with-
out taking the effects of flow on water quality into account 
(Stow and Borsuk, 2003).   

The results obtained from the real data analysis demon-
strate that the proposed approach is applicable to multivariate 
water quality data with different distributions. It also has the 
potential to quantitatively formulate the statistical relationship 
so as to incorporate it into water quality management. The 
approach can also provide the decision-makers and water 
quality managers with the probabilistic distributions of a water 
quality parameter under a given hydrological conditions or the 
level of another water quality parameter. If the probabilistic 
distribution is given conditioned on the natural conditions, the 
proposed approach is able to assist in distinguishing either 
natural (hydrological and meteorological) or anthropogenic 
causes of changes in water quality. Therefore, the effects of the 

natural conditions can be removed in the subsequent water 
quality assessment. 

4.2. Regime Division 

As mentioned in the previous section, the regime based 
water quality management has the potential to enhance water 
quality management, as it is capable of assisting in identifying 
water quality impairment which is not caused by changes of 
natural conditions, such as hydro-meteorological conditions. In 
fact, controlling these natural conditions is not feasible to 
improve water quality. Thus capturing the statistical linkage be-
tween water quality and different natural conditions is needed. 
From this perspective, regime based management would be 
more efficient compared to the conventional management, 
which neglects distinguishing water quality changes due to the 
shift of natural conditions and anthropogenic activities.  

The aim of water quality management is to either maintain 
the existing conditions or to improve degraded water quality. 
The required management actions for reducing impacts from 
human activities and consequently the pollutant loadings are 
often determined based on whether the identified thresholds or 
targets from water quality assessments are violated or sur-
passed. In particular, trends of water quality would be evaluated 
in a way through observing both the average (50% percentiles) 
and the extreme (95% percentiles) water quality conditions 
over time for ensuring no further degradation in water quality 
(NSWA, 2010). Unfortunately, some water quality manage-
ment strategies neglect the intra-annual variation of water 
quality posed by the shift of hydro-meteorological conditions, 
regardless of the understanding of the roles of hydro-
meteorological factors placing on water quality. Most recently, 
the movement towards the use of separate statistics derived 
from stratified data according to the selected flow ranges has 
been initiated, for instance, the site-specific water quality 
objectives proposed for the North Saskatchewan River (NSWA, 
2010).  

As demonstrated in the results of this paper, different 
divisions of flow regimes might be required for different water 
quality parameters, for example, DO and specific conductance 
at the upstream station illustrated in Figures 2(a) and 2(d). The 
relationship of DO and flow appears to be different between 
low flows (< 20 m3/s) and high flows (> 20 m3/s); whereas the 
relationship of specific conductance and flow is different 
between flow below 60 m3/s and flow above 60 m3/s. As a re-
sult, it is not very intuitive to divide the flow regimes based on 
the data shown in Figure 2. In addition for high dimensional 
data, for example DO, water temperature and flow, among 
which water temperature is also correlated with flow, the 
subjective data division is hence a challenging task. However 
in the proposed approach, the statistical distribution of water 
quality data given any conditions can be derived in terms of a 
conditional distribution. This can overcome the challenge in 
stratifying data, which is largely dependent on subjective judg-
ment, for water quality characterization.  

The data stratification approach based on the pre-selected 
flow ranges can, to some extent, take the flow into considera-
tion. It, however, should be noted that various statistics can be 
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obtained using different ranges of influential factors. As such, 
the derived numerical numbers might be biased. This implies 
that the selection of the flow ranges tends to lack statistical jus-
tification if without quantifying the causal-effect relationship 
between variables. As discussed previously, the division of 
regimes can be different among water quality parameters as 
their relationship with the influential factors may vary. In this 
respect, how to stratify the data would indeed challenge the  
implementation of the data stratification approach. Therefore, 
the causal-effect relationship between variables, such as that 
between water quality and hydro-meteorological variables, 
should be assessed in water quality assessment process. In the 
proposed approach, the casual-effect relationships between 
variables, represented in the form of the covariance, are incor-
porated into the analysis processes and thus they are reflected 
into the results. Therefore this approach demonstrates its capa-
bility in providing a complete statistical explanation of the var-
iable’s variation, which would benefit in developing efficient 
management strategies.  

 

4.3. Future Work Recommendations 

This paper discussed the applicability of the proposed 
approach in the bivariate context, however in theory the pro-
posed approach can be employed for analyzing higher dimen-
sional data. The application to higher dimensional data also 
appears to be of practical significance since a water quality 
parameter can be affected by multiple hydro-meteorological 
variables and other ambient environmental parameters. On the 
other hand, copula method has recently been employed for 
multivariate probabilistic analysis, for instance, multivariable 
hydrological frequency analysis. It has some advantages in re-
laxing the distribution limitations of the underlying data so that 
it can treat various data with different statistical distribution; 
however, it is not applicable to censored multivariate data. In 
water quality data analysis, multivariate analysis has been pre-
sented to be promising, however further research on some 
issues such as statistical evaluation of the proposed method, 
optimal mixture model and application to higher dimensional 
data are required. In addition, future research on the linkage 
between the statistical analysis and the physical processes is 
recommended, as it is crucial to formulate more efficient water 
quality management strategies. As the dependence of two vari-
ables can be different under different regimes of the independ-
ent variable, regime division (such as flow regime division) is 
required in order to link the statistical analysis to the physical 
process. As illustrated in the results from this paper, it is very 
promising to use the derived joint distribution to divide 
different regimes and further research on this topic is needed. 

5. Conclusions 

This paper proposed a multivariate probabilistic analysis 
approach to examine the quantitative probabilistic causal rela-
tionship between water quality and hydro-meteorological vari-
ables. The applicability of the proposed approach was demon-
strated by the numerical study of real water quality data on the 
Bow River, Alberta, Canada. The potential for improving water 

quality management was also discussed. As indicated in the 
results, the approach is capable of bridging the water quality 
and the effects of its influential factors in a probabilistic frame-
work, thus providing more efficient way to identify water 
quality thresholds/targets and to solve relevant problems, for 
example, the cause of water quality violation complicating 
water quality management. 
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