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ABSTRACT. Physical space-time metrics are used in environmental modeling to define “distance” between points in the space-time 
domain of a physical attribute (contaminant concentration, exposure, temperature etc.). Assessing a space-time metric is often a consi- 
derably more complicated affair than assessing a purely spatial metric. This is because the physical space-time metric suggests a certain 
concept of distance that blends space and time to make space-time, but at the same time, it views time as a dissimilar quantity. In this 
work, the determination of space-time metrics takes advantage of the strong links between the physical characteristics of the real-world 
attribute and the geometrical features of the composite space-time domain within which the attribute occurs. Via physical law an expli- 
cit connection is established between attribute’s space-time dependence structure (represented by the covariance function) and attrib-
ute’s domain geometry (expressed by the metric coefficients). The derived physical geometry equation can be solved for the metric co-
efficients. The solution depends not only on the form of the physical law, but also on the boundary/initial conditions and the random-
ness sources. The proposed approach turns metric coefficients into physically meaningful parameters, allowing better understanding of 
the space-time characteristics than the ad hoc and arbitrary metric selection in purely technical terms.  
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1. Introduction　

It is widely recognized in the environmental literature 
that a metric structure that involves theoretical and empirical 
facts about the investigated attribute (contaminant concentra-
tion, exposure, temperature, pressure etc.) is required in order 
to gain a higher level understanding of space-time in environ- 
mental modeling (Arkin and Ardanuy, 1989; Jin et al., 2014; 
Reyes and Serre, 2014). All quantitative tools assessing the 
strength of space-time dependence and correlation in environ- 
mental studies (like covariance and variogram tools) are func-
tions of the metric. This means that these tools can be valid for 
one kind of space-time metric but invalid for some others, and, 
also, the space-time metric has a direct effect on environmental 
applications based on these tools, like space-time variability 
assessment and mapping (e.g., Kriging, Kyriakidis and Journel, 
1999). Most of the existing studies of space-time environmen-
tal attributes consider space and time separately (Stein et al., 
1998; Le and Zidek, 2006). However, this viewpoint is often 
problematic, since even in a classical Newtonian framework the 

* Corresponding author. Tel: +86 580 2092306; fax: +86 580 2092891 
E-mail address: gchristakos@zju.edu.cn (G. Christakos), jw67@zju.edu.cn 
(Jiaping Wu). 

SSN: 1726-2135 print/1684-8799 online 
© 2017 ISEIS All rights reserved. doi: 10.3808/jei.201700365

simplistic space-time metric consisting of two separate compo- 
nents -a purely spatial (Euclidean) component with constant 
coefficients and a time component- may be convenient but, ne- 
vertheless, inadequate. One should keep in mind that almost all 
data in applied sciences are closely interrelated both in space 
and time, and that it is this space-time interrelation that, both, 
it is at the heart of the physical laws of space-time change, and 
it also allows the representation of the space-time variation of 
a physical phenomenon from a limited number of observations. 
Furthermore, a sound physical metric may be constrained by 
the physical invariance transformations it must satisfy in order 
to be meaningful (Christakos and Hristopulos, 1998; Hadsell 
and Hansen 1999; Carroll 2004). The above comments concer- 
ning composite space-time analysis are valid in studies in a 
wide range of disciplines, like earth and atmospheric sciences, 
meteorology, public health and space-time epidemiology. 

In view of the above considerations, in this work the space- 
time metric is considered as an integrated whole and its coeffi- 
cients are found as the solutions of the set of equations derived 
so that they establish an explicit link between physical knowle- 
dge of the environmental attribute’s space-time dependence 
structure (expressed by its covariance function) and the ge-
ometry of the attribute domain (expressed by its composite 
space-time metric). In a nutshell, instead of arbitrarily selecting 
a space-time metric for the phenomenon of interest (as is com- 
monly done in most cases of environmental modeling practice), 
the proposed approach suggests allowing the physical law to 
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reveal the metric form. The metric is generally non-separable 
in space and time, and it depends on the physical law of change, 
the associated boundary/initial conditions, and the randomness 
sources of the environmental phenomenon. Knowing the met-
ric in closed form, the elucidation of its physical properties is 
based on the features of the phenomenon under consideration, 
e.g., the interpretation of the metric coefficients and their rela-
tionships relies on the corresponding physical law. 

2. Methods 

2.1. Space-Time Metrics 

Several kinds of metrics or “distances” (Euclidean and 
non-Euclidean, have been considered in the environmental lite- 
rature (e.g., Turcotte 1997; Christakos 2000; Christakos et al., 
2000; Billings et al., 2002; Frei, 2014; Lin et al., 2015). For the 
purposes of the present study we introduce the following def-
inition of a general space-time metric in the n-dimensional 
space × time, Rn × T: 
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Knowing the metric in a closed form, elucidation of its proper- 
ties is based on the phenomenon (Christakos and Hristopulos, 
1998; Hadsell and Hansen, 1999; Carroll 2004). The metric of 
Equation (1) defines the connection between any two points in 
the space-time domain. For subsequent analytical manipula-
tions it may be more convenient to rewrite Equation (1) as: 
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Table 1. Special Cases of the Metric of Equation (2) in Rn × T. 
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are matrix and vector, respectively, of metric coefficients. The 
metric coefficients E and ε may be themselves functions of the 
space-time coordinates or they may be functions of physical 
quantities as required by the real world situation. The metric 
expression of Equation (2) is quite general. For example, in so- 
me cases a metric may be defined for convenience in terms of 
the absolute coordinate distances |h|, instead of the signed lags 
h. Indeed, if we replace E and ε in Equation (2) by EΛ = 
Λ(h)EΛ(h) and εΛ = Λ(h)ε,

 

where Λ(h) is an (n + 1) × (n + 1) 
diagonal matrix with elements sign(hi) = ± 1 or 0 (i =0, 1, …, n) 
depending on whether hi

 

is positive, negative or null, Equation 
(2) gives the metric expressions ∆p2 = |h|T(E|h| + ε), or ∆p2 = 
hTEh + |h|Tε , where |h| = [|h0|, |h1|, …, |hn|]T. Metric symmetry 
is readily satisfied for space- and time-independent E and ε, 
and also for space- and time-dependent E and ε assuming that 
E(h) = E(-h) and ε(h) = ε(-h). Equation (2) includes the met-
rics defined in terms of |h| (like the Manhattan metric in Table 
1), as far as the matrix E and vector ε

 

implicitly involve, in 
these cases, the change to positive sign in the negative coor-
dinates of h (by means of Λ(h)). 

Although one may usually choose a space-time coordinate 
basis so that the inner product that defines the metric is diag-
onal and normalized (Euclidean or flat spaces), in certain cases 
it may be reasonable to choose a different coordinate basis. As 
far as real world science is concerned, it is important to deter- 
mine physical metrics that actually represent or stem from Na- 
ture and from experimental evidence rather than simply impo- 
sed by pure mathematics often involving convenient conditions 
not based necessarily upon real-world experience. Accordingly, 
a number of metrics or “distances” (Euclidean and non-Eucli- 
dean), have been considered in the applied sciences literature 
(Turcotte, 1997; Christakos and Papanicolaou, 2000; Billings 
et al., 2002; Curriero, 2006; Lloyd, 2010; Lin et al., 2015). In 
this context, Equation (2) is a general metric that includes oth-
er common space-time metrics used in environmental sciences 
as its special cases. Particular cases of the metric of Equation 
(2) are listed in Table 1 (τ > 0). Although the metric coefficients 
are generally space- and/or time-dependent, in many cases of 
practical interest independency may apply. Herein, for sim-
plicity the “|.|” is dropped when the meaning of ∆p is obvious 
from the context.  

Based on the space-time metric formulation above, we in- 
troduce the metric differential formulas (MDF) expressing me- 
tric change in the composite space-time domain: 
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where cX(∆p) denotes the space-time covariance of an attrib-
ute X(p), ( , ) nR Tt  p s . For the special case in which m’ 
= 0, Equation (5a) reduces to:  
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An apparent feature of CDF is that they decompose the co-
variance derivatives with respect to space (h1 … hn) and time 
(h0 = τ) lags, commonly encountered in physical covariance 
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laws, in terms of the metric (∆p) and covariance derivatives. 
By combining MDF with CDF we find expressions explicitly 
containing the metric coefficients: 
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Lastly, by combining the earlier notions we get the th -order 
space × time covariance-metric ratio (CMR): 
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We focus on up to 2nd-order space × time CMR that are 
special cases of the general CMR Equation (8), as follows:  
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The 1st-order CMR are expressed in terms of the metric coeffi- 
cients εi, εij, whereas the 2nd-order CMR as functions of the 
1st-order CMR and the derived metric coefficients ζi. Since, to- 
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bles to be determined by the proposed approach (Section 2.3), 
a more detailed description of their internal structure and expli- 

cit formulation is postponed until Section 3.2 later. For illus-
tration, consider the metric of Equation (1) with metric coeffi-
cients that are themselves functions of space and/or time in Rn 
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The MDF are as follows: 
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with the corresponding CMR: 
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Joint “metric-covariance” partial differential equations 

(PDE) are obtained from the CMR above. For example, a di- 
rect result of the CMR Equations (9a) and (9b) are the PDE: 

 

0X
Xc
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    p
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where:  
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For illustration, the components of Equations (13a) and (13b) 
are, respectively, (∂∆p/∂hi)(∂cX/∂τ) – (∂∆p/∂τ)(∂cX/∂hi) = 0 (i = 
1, …, n), and (∂∆p/∂hi’)(∂cX/∂hi) – (∂∆p/∂hi)(∂cX/∂hi’) = 0 (i, i’ 
= 1, …, n). A key feature of Eqs (13a-b) is that they explicitly 
link environmental (covariance) changes with geometrical (me- 
tric) changes in space and time. A covariance with the general 
metric of Equation (1) must satisfy Equations (13a) - (13b), 
which is why these equations play a central role in the deter-
mination of a physically meaningful space-time metric. 

Because of its special physical features, particularly in-
teresting is the case of the traveling metric of Equation (3g) 
with coefficients ε0i being themselves functions of space-time. 
The following PDE representations of the space-time covari-
ance are obtained from the CMR of Equations (9a) and (9d): 
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The Hc is the Hessian matrix, and the vector θ denotes 

the traveling vector function of the field, with directional com- 
ponents:  
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in the (h, τ)–domain. Interpretation of the above PDE in the 
context of the real-world situation of interest offers valuable 
insight into environmental attribute distribution across space- 
time. Generally, these PDE express quantitatively the relation- 
ship between the rates of covariance changes that reflect the co- 
rresponding changes of space-time dependence between attri- 
bute values at different points. In Equation (15a) the temporal 
rate of covariance change is explained as the spatial rate of 
covariance change multiplied by the corresponding traveling 
vector θ. Equation (15b) involves θ-derivatives requiring con-
sistency between neighboring attribute values. Another impli-
cation of the PDE representations of space-time attribute de-
pendence is that a traveling covariance function must satisfy 
Equations (15a-b), which is why these PDE can play a key 
role in the determination of a physically meaningful metric.  

Each θi is a function of ε0i along direction si, its spatial and 
temporal rates of change, and the lags considered. In the spe-
cial case that the coefficients ε0i are space- and time-indepen- 
dent, θi = ε0i, and Equations (15a-b) reduce to: 
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where 
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A covariance with the traveling space-time metric (3g) 
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must satisfy Equations (17a) - (17b) in the general case of spa- 
ce- and time-dependent ε0i, or Equations (17a) - (17b) in the 
special case of space- and time-independent ε0i. Furthermore, 
for space- and time-independent ε0i the following condition 
applies: 

  
1( ) 0X X T

c X
c c c 
 

  H  (19) 

 
i.e., the covariance must satisfy Equation (19) in the case of 
space- and time-independent velocity.  

 

2.3. A Space-Time Metric Determination Approach 

The above analysis leads to a three-step approach for de-
termining a space-time metric. The starting point is the equa-
tion governing the covariance cX(∆p) of the attribute of interest 
X(p), since the covariance is a function of the space-time met-
ric to be determined. 

Step 1: Assume that the equation satisfied by the covari-
ance cX(∆p) of the environmental attribute X(p) -considered as 
a random field in the n-dimensional space × time (Rn × T) do- 
main with p = (s, t) = (s1, …, sn, t)- is:  

 
Lc[cX, a] = 0   (20) 
 
where Lc denotes “law of cX”, and a = {ak} (k = 1, …, η) is a 
set of coefficients (determined by means of the stochastic ex- 
pectation process leading from the physical law governing 
X(p) to the Lc-equation above; see literature on stochastic diffe- 
rential equations and their environmental applications (e.g., 
Srinivasan and Vasudevan, 1971; Soong, 1973; Dobrovolski, 
2010; Klyatskin, 2015).  

Step 2: Using the CMR expressions introduced in the 
previous sections, the Lc-Equation (20) can be rewritten as:   

 
( / )

/ ][ , 0J JGL  
   a  (21) 

 
where ( / )

/J J 


  were defined earlier in terms of the metric coeffi- 
cients (E, ε).  I.e., the physical equation (Lc) has been repla- 
ced by the geometrical equation (LG) that the space-time met-
ric coefficients must satisfy.  

Step 3: Solve Equation (25) with respect to the metric 
coefficients (E, ε) expressed in terms of the physical law pa-
rameters a, viz.:  

 

00 0 0{ , } { ( ), ( )} { ( ), ( ), ( ), ( ), ( )}k i k ij k i k ka a a a a      E E a a
 (22) 
 
(i, j = 1, …, n; k = 1, …, η). There may exist more than one 
solution, leading to different metrics ∆p (revealing different 
space-time dependence structures). One may also find that cer- 
tain solutions recur in various disguises. 

A few more comments can be made concerning the met-
ric determination approach. Sources of uncertainty maybe the 

boundary/initial conditions (BIC) or the coefficients of the 
physical law governing the environmental attribute X(p) of in- 
terest. The corresponding BIC of the cX should be included in 
the LG formulation above (see examples is Section 5). One 
cannot specify the metric coefficients and the attribute charac- 
teristics (uncertainty sources, BIC) independently, since they 
are connected via the geometrical equation LG.  

Formally, any metric solution is acceptable if it satisfies 
the LG–equations above. In this sense, two main types of solu-
tions can be considered: exact solutions that are based on cer-
tain assumptions (concerning metric symmetry or the mathe-
matical covariance structure), and approximate (analytical and 
numerical) solutions that are able to explore different environ- 
mental situations. The solutions generally lead to a set of de-
pendent equations (in the sense that the space-time metric coe- 
fficients usually appear in more than one equation). Having a 
general metric form, such as Equations (1) and (2), one can 
make assumptions on those components of the physical law 
for which the corresponding terms in the LG-equation are not 
automatically determined, and then solve the remaining equa-
tions. Concerning their usefulness, exact solutions (though of-
ten obtained by imposing simplifying assumptions) are valua-
ble in certain ways: they allow a deeper understanding of the 
methodological underpinnings of the metric determination ap- 
proach, all quantities are expressed by elementary functions or 
well-known special functions, and they can complement the 
approximate solutions either by providing the background on 
which approximations for real environmental situations can be 
built or by enabling numerical accuracy checks. 

3. Results 

3.1 Applications 

As already noted, the physical covariance equations (LC 
in Step 1 above) are assumed known (their derivation from the 
original environmental attribute law is not the concern of the 
metric determination approach, since it can be found in the re- 
levant stochastic environmental modeling literature). Accord-
ingly, metric-solutions are obtained based on certain assump-
tions: the original physical laws are expressed in terms of sto- 
chastic PDE (in which the uncertainty sources are either random 
law BIC or random law coefficients), the corresponding LC- 
equations are derived from the physical laws by means of sto- 
chastic expectation, and more than one space-time solution of 
the LG–equation may be possible, admitting different inter-
pretations.  

In Example 1 (Table 2) the LC -equation in the R3 × T do- 
main is given by Equation (23), where a (< 0) is a physical coe- 
fficient, and 3

1 / ii h     . Equation (23) is the covariance 
equation encountered in three-dimensional space × time statis- 
tical turbulence studies (Monin and Yaglom, 1971). Under cer- 
tain conditions, the corresponding attribute X(p) is called a 
“frozen field” (Taylor, 1938), i.e., it may be seen as a field that 
“travels” along a specified direction with a certain velocity. In 
theory, this LC-equation can be associated with the traveling 
metric of Equation (3g). Equation (23) can be re-written in the 
LG-form of Equation (24), where the CMR (1/1)

/0i is given by 
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Equation (9a). While LC-Equation (23) describes the physical 
correlation pattern of the attribute X(p), LG-Equation (24) des- 
cribes the geometrical pattern of the space-time domain with-
in which X(p) varies. In this sense, the metric ∆p itself may be 

seen as the “attribute” of the LG-equation. By inserting Equa-
tion (9a) into Equation (24), the LG-equation becomes Equation 
(25). The last equation is an analytical geometrical equation 
that replaces the physical covariance Equation (23), which 

Table 2. Space-time Metric Determination Examples 

 Example 1 (R3 × T) Example 2 (R3 × T) Example 3 (R2 × T) Example 4 (R1 × T) 
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means that the space-time metric coefficients must be chosen 
so that Equation (25) is satisfied. An obvious solution is given 
in Equations (26a-d). The space-time metric consistent with 
the LG-equation is that of Equation (27), i.e., the traveling me- 
tric of Equation (3g), as expected, in which case the covari-
ance model representing the traveling random field is:  

 
23

1[ ]( )
( ) ( ) ii

x x
h a

c c e
     p h a  (28) 

 
(which, indeed, satisfies Equation (23)). A metric solution im- 
plies relationships between the metric coefficients and the phy- 
sical parameter a that admit a certain interpretation. Specifi-
cally, the metric (27) is characterized by the positive a-effect 
on the correlation strength (range) between points, an effect 
that decreases with increasing time interval (this is a result of 
the covariance variation as a function of the a-dependent met-
ric ∆p). This is, indeed, the case here, since the derived metric, 
Equation (27), is consistent with the frozen attribute field of 
the underlying physics. 

Example 2 (Table 2) considers the covariance Equation 
(29) in R3 × T, where 1 2 3(  )Th h hh , and a is a constant (these 
equations are found in atmospheric environment situations, 
Daley, 1999). Equation (29) yields the LG-Equation (30), where 

(1/1)
/0i is given by Equation (9a). By inserting Equation (9a) into 

(30), the latter becomes Equation (31). This LG-equation, which 
represents an interaction of geometrical requirements combined 
with physical parameters, has more than one metric solutions, 
in which case it is interesting to understand what qualitative 
features each solution may possess. An obvious solution is 
Equations (32a-c) with the corresponding metric (33a) and 
Gaussian covariance: 
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Another solution of the LG-equation is Equations (32d-f) with 
metric Equation (33b). The fact that more than one space-time 
metrics satisfy the LG-equation is a situation similar to that in 
which more than one metric has been found to satisfy the field- 
equations of gravitation (e.g., Minkowsky, Schwarzschild, Fr- 
iedmann, and Walker metric solutions; Stephani et al., 2003; 
Zhu et al., 2015). We also observe that:  

 
32 2 2 2

(33 ) (33 ) 1
2b a i ji j

h h a  
 

  p p . 

 
Different metrics may rest on different physical bases (e.g., di- 
fferent dependence structures across space-time). ∆p(33a) allows 
a rather smooth attribute variation in space-time, whereas 
∆p(33b) implies a rougher variation and a higher negative effect 
of the a-parameter on the correlation strength between points 
(this negative effect increases with increasing time interval). 
Similar to Example 1, this is a result of the variation of the co- 
rresponding covariance shapes as functions of ∆p(33a) and ∆p(33b) 
(covariance with metric ∆p(33a) has a smaller slope at origin 
than that with ∆p(33b), implying a smoother attribute variation). 

By inserting the Gaussian model: 

 
2

1
2 2( )( ) i i i

X
b h cc e   p  

 
into LC-Equation (29) one finds, bi = c/a2 = b, i.e., the model 
coefficients bi, c are chosen so that this relationship holds (in 
which case, the Gaussian covariance is compatible with LC). 
From the above relationship the Gaussian model yields:  

 
(33 )( ) [ ]a

X
bc e

 


p
p   (35) 

 
i.e., the covariance of Equation (35b) is a generalization of 
Equation (34) that, in addition to the physical law parameter a, 
includes the Gaussian model parameter b.  

Example 3 (Table 2) considers a hydrologic situation in-
volving the variation of the hydraulic head governed by the 
subsurface flow law in the R2 × T domain with source of un-
certainty the random groundwater flow law parameters (hydr- 
aulic storativity and conductivity; Dagan, 1989). In this do-
main, the metric Equation (1) reduces to:  
 

2 2 22 2
0 12 21 1 21 1 1

2 ( )ii i i i i ii i i
h h h h h      

  
      p

2
00 0     , (36) 

 
and the covariance function characterizing the hydraulic head’s 
space-time variation is expressed by the LC–Equation (37), 
where ξ is the hydraulic storage coefficient, κ is the hydraulic 
conductivity and we define ∂κ/∂hi = ki, and k = (k1 k2)T. Follo- 
wing the metric determination approach, the LG–equation co- 
rresponding to LG–Equation (37) is expressed as in Equation 
(38), which, in light of Equation (36), is written in the analyti- 
cal form of Equation (39). Equation (39) must be solved with 
respect to the metric coefficients 00 0 0, , , ,i ij i     and i  (i, 
j = 1, 2). A solution set is Equations (40a-c), in which case the 
metric Equation (36) reduces to (41a), and the LC-Equation 
(37) has the covariance solution:  
 

2
01( ) i ii

X
hc e     p , (42) 

 
where ε0 is given by Equation (40b). For illustration, one could 
chose a unit value for εi and define the corresponding ε0 value, 
see Equations (40d-f) in which the metric coefficients are now 
functions only of the parameters , , ik  (i = 1, 2) of the hydro- 
logic covariance law. Then, the metric (41a) reduces to that of 
(41b). On the other hand, one can find covariance models with 
metrics different than (41a), which do not satisfy the covari-
ance law (37).   

Space-time plays a dual role in the LG-equations, because 
it constitutes both the object and the context within which spa- 
ce-time dependence is defined. This kind of self-reference gi- 
ves LG -equations governing metric ∆p

 

certain characteristics 
that are different than those of the equations governing the 
environmental attribute X(p). For example, normally we can 
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formulate the BIC of the physical law by specifying the X(p) 
values at a given space-boundary and time-instant, and then 
use the physical law to determine the space-time evolution of 
X(p). In contrast, due to the inherent self-referential aspect of 
∆p, one is not free to specify arbitrary BIC, but only condi-
tions that already satisfy self-consistency requirements impo- 
sed by the LG-equations themselves. 

Example 4 (Table 2) is a special case of Example 3, repre- 
senting transient groundwater flow in the R1 × T domain with 
the random source now being the flow BIC. Specifically, in R1 
× T the general metric of Equation (1) simply reduces to: 

 
2 2 2

11 00 01 1 02p h h h              (43) 

 
and the governing spacetime physical law is (Zhang, 2002): 
 

2

2 ] 0[ ( , )S X
K t s

s t 
    (44) 

 
Hydraulic head X(s, t) is decomposed as X(s, t) = ( , )X s t + X’(s, 
t), ( , )X s t and X’(s, t) denote the head mean and head pertur-
bation, respectively; S is the storage coefficient; and f(s) = 
logK(s), with constant saturated hydraulic conductivity K acro- 
ss the study domain. The random BIC are: 

 
( , 0) (1 ) ( , 0)LX s t H X s ts        (45a)  

 
( 0, ) ( 0, )X s t H X s t     (45b) 

 
( , ) ( , )X s L t X s L t    (45c) 

 
The hydraulic head covariance LC–equation associated with the 
groundwater flow law (44) is given by Equation (46), where h 
= s – s’, τ = t – t’, subject to the head covariance BIC (47a-c), 
where the study domain is much larger than the correlation 
length of head perturbations ( rL a ). The LG–equation cor-
responding to (46) is expressed by (48), which, in light of me- 
tric (43), takes the analytical form (49). Equation (49) must be 
solved with respect to the metric coefficients ε00, ε01, ε11, ε1, ε0, 
ζ1. A solution set is given by Equations (50a-c) with space-time 
metric (51a). 

It is interesting to consider the numerical solution ˆXc of 
the hydraulic head covariance LC–Equation (46), subject to the 
BIC (47a-c), and investigate if the numerical covariance ˆXc  
indeed admits a metric of the form (51a), i.e., it is of the theo-
retical covariance form: 

 
2

0

3 3( )
( , ) r r

X

K
a a Sh

c h c e



 


 

(52) 
  

For illustration, assume numerical values for the coefficients 
of the groundwater flow equation: S = 10-5 m, K(s) = 0.135 
m/day, ar = 10 m, aτ = 0.2 day, L = 200 m, T = 2 day, c0 = 10 
m2. The derived numerical ˆXc solution of LC–Equation (46) is 
plotted in Figure (1a). The perfect fit between cX and ˆXc (Fig-

ure (1b)) implies that the numerical ˆXc can be expressed ma- 
thematically by the theoretical cX form of Equation (52) with 
metric (51a). Hence, for the groundwater flow law (44) with 
random BIC (45a) - (45c), the space-time metric (51a) is an ap- 
propriate choice. The coefficients εi of the metric (41a) are not 
determined arbitrarily. It was found that these coefficients are 
functions of the spatial correlation length ar of the LC–BIC. The 
BIC (47b) shows that the temporal head covariance can increase 
exponentially with time. This is the case in practice, e.g., when 
the source of flow uncertainty is the random hydraulic conduc- 
tivity coefficients. Nevertheless, in the present flow example 
the cX of Equation (52) does not address the regions of ex-
treme high covariance values (large τ and small h), because 
the cX-calculation requires that:  

 

0K
Sh   .  (53) 

 
This inequality has the physical meaning that the hydraulic 
head variations can only be affected by the noise of the upstr- 
eam area due to either advection or diffusion mechanisms. 
Another solution set of LG-Equation (49) is given by (50d-g), 
which corresponds to the metric (51b). This result should be 
expected if we observe that the LC–Equation (46) is of the tra- 
veling field form. 

 

 

 

(a) 

(b) 

∆p 

Figure 1. Plots of (a) numerical ˆXc solution (46); and (b) ˆXc  
solution (46) vs. ∆p of Equation (51a) (circled line), and theo- 
retical cX model (52) vs. ∆p of (51a) (dashed line). 
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Lastly, it is instructive to consider subsurface flow that is 
clearly inconsistent with the space-time metric (51a). For a 
non-constant hydraulic conductivity K, the R1 × T transient gr- 
oundwater flow law governing the hydraulic head X(s, t) is 
(Zhang, 2002): 

 
2

2

( )
[ ] ( , ) 0

( )
f sS X s t

K s t s s s
    

   
 (54) 

 
with BIC: 

 

( , 0) (1 )sX s t H
L

    (55a) 

 
( 0, )X s t H   (55b) 

 
( , ) 0X s L t   (55c) 

 
Unlike Equation (44), in this case the uncertainty source is the 
log-hydraulic conductivity f(s), which is considered random 
and is decomposed as ( ) ( ) ( )f s f s f s  , where f(s) = logK(s) 
is the mean and ( )f s is the random fluctuation with variance 

2
f . Using the stochastic perturbative-expansion method (Zh- 

ang, 2002), assuming 0f s   , and a fixed location (s’, t’) 
= (0, 0) so that ,h s s s   t t t    , the LC–equation of 
the flow law (54) is Equation (46), but with new BIC:  

 
( ,0) 0Xc h   (56a) 

 
(0, ) 0Xc    (56b) 

 
( , ) 0Xc L    (56c) 

 
Equations (46) and (56a) – (56c) establish the space-time rela- 
tionships between hydraulic head and conductivity with respect 
to the 1st-order hydraulic head or conductivity variation at a 
fixed location (s’, t’) = (0, 0). To obtain the numerical covari-
ance solution of LC–Eq (46) subject to Eqs (56a-c), we assume 
that the covariance of the log-hydraulic conductivity is given 
by:  

 
3

( )
h

ar
fc h e  (57) 

 
H = 50 m, S = 10-5 m, K(s) = 0.135 m/day ( 2, 0),f f s     
c0 = 0.23, and ar = 54 m. The space and time domains are L = 
200 m and T = 2 days, respectively, and the discretized space 
and time intervals are ∆s = 4 m and ∆t = 0.0025 day, respecti- 
vely. The resulting numerical head covariance ˆ

Xc is plotted in 
Figure (2a). The temporal head covariance component of the 
plot in Figure (2a) can increase exponentially with time (which 
is consistent with Equation (47b)). Also, in Figure 2b we plot 
ˆ

Xc vs. the metric (51a) with ε1 = 1 (ar = 3). The circles in this 
figure indicate that for a specified ∆p-value there can be as-
signed several ˆ

Xc -values, corresponding to different combina- 

tions of (h, τ)-values in (51a). This means that the covariance 
of the hydraulic head obeying Equation (54) subject to the BIC 
(55a) - (55c) cannot have a metric of the form (51a). In sum, the 
source of randomness (physical law BIC vs. law coefficients) 
can affect the form of the space-time metric: the metric (51a) 
is appropriate when the randomness in the physical law (44) is 
its BIC, but it is inappropriate when the randomness source is 
the physical law coefficients. 

 

3.2. Concerning the Zeta Coefficients 

Any metric whatsoever is formally acceptable if it satis-
fies the LG-equation, which means that, in a sense, this equation 
becomes a definition of the metric coefficients. In this context, 
a further interpretation of the zeta coefficients may be useful. 
Generally, these coefficients can be expressed as follows:  

 

log ( )ij X
i j

c
h h

   
 

p  (58) 

 
( , 0, ..., ),i j n which also depends on the geometrical charac-
teristics of the covariance. In the special case of interest in the 
earlier analysis 0( 0, ) :j h    

 

0 log ( )
i

i i Xh c   
  p  (59) 

 

 

 

(a) 

(b) 

h – (K/S)τ  
Figure 2. Plots of (a) ˆ

Xc (1st–order head) vs. (h, τ); and (b) ˆ
Xc  

(1st–order head) vs. ∆p = h – (K/S)τ.
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If information about the cX shape is available (or can be assu- 
med), the ζij or ζi can be calculated directly from Equations 
(58) - (59), in which case the zeta coefficient is expressed in 
terms of ∆p. As a matter of fact, the ζi can be calculated for 
several classes of covariance functions. For illustration, consi- 
der covariance functions belonging to the exponential-power 
class: 

 
1

1
( ) ( 1) (60 )

( 1) (60 )
Xc b e a

b

 

  

 

 






 


 

 

p

p
p

 
( , , ).b R   In this case, we find that: 

 

i
i h


   p

p , (61) 

 

i.e., ζi is expressed in terms of the ∆p, as stated earlier. Then, 
the CMR equation (9c) becomes: 

 
(2/1) (1/1) (1/1)
/0 /0 /0( )

i ii i ih h


       p
p  (62) 

 
which links the space-time metric with the covariance param-
eters θ and ρ. Similar expressions can be derived for higher- 
order CMR.  

It is interesting to revisit Example 3 (Table 2). As noted 
earlier, in the analysis of Example 3 the exact shape of model 
cX needed not be known in advance in order to determine the 
specific metric, Equation (41a). Instead, the coefficients εi, εij 
and ζi needed to be chosen so that they satisfy Equations (40a 
- c). In light of Equations (58) - (61) above, for the covariance 
solution cX of Equation (37) to be consistent with the metric 
solution of Eq (41a) it is sufficient that cX satisfies:  

 

log ( )
i

X ih c
 

   p .   

 
Indeed, for the covariance of Equation (42), Equation (59) di- 
rectly yields Equation (40c). The same result is obtained from 
Equations (61) and (36) by setting ρ = 1, θ = -2. Moreover, 
Equation (42) gives:  

 

0( ) ( )X Xc c
    p p ,  

 
which is the same result as that obtained from Equation (60a) 
for b = -ε0, ρ = 1, θ = -2.  

4. Concluding Remarks 

Central among the quantitative features of a physical geo- 
metry is its metric structure, i.e., a set of mathematical expre- 
ssions that define spatiotemporal distance (Christakos and Hri- 
stopulos, 1998; Curriero, 2006; Nieves et al., 2007). These ex- 
pressions cannot always be defined unambiguously, but depend 
on two entirely different factors: a “relative” factor, the parti- 
cular coordinate system, and an “absolute” factor, the nature 
of the space-time continuum. The latter depends on local pro- 
perties (intrinsic links) of space and time as well as on constr- 
aints imposed by the environmental phenomenon itself (physi- 
cal law governing the attribute of interest, boundary and initial 
conditions, and attribute randomness sources). A summary 
outline of the space-time metric determination approach used 
in the present work is given in Figure 3. 

The choice of the spatiotemporal metric has major conse- 
quences in the scientific modeling of environmental attributes. 
One consequence is related to the choice of mathematical mo- 
dels that establish linkages between spatiotemporally distribu- 
ted data, such as covariance functions. These functions need 
to satisfy certain permissibility criteria that depend on the spa- 
ce-time metric (Christakos 2000; Christakos and Papanicolaou, 
2000). The commonly used Gaussian function, e.g., is permi- 
ssible in the case of a Euclidean metric but not in the case of a 
Manhattan metric. The exponential function, on the other hand, 
is permissible for both metrics. In general, the permissibility 
of a covariance function with respect to one metric form (e.g., 
Euclidean) does not guarantee its permissibility for another 
metric form (non-Euclidean). Space-time estimation, simula-
tion, and mapping of environmental attributes depend on the 
metric assumed, since the covariance functions are used as 
inputs in environmental mapping and simulation techniques 
(e.g., Kriging, regression, and Kalman filtering). Hence, the 
same dataset can lead to different attribute maps if estimation 
or simulation is performed using different metrics.  

There are a number of directions for future work concer- 
ning metric determination in environmental modeling, inclu- 
ding the following: (i) Different kinds of space/time-depen- 
dency of the metric coefficients could be studied, considering 
in particular those that correspond to physically meaningful 
space-time links. A classification of space/time-dependent me- 
trics would be interesting too. Metric coefficients could be ex- 
pressed in terms of standard analytic functions (polynomials, 
trigonometric and hyperbolic functions) of space-time coordi- 
nates. One may proceed by imposing symmetry or separability 
conditions on the metric, restricting the mathematical structure 
of the covariance function, or by considering the effects of 

LC[cX, a] = 0 [ , ] (κ /κ')
J/J'GL a [ , ]


 

 

κ+κ'

0G κ κ'
j j

L
h h

p a
E = E(a)
ε = ε(a)

CMR CDF ∆p2 = hT(Eh + ε)
 

Figure 3. Space-time metric determination examples. 
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BIC and random sources. (ii) Knowing the space-time metric 
in closed form, elucidation of its environmental properties is 
based on the phenomenon features. Certain metric solutions 
may not necessarily have a unique interpretation, which an issue 
in need of further investigation. (iii) If a metric form shows 
some resemblance to a known one, it should be investigated if 
the former can be reduced to the latter by means of a coordi-
nate transformation, and what this means as regards the ma- 
thematical and physical interpretation of the LG-equation. (iv) 
Another issue of interest is space-time coordinate transforma- 
tion, i.e., while the LG-equations is introduced in terms of a 
certain coordinate basis, coordinate transformation may be a 
possibility if it makes the LG-equations more tractable and ea- 
sier to solve.  
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